Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Pharmacology of Ivabradine and the Effect on Chronic Heart Failure

Author(s): Yue Zhou, Jian Wang, Zhuo Meng, Shuang Zhou, Jiayu Peng, Sun Chen, Qingjie Wang* and Kun Sun*

Volume 19, Issue 21, 2019

Page: [1878 - 1901] Pages: 24

DOI: 10.2174/1568026619666190809093144

Price: $65

Abstract

Chronic Heart Failure (CHF) is a complex clinical syndrome with a high incidence worldwide. Although various types of pharmacological and device therapies are available for CHF, the prognosis is not ideal, for which, the control of increased Heart Rate (HR) is critical. Recently, a bradycardic agent, ivabradine, is found to reduce HR by inhibiting the funny current (If). The underlying mechanism states that ivabradine can enter the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels and bind to the intracellular side, subsequently inhibiting the If. This phenomenon can prolong the slow spontaneous phase in the diastolic depolarization, and thus, reduce HR. The clinical trials demonstrated the significant effects of the drug on reducing HR and improving the symptoms of CHF with fewer adverse effects. This review primarily introduces the chemical features and pharmacological characteristics of ivabradine and the mechanism of treating CHF. Also, some expected therapeutic effects on different diseases were also concluded. However, ivabradine, as a typical If channel inhibitor, necessitates additional research to verify its pharmacological functions.

Keywords: Chronic heart failure, Funny current, If channel inhibitor, Ivabradine, Hyperpolarization-activated cyclic nucleotide- gated, Heart rate, Pharmacology.

Graphical Abstract

[1]
Doost, A.; Alasady, M.; Scott, P. National heart foundation of australia and the cardiac society of Australia and New Zealand: Australian clinical guidelines for the diagnosis and management of atrial fibrillation 2018. Heart Lung Circ., 2019, 28(5), e106-e107.
[http://dx.doi.org/10.1016/j.hlc.2018.11.016] [PMID: 30935623]
[2]
Dodd, K.; Lampert, B.C. The use and indication of ivabradine in heart failure. Heart Fail. Clin., 2018, 14(4), 493-500.
[http://dx.doi.org/10.1016/j.hfc.2018.06.001] [PMID: 30266358]
[3]
Rahmati, Z.; Amirzargar, A.A.; Saadati, S.; Rahmani, F.; Mahmoudi, M.J.; Rahnemoon, Z.; Eskandari, V.; Gorzin, F.; Hedayat, M.; Rezaei, N. Association of levels of interleukin 17 and T-helper 17 count with symptom severity and etiology of chronic heart failure: a case-control study. Croat. Med. J., 2018, 59(4), 139-148.
[http://dx.doi.org/10.3325/cmj.2018.59.139] [PMID: 30203627]
[4]
Zhuang, Y.S.; Liao, Y.Y.; Liu, B.Y.; Fang, Z.C.; Chen, L.; Min, L.; Chen, W. MicroRNA-27a mediates the Wnt/β-catenin pathway to affect the myocardial fibrosis in rats with chronic heart failure. Cardiovasc. Ther., 2018.e12468 [Epub ahead of print].
[http://dx.doi.org/10.3978/j.issn.2223-3652.2014.12.03] [PMID: 30238685]
[5]
Beghé, B.; Fabbri, L.M.; Garofalo, M.; Schito, M.; Verduri, A.; Bortolotti, M.; Stendardo, M.; Ruggieri, V.; Fucili, A.; Sverzellati, N.; Della Casa, G.; Maietti, E.; Clini, E.M.; Boschetto, P. Three-year hospitalization and mortality in elderly smokers with chronic obstructive pulmonary disease or chronic heart failure. Respiration, 2019, 97(3), 223-233.
[http://dx.doi.org/10.1159/000492286] [PMID: 30205380]
[6]
Lu, X.; Zhang, L.; Wang, J.; Liu, H.; Li, H.; Zhou, H.; Wu, R.; Yang, Y.; Wen, J.; Wei, S.; Zhou, X.; Zhao, Y.; Xiao, X. Clinical efficacy and safety of xinmailong injection for the treatment of chronic heart failure: A meta-analysis. Front. Pharmacol., 2018, 9, 810.
[http://dx.doi.org/10.3389/fphar.2018.00810] [PMID: 30140225]
[7]
Cao, Y.; Chen, S.; Liang, Y.; Wu, T.; Pang, J.; Liu, S.; Zhou, P. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels by β-blocker carvedilol. Br. J. Pharmacol., 2018, 175(20), 3963-3975.
[http://dx.doi.org/10.1111/bph.14469] [PMID: 30098004]
[8]
Kotecha, D.; Flather, M.D.; Altman, D.G.; Holmes, J.; Rosano, G.; Wikstrand, J.; Packer, M.; Coats, A.J.S.; Manzano, L.; Böhm, M.; van Veldhuisen, D.J.; Andersson, B.; Wedel, H.; von Lueder, T.G.; Rigby, A.S.; Hjalmarson, Å.; Kjekshus, J.; Cleland, J.G.F. Beta-blockers in heart failure collaborative group. heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. J. Am. Coll. Cardiol., 2017, 69(24), 2885-2896.
[http://dx.doi.org/10.1016/j.jacc.2017.04.001] [PMID: 28467883]
[9]
Rivinius, R.; Helmschrott, M.; Ruhparwar, A.; Rahm, A.K.; Darche, F.F.; Thomas, D.; Bruckner, T.; Ehlermann, P.; Katus, H.A.; Doesch, A.O. Control of cardiac chronotropic function in patients after heart transplantation: Effects of ivabradine and metoprolol succinate on resting heart rate in the denervated heart. Clin. Res. Cardiol., 2018, 107(2), 138-147.
[http://dx.doi.org/10.1007/s00392-017-1165-3] [PMID: 29098378]
[10]
Papadimitriou, L.; Hamo, C.E.; Butler, J. Heart failure guidelines on pharmacotherapy. Handb. Exp. Pharmacol., 2017, 243, 109-129.
[http://dx.doi.org/10.1007/164_2017_24] [PMID: 28451824]
[11]
Tardif, J.C.; Ford, I.; Tendera, M.; Bourassa, M.G.; Fox, K.; Investigators, I. INITIATIVE Investigators. Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur. Heart J., 2005, 26(23), 2529-2536.
[http://dx.doi.org/10.1093/eurheartj/ehi586] [PMID: 16214830]
[12]
Vilaine, J.P. The discovery of the selective I(f) current inhibitor ivabradine. A new therapeutic approach to ischemic heart disease. Pharmacol. Res., 2006, 53(5), 424-434.
[http://dx.doi.org/10.1016/j.phrs.2006.03.016] [PMID: 16638639]
[13]
Ramos, J.D.A.; Cunanan, E.L.; Abrahan, L.L., IV; Tiongson, M.D.A.; Punzalan, F.E.R. Ivabradine versus beta-blockers in mitral stenosis in sinus rhythm: An updated meta-analysis of randomized controlled trials. Cardiol. Res., 2018, 9(4), 224-230.
[http://dx.doi.org/10.14740/cr737w] [PMID: 30116450]
[14]
Ferrari, R.; Pavasini, R.; Camici, P.G.; Crea, F.; Danchin, N.; Pinto, F.; Manolis, A.; Marzilli, M.; Rosano, G.M.C.; Lopez-Sendon, J.; Fox, K. Anti-anginal drugs-beliefs and evidence: systematic review covering 50 years of medical treatment. Eur. Heart J., 2019, 40(2), 190-194.
[http://dx.doi.org/10.1093/eurheartj/ehy504] [PMID: 30165445]
[15]
Chow, S.L.; Page, R.L., II; Depre, C. Role of ivabradine and heart rate lowering in chronic heart failure: guideline update. Expert Rev. Cardiovasc. Ther., 2018, 16(7), 515-526.
[http://dx.doi.org/10.1080/14779072.2018.1489235] [PMID: 29902387]
[16]
Chaudhary, R.; Garg, J.; Krishnamoorthy, P.; Shah, N.; Lanier, G.; Martinez, M.W.; Freudenberger, R. Ivabradine: Heart failure and beyond. J. Cardiovasc. Pharmacol. Ther., 2016, 21(4), 335-343.
[http://dx.doi.org/10.1177/1074248415624157] [PMID: 26721645]
[17]
Núñez, L.; Crespo-Leiro, M.G.; Marrón-Liñares, G.M.; Suarez-Fuentetaja, N.; Barge-Caballero, E.; Paniagua-Martín, M.J.; Marzoa-Rivas, R.; Grille-Cancela, Z.; Muñiz-García, J.; Vazquez-Rodriguez, J.M.; Hermida-Prieto, M. Analysis of variants in the HCN4 gene and in three single nucleotide polymorphisms of the CYP3A4 gene for association with ivabradine reduction in heart rate: A preliminary report. Cardiol. J., 2016, 23(5), 573-582.
[PMID: 27439367]
[18]
Vitale, C.; Ilaria, S.; Rosano, G.M. Pharmacological interventions effective in improving exercise capacity in heart failure. Card. Fail. Rev., 2018, 4(1), 25-27.
[http://dx.doi.org/10.15420/cfr.2018:8:2] [PMID: 29892472]
[19]
Rosa, G.M.; Ferrero, S.; Ghione, P.; Valbusa, A.; Brunelli, C. An evaluation of the pharmacokinetics and pharmacodynamics of ivabradine for the treatment of heart failure. Expert Opin. Drug Metab. Toxicol., 2014, 10(2), 279-291.
[http://dx.doi.org/10.1517/17425255.2014.876005] [PMID: 24377458]
[20]
Bielecka-Dabrowa, A.; von Haehling, S.; Rysz, J.; Banach, M. Novel drugs for heart rate control in heart failure. Heart Fail. Rev., 2018, 23(4), 517-525.
[http://dx.doi.org/10.1007/s10741-018-9696-x] [PMID: 29594814]
[21]
Jirak, P.; Fejzic, D.; Paar, V.; Wernly, B.; Pistulli, R.; Rohm, I.; Jung, C.; Hoppe, U.C.; Schulze, P.C.; Lichtenauer, M.; Yilmaz, A.; Kretzschmar, D. Influences of Ivabradine treatment on serum levels of cardiac biomarkers sST2, GDF-15, suPAR and H-FABP in patients with chronic heart failure. Acta Pharmacol. Sin., 2018, 39(7), 1189-1196.
[http://dx.doi.org/10.1038/aps.2017.167] [PMID: 29239349]
[22]
Thorup, L.; Simonsen, U.; Grimm, D.; Hedegaard, E.R. Ivabradine: Current and future treatment of heart failure. Basic Clin. Pharmacol. Toxicol., 2017, 121(2), 89-97.
[http://dx.doi.org/10.1111/bcpt.12784] [PMID: 28371247]
[23]
Edelmann, F.; Knosalla, C.; Mörike, K.; Muth, C.; Prien, P.; Störk, S. Chronic heart failure. Dtsch. Arztebl. Int., 2018, 115(8), 124-130.
[PMID: 29526184]
[24]
Mu, M.; Majoni, S.W.; Iyngkaran, P.; Haste, M.; Kangaharan, N. Adherence to treatment guidelines in heart failure patients in the top end region of northern territory. Heart Lung Circ., 2018, 28(7), 1042-1049.
[http://dx.doi.org/10.1016/j.hlc.2018.06.1038] [PMID: 29980453]
[25]
Andries, G.; Yandrapalli, S.; Aronow, W.S. Benefit-risk review of different drug classes used in chronic heart failure. Expert Opin. Drug Saf., 2019, 18(1), 37-49.
[http://dx.doi.org/10.1080/14740338.2018.1512580] [PMID: 30114943]
[26]
Kassi, M.; Hannawi, B.; Trachtenberg, B. Recent advances in heart failure. Curr. Opin. Cardiol., 2018, 33(2), 249-256.
[http://dx.doi.org/10.1097/HCO.0000000000000497] [PMID: 29300199]
[27]
Sulfi, S.; Timmis, A.D. Ivabradine -- the first selective sinus node I(f) channel inhibitor in the treatment of stable angina. Int. J. Clin. Pract., 2006, 60(2), 222-228.
[http://dx.doi.org/10.1111/j.1742-1241.2006.00817.x] [PMID: 16451297]
[28]
Nawarskas, J.J.; Bowman, B.N.; Anderson, J.R. Ivabradine: A unique and intriguing medication for treating cardiovascular disease. Cardiol. Rev., 2015, 23(4), 201-211.
[http://dx.doi.org/10.1097/CRD.0000000000000070] [PMID: 25839989]
[29]
Baruscotti, M.; Bucchi, A.; Difrancesco, D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol. Ther., 2005, 107(1), 59-79.
[http://dx.doi.org/10.1016/j.pharmthera.2005.01.005] [PMID: 15963351]
[30]
DiFrancesco, D. The role of the funny current in pacemaker activity. Circ. Res., 2010, 106(3), 434-446.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.208041] [PMID: 20167941]
[31]
Yamabe, M.; Sanyal, S.N.; Miyamoto, S.; Hadama, T.; Isomoto, S.; Ono, K. Three different bradycardic agents, zatebradine, diltiazem and propranolol, distinctly modify heart rate variability and QT-interval variability. Pharmacology, 2007, 80(4), 293-303.
[http://dx.doi.org/10.1159/000107103] [PMID: 17690562]
[32]
Mengesha, H.G.; Tafesse, T.B.; Bule, M.H. If Channel as an emerging therapeutic target for cardiovascular diseases: A review of current evidence and controversies. Front. Pharmacol., 2017, 8, 874.
[http://dx.doi.org/10.3389/fphar.2017.00874] [PMID: 29225577]
[33]
Hassinen, M.; Haverinen, J.; Vornanen, M. Small functional If current in sinoatrial pacemaker cells of the brown trout (Salmo trutta fario) heart despite strong expression of HCN channel transcripts. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2017, 313(6), R711-R722.
[http://dx.doi.org/10.1152/ajpregu.00227.2017] [PMID: 28855177]
[34]
Kleinbongard, P.; Gedik, N.; Witting, P.; Freedman, B.; Klöcker, N.; Heusch, G. Pleiotropic, heart rate-independent cardioprotection by ivabradine. Br. J. Pharmacol., 2015, 172(17), 4380-4390.
[http://dx.doi.org/10.1111/bph.13220] [PMID: 26076181]
[35]
Bucchi, A.; Barbuti, A.; Baruscotti, M.; DiFrancesco, D. Heart rate reduction via selective ‘funny’ channel blockers. Curr. Opin. Pharmacol., 2007, 7(2), 208-213.
[http://dx.doi.org/10.1016/j.coph.2006.09.005] [PMID: 17267284]
[36]
Roubille, F.; Tardif, J.C. New therapeutic targets in cardiology: heart failure and arrhythmia: HCN channels. Circulation, 2013, 127(19), 1986-1996.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000145] [PMID: 23671179]
[37]
Godino, C.; Colombo, A.; Margonato, A. Ivabradine in patients with stable coronary artery disease: a rationale for use in addition to and beyond percutaneous coronary intervention. Clin. Drug Investig., 2017, 37(2), 105-120.
[http://dx.doi.org/10.1007/s40261-016-0472-1] [PMID: 27766510]
[38]
DiFrancesco, D.; Camm, J.A. Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. Drugs, 2004, 64(16), 1757-1765.
[http://dx.doi.org/10.2165/00003495-200464160-00003] [PMID: 15301560]
[39]
Koncz, I.; Szél, T.; Jaeger, K.; Baczkó, I.; Cerbai, E.; Romanelli, M.N.; Gy Papp, J.; Varró, A. Selective pharmacological inhibition of the pacemaker channel isoforms (HCN1-4) as new possible therapeutical targets. Curr. Med. Chem., 2011, 18(24), 3662-3674.
[http://dx.doi.org/10.2174/092986711796642427] [PMID: 21774761]
[40]
Fliss, G.; Staab, A.; Tillmann, C.; Trommeshauser, D.; Schaefer, H.G.; Kloft, C. Population pharmacokinetic data analysis of cilobradine, an I F channel blocker. Pharm. Res., 2008, 25(2), 359-368.
[http://dx.doi.org/10.1007/s11095-007-9351-z] [PMID: 17587152]
[41]
Yusuf, S.; Camm, A.J. Sinus tachyarrhythmias and the specific bradycardic agents: A marriage made in heaven? J. Cardiovasc. Pharmacol. Ther., 2003, 8(2), 89-105.
[http://dx.doi.org/10.1177/107424840300800202] [PMID: 12808482]
[42]
Sartiani, L.; Mannaioni, G.; Masi, A.; Novella Romanelli, M.; Cerbai, E. The hyperpolarization-activated cyclic nucleotide-gated channels: from biophysics to pharmacology of a unique family of ion channels. Pharmacol. Rev., 2017, 69(4), 354-395.
[http://dx.doi.org/10.1124/pr.117.014035] [PMID: 28878030]
[43]
Zamudio-Medina, A.; García-González, A.N.; Herrera-Carrillo, G.K.; Zárate-Zárate, D.; Benavides-Macías, A.; Tamariz, J.; Ibarra, I.A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of polyheterocyclic pyrrolo[3,4-b]pyridin-5-ones via a One-Pot (Ugi-3CR/aza diels-alder/N-acylation/aromatization/SN2) process. A suitable alternative towards novel aza-analogues of falipamil. Molecules, 2018, 23(4)E763
[http://dx.doi.org/10.3390/molecules23040763] [PMID: 29584639]
[44]
Boucher, M.; Chassaing, C.; Chapuy, E. Cardiac electrophysiological effects of falipamil in the conscious dog: comparison with alinidine. Eur. J. Pharmacol., 1996, 306(1-3), 93-98.
[http://dx.doi.org/10.1016/0014-2999(96)00178-1] [PMID: 8813620]
[45]
Lee, Y.T.; Vasilyev, D.V.; Shan, Q.J.; Dunlop, J.; Mayer, S.; Bowlby, M.R. Novel pharmacological activity of loperamide and CP-339,818 on human HCN channels characterized with an automated electrophysiology assay. Eur. J. Pharmacol., 2008, 581(1-2), 97-104.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.058] [PMID: 18162181]
[46]
Van Bogaert, P.P.; Pittoors, F. Use-dependent blockade of cardiac pacemaker current (If) by cilobradine and zatebradine. Eur. J. Pharmacol., 2003, 478(2-3), 161-171.
[http://dx.doi.org/10.1016/j.ejphar.2003.08.083] [PMID: 14575801]
[47]
Izumi-Nakaseko, H.; Kanda, Y.; Nakamura, Y.; Hagiwara-Nagasawa, M.; Wada, T.; Ando, K.; Naito, A.T.; Sekino, Y.; Sugiyama, A. Development of correction formula for field potential duration of human induced pluripotent stem cell-derived cardiomyocytes sheets. J. Pharmacol. Sci., 2017, 135(1), 44-50.
[http://dx.doi.org/10.1016/j.jphs.2017.08.008] [PMID: 28928053]
[48]
Wilson, C.M.; Farrell, A.P. Pharmacological characterization of the heartbeat in an extant vertebrate ancestor, the Pacific hagfish, Eptatretus stoutii. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2013, 164(1), 258-263.
[http://dx.doi.org/10.1016/j.cbpa.2012.09.013] [PMID: 23010241]
[49]
Hellbach, A.; Tiozzo, S.; Ohn, J.; Liebling, M.; De Tomaso, A.W. Characterization of HCN and cardiac function in a colonial ascidian J. Exp. Zool. A. Ecol. Genet. Physiol., 2011, 315(8), 476-486.
[http://dx.doi.org/10.1002/jez.695] [PMID: 21770038]
[50]
Cheng, Y.; George, I.; Yi, G.H.; Reiken, S.; Gu, A.; Tao, Y.K.; Muraskin, J.; Qin, S.; He, K.L.; Hay, I.; Yu, K.; Oz, M.C.; Burkhoff, D.; Holmes, J.; Wang, J. Bradycardic therapy improves left ventricular function and remodeling in dogs with coronary embolization-induced chronic heart failure. J. Pharmacol. Exp. Ther., 2007, 321(2), 469-476.
[http://dx.doi.org/10.1124/jpet.106.118109] [PMID: 17277196]
[51]
Cheng, L.; Kinard, K.; Rajamani, R.; Sanguinetti, M.C. Molecular mapping of the binding site for a blocker of hyperpolarization-activated, cyclic nucleotide-modulated pacemaker channels. J. Pharmacol. Exp. Ther., 2007, 322(3), 931-939.
[http://dx.doi.org/10.1124/jpet.107.121467] [PMID: 17578902]
[52]
Liu, X.; Zhang, L.; Jin, L.; Tan, Y.; Li, W.; Tang, J. HCN2 contributes to oxaliplatin-induced neuropathic pain through activation of the CaMKII/CREB cascade in spinal neurons. Mol. Pain, 2018, 141744806918778490
[http://dx.doi.org/10.1177/1744806918778490] [PMID: 29806529]
[53]
Lai, H.J.; Chen, C.L.; Tsai, L.K. Increase of hyperpolarization-activated cyclic nucleotide-gated current in the aberrant excitability of spinal muscular atrophy. Ann. Neurol., 2018, 83(3), 494-507.
[http://dx.doi.org/10.1002/ana.25168] [PMID: 29394509]
[54]
Djouhri, L.; Smith, T.; Ahmeda, A.; Alotaibi, M.; Weng, X. Hyperpolarization-activated cyclic nucleotide-gated channels contribute to spontaneous activity in L4 C-fiber nociceptors, but not Aβ-non-nociceptors, after axotomy of L5-spinal nerve in the rat in vivo. Pain, 2018, 159(7), 1392-1402.
[http://dx.doi.org/10.1097/j.pain.0000000000001224] [PMID: 29578948]
[55]
Mader, F.; Müller, S.; Krause, L.; Springer, A.; Kernig, K.; Protzel, C.; Porath, K.; Rackow, S.; Wittstock, T.; Frank, M.; Hakenberg, O.W.; Köhling, R.; Kirschstein, T. Hyperpolarization-activated cyclic nucleotide-gated non-selective (HCN) ion channels regulate human and murine urinary bladder contractility. Front. Physiol., 2018, 9, 753.
[http://dx.doi.org/10.3389/fphys.2018.00753] [PMID: 29971015]
[56]
Chang, C.C.; Lee, W.S.; Chuang, C.L.; Hsin, I.F.; Hsu, S.J.; Huang, H.C.; Lee, F.Y.; Lee, S.D. Effect of ivabradine, a funny current inhibitor, on portal hypertensive rats. J. Chin. Med. Assoc.,, 2018. pii. S1726-4901(18)30207-7.
[http://dx.doi.org/10.1016/j.jcma.2018.06.008] [PMID: 30197115]
[57]
Boldt, A.; Gergs, U.; Pönicke, K.; Simm, A.; Silber, R.E.; Neumann, J. Inotropic effects of ivabradine in the mammalian heart. Pharmacology, 2010, 86(5-6), 249-258.
[http://dx.doi.org/10.1159/000320454] [PMID: 20962545]
[58]
François-Bouchard, M.; Simonin, G. Bossant; Boursier-Neyret, C. Simultaneous determination of ivabradine and its metabolites in human plasma by liquid chromatography--tandem mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 2000, 745(2), 261-269.
[http://dx.doi.org/10.1016/S0378-4347(00)00275-9] [PMID: 11043745]
[59]
Frommeyer, G.; Weller, J.; Ellermann, C.; Leitz, P.; Kochhäuser, S.; Lange, P.S.; Dechering, D.G.; Eckardt, L. Ivabradine aggravates the proarrhythmic risk in experimental models of long QT syndrome. Cardiovasc. Toxicol., 2019, 19(2), 129-135.
[http://dx.doi.org/10.1007/s12012-018-9482-y] [PMID: 30238354]
[60]
Horwitz, G.C.; Risner-Janiczek, J.R.; Jones, S.M.; Holt, J.R. HCN channels expressed in the inner ear are necessary for normal balance function. J. Neurosci., 2011, 31(46), 16814-16825.
[http://dx.doi.org/10.1523/JNEUROSCI.3064-11.2011] [PMID: 22090507]
[61]
Riccioni, G. Ivabradine: An intelligent drug for the treatment of ischemic heart disease. Molecules, 2012, 17(11), 13592-13604.
[http://dx.doi.org/10.3390/molecules171113592] [PMID: 23159921]
[62]
Alshammari, T.M. Ivabradine: Do the benefits outweigh the risks? J. Cardiovasc. Pharmacol. Ther., 2017, 22(3), 210-218.
[http://dx.doi.org/10.1177/1074248416672008] [PMID: 27698078]
[63]
Villacorta, A.S.; Villacorta, H.; Caldas, J.A.; Precht, B.C.; Porto, P.B.; Rodrigues, L.U.; Neves, M.; Xavier, A.R.; Kanaan, S.; Mesquita, C.T.; da Nóbrega, A.C.L. Effects of heart rate reduction with either pyridostigmine or ivabradine in patients with heart failure: A randomized, double-blind study. J. Cardiovasc. Pharmacol. Ther., 2018.1074248418799364[Epub ahead of print]..
[http://dx.doi.org/10.1177/1074248418799364] [PMID: 30198318]
[64]
Hanif, M.; Khan, H.U.; Afzal, S.; Sher, M. Ivabradine loaded solid lipid microparticles: Formulation, characterization and optimization by central composite rotatable design. Acta Pol. Pharm., 2017, 74(1), 211-226.
[PMID: 29474777]
[65]
Wang, J.; Yang, Y.M.; Li, Y.; Zhu, J.; Lian, H.; Shao, X.H.; Zhang, H.; Fu, Y.C.; Zhang, L.F. Long-term treatment with ivabradine in transgenic atrial fibrillation mice counteracts hyperpolarization-activated cyclic nucleotide gated channel overexpression. J. Cardiovasc. Electrophysiol., 2019, 30(2), 242-252.
[http://dx.doi.org/10.1111/jce.13772] [PMID: 30302853]
[66]
Bemme, S.; Weick, M.; Gollisch, T. Differential effects of HCN channel block on on and off pathways in the retina as a potential cause for medication-induced phosphene Perception. Invest. Ophthalmol. Vis. Sci., 2017, 58(11), 4754-4767.
[http://dx.doi.org/10.1167/iovs.17-21572] [PMID: 28973319]
[67]
Pirtle, T.J.; Carr, T.L.; Khurana, T.; Meeker, G. ZD7288 and mibefradil inhibit the myogenic heartbeat in Daphnia magna indicating its dependency on HCN and T-type calcium ion channels. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2018, 222, 36-42.
[http://dx.doi.org/10.1016/j.cbpa.2018.04.009] [PMID: 29684576]
[68]
Yang, Y.; Xia, Z.; Meng, Q.; Liu, K.; Xiao, Y.; Shi, L. Dexmedetomidine relieves neuropathic pain by inhibiting hyperpolarization-activated cyclic nucleotide-gated currents in dorsal root ganglia neurons. Neuroreport, 2018, 29(12), 1001-1006.
[http://dx.doi.org/10.1097/WNR.0000000000001068] [PMID: 29912028]
[69]
Liu, Q.; Wu, C.; Huang, S.; Wu, Q.; Zhou, T.; Liu, X.; Liu, X.; Hu, X.; Li, L. Decreased hyperpolarization-activated cyclic nucleotide-gated channels are involved in bladder dysfunction associated with spinal cord injury. Int. J. Mol. Med., 2018, 41(5), 2609-2618.
[http://dx.doi.org/10.3892/ijmm.2018.3489] [PMID: 29436607]
[70]
Silva, F.C.; Paiva, F.A.; Müller-Ribeiro, F.C.; Caldeira, H.M.; Fontes, M.A.; de Menezes, R.C.; Casali, K.R.; Fortes, G.H.; Tobaldini, E.; Solbiati, M.; Montano, N.; Dias Da Silva, V.J.; Chianca, D.A., Jr Chronic treatment with ivabradine does not affect cardiovascular autonomic control in rats. Front. Physiol., 2016, 7, 305.
[http://dx.doi.org/10.3389/fphys.2016.00305] [PMID: 27507948]
[71]
McGovern, A.E.; Robusto, J.; Rakoczy, J.; Simmons, D.G.; Phipps, S.; Mazzone, S.B. The effect of hyperpolarization-activated cyclic nucleotide-gated ion channel inhibitors on the vagal control of guinea pig airway smooth muscle tone. Br. J. Pharmacol., 2014, 171(15), 3633-3650.
[http://dx.doi.org/10.1111/bph.12745] [PMID: 24762027]
[72]
Melchiorre, M.; Del Lungo, M.; Guandalini, L.; Martini, E.; Dei, S.; Manetti, D.; Scapecchi, S.; Teodori, E.; Sartiani, L.; Mugelli, A.; Cerbai, E.; Romanelli, M.N. Design, synthesis, and preliminary biological evaluation of new isoform-selective f-current blockers. J. Med. Chem., 2010, 53(18), 6773-6777.
[http://dx.doi.org/10.1021/jm1006758] [PMID: 20795648]
[73]
Shahi, P.K.; Choi, S.; Zuo, D.C.; Kim, M.Y.; Park, C.G.; Kim, Y.D.; Lee, J.; Park, K.J.; So, I.; Jun, J.Y. The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal. J. Gastroenterol., 2014, 49(6), 1001-1010.
[http://dx.doi.org/10.1007/s00535-013-0849-3] [PMID: 23780559]
[74]
Riesen, S.C.; Ni, W.; Carnes, C.A.; Lindsey, K.J.; Phelps, M.A.; Schober, K.E. Pharmacokinetics of oral ivabradine in healthy cats. J. Vet. Pharmacol. Ther., 2011, 34(5), 469-475.
[http://dx.doi.org/10.1111/j.1365-2885.2010.01253.x] [PMID: 21118419]
[75]
Cao, Y.; Pang, J.; Zhou, P. HCN channel as therapeutic targets for heart failure and pain. Curr. Top. Med. Chem., 2016, 16(16), 1855-1861.
[http://dx.doi.org/10.2174/1568026616666151215104058] [PMID: 26667117]
[76]
Postea, O.; Biel, M. Exploring HCN channels as novel drug targets. Nat. Rev. Drug Discov., 2011, 10(12), 903-914.
[http://dx.doi.org/10.1038/nrd3576] [PMID: 22094868]
[77]
Bernal, L.; Roza, C. Hyperpolarization-activated channels shape temporal patterns of ectopic spontaneous discharge in C-nociceptors after peripheral nerve injury. Eur. J. Pain, 2018. Epub ahead of print
[http://dx.doi.org/10.1002/ejp.1226] [PMID: 29635758]
[78]
Chobanyan-Jürgens, K.; Heusser, K.; Duncker, D.; Veltmann, C.; May, M.; Mehling, H.; Luft, F.C.; Schröder, C.; Jordan, J.; Tank, J. Cardiac pacemaker channel (HCN4) inhibition and atrial arrhythmogenesis after releasing cardiac sympathetic activation. Sci. Rep., 2018, 8(1), 7748.
[http://dx.doi.org/10.1038/s41598-018-26099-9] [PMID: 29773827]
[79]
Badu-Boateng, C.; Jennings, R.; Hammersley, D. The therapeutic role of ivabradine in heart failure. Ther. Adv. Chronic Dis., 2018, 9(11), 199-207.
[http://dx.doi.org/10.1177/2040622318784556] [PMID: 30364460]
[80]
Kaski, J.C.; Gloekler, S.; Ferrari, R.; Fox, K.; Lévy, B.I.; Komajda, M.; Vardas, P.; Camici, P.G. Role of ivabradine in management of stable angina in patients with different clinical profiles. Open Heart, 2018, 5(1)e000725
[http://dx.doi.org/10.1136/openhrt-2017-000725] [PMID: 29632676]
[81]
Borer, J.S.; Fox, K.; Jaillon, P.; Lerebours, G. Ivabradine investigators group antianginal and antiischemic effects of ivabradine, an I(f) inhibitor, in stable angina: a randomized, double-blind, multicentered, placebo-controlled trial. Circulation, 2003, 107(6), 817-823.
[http://dx.doi.org/10.1161/01.CIR.0000048143.25023.87] [PMID: 12591750]
[82]
Abed, H.S.; Fulcher, J.R.; Kilborn, M.J.; Keech, A.C. Inappropriate sinus tachycardia: focus on ivabradine. Intern. Med. J., 2016, 46(8), 875-883.
[http://dx.doi.org/10.1111/imj.13093] [PMID: 27059112]
[83]
Kučerová, A.; Doškář, P.; Dujka, L.; Lekešová, V.; Volf, P.; Koščová, K.; Neužil, P.; Málek, F. Heart rate reduction after ivabradine might be associated with reverse electrical remodeling in patients with cardiomyopathy and left bundle branch block. J. Int. Med. Res., 2018, 46(11), 4825-4828.
[http://dx.doi.org/10.1177/0300060518799566] [PMID: 30223689]
[84]
Zhang, Y.; Sun, W.; Pan, Y.; Li, T.; Yang, X.; Xu, R.; Qiu, X. Pharmacokinetics changes of ivabradine and N-desmethy-livabradine after oral administration with puerarin in rats. Int. J. Clin. Exp. Med., 2016, 9(5), 8369-8374.
[85]
Lainscak, M.; Vitale, C.; Seferovic, P.; Spoletini, I.; Cvan Trobec, K.; Rosano, G.M. Pharmacokinetics and pharmacodynamics of cardiovascular drugs in chronic heart failure. Int. J. Cardiol., 2016, 224, 191-198.
[http://dx.doi.org/10.1016/j.ijcard.2016.09.015] [PMID: 27657473]
[86]
Tamargo, J.; Rosano, G.; Walther, T.; Duarte, J.; Niessner, A.; Kaski, J.C.; Ceconi, C.; Drexel, H.; Kjeldsen, K.; Savarese, G.; Torp-Pedersen, C.; Atar, D.; Lewis, B.S.; Agewall, S. Gender differences in the effects of cardiovascular drugs. Eur. Heart J. Cardiovasc. Pharmacother., 2017, 3(3), 163-182.
[http://dx.doi.org/10.1093/ehjcvp/pvw042] [PMID: 28329228]
[87]
Yu, J.; Zhou, Z.; Owens, K.H.; Ritchie, T.K.; Ragueneau-Majlessi, I. What can be learned from recent new drug applications? A systematic review of drug interaction data for drugs approved by the US FDA in 2015. Drug Metab. Dispos., 2017, 45(1), 86-108.
[http://dx.doi.org/10.1124/dmd.116.073411] [PMID: 27821435]
[88]
Petite, S.E.; Bishop, B.M.; Mauro, V.F. Role of the funny current inhibitor ivabradine in cardiac pharmacotherapy: A systematic review. Am. J. Ther., 2018, 25(2), e247-e266.
[http://dx.doi.org/10.1097/MJT.0000000000000388] [PMID: 26910057]
[89]
Sun, W.; Wang, Z.; Chen, H.; Zhang, X.D.; Huang, C.K.; Lian, Q.Q.; Shang-Guan, W.N.; Zhu, G.H.; Hu, G.X.; Wang, Z.S. The effect of clopidogrel on pharmacokinetics of ivabradine and its metabolite in rats. Drug Dev. Ind. Pharm., 2015, 41(9), 1512-1517.
[http://dx.doi.org/10.3109/03639045.2014.959970] [PMID: 25250618]
[90]
Esteves, F.; Campelo, D.; Urban, P.; Bozonnet, S.; Lautier, T.; Rueff, J.; Truan, G.; Kranendonk, M. Human cytochrome P450 expression in bacteria: Whole-cell high-throughput activity assay for CYP1A2, 2A6 and 3A4. Biochem. Pharmacol., 2018, 158, 134-140.
[http://dx.doi.org/10.1016/j.bcp.2018.10.006] [PMID: 30308189]
[91]
Vlase, L.; Popa, A.; Neag, M.; Muntean, D.; Leucuta, S.E. Pharmacokinetic interaction between ivabradine and phenytoin in healthy subjects. Clin. Drug Investig., 2012, 32(8), 533-538.
[PMID: 22765768]
[92]
Lodhi, M.; Dubey, A.; Narayan, R.; Prabhu, P.; Priya, S. Formulation and evaluation of buccal film of Ivabradine hydrochloride for the treatment of stable Angina pectoris. Int. J. Pharm. Investig., 2013, 3(1), 47-53.
[http://dx.doi.org/10.4103/2230-973X.108963] [PMID: 23799205]
[93]
Choi, H.Y.; Bae, K.S.; Cho, S.H.; Ghim, J.L.; Choe, S.; Jung, J.A.; Lim, H.S. Population plasma and urine pharmacokinetics of ivabradine and its active metabolite S18982 in healthy Korean volunteers. J. Clin. Pharmacol., 2016, 56(4), 439-449.
[http://dx.doi.org/10.1002/jcph.614] [PMID: 26265098]
[94]
Portolés, A.; Calvo, A.; Terleira, A.; Laredo, L.; Resplandy, G.; Gorostiaga, C.; Moreno, A. Lack of pharmacokinetic interaction between omeprazole or lansoprazole and ivabradine in healthy volunteers: an open-label, randomized, crossover, pharmacokinetic interaction clinical trial. J. Clin. Pharmacol., 2006, 46(10), 1195-1203.
[http://dx.doi.org/10.1177/0091270006291624] [PMID: 16988209]
[95]
Koruth, J.S.; Lala, A.; Pinney, S.; Reddy, V.Y.; Dukkipati, S.R. The Clinical use of ivabradine. the clinical use of ivabradine. J. Am. Coll. Cardiol., 2017, 70(14), 1777-1784.
[http://dx.doi.org/10.1016/j.jacc.2017.08.038] [PMID: 28958335]
[96]
Chen, X.P.; Zheng, H.T.; Cai, W.W.; Li, M.K.; Zhang, J.W.; Hu, J. The effect of silibinin on the pharmacokinetics of ivabradine and N-desmethylivabradine in rats. Pharmacology, 2015, 96(3-4), 107-111.
[http://dx.doi.org/10.1159/000435890] [PMID: 26202095]
[97]
Chen, J.T.; Wei, L.; Chen, T.L.; Huang, C.J.; Chen, R.M. Regulation of cytochrome P450 gene expression by ketamine: a review. Expert Opin. Drug Metab. Toxicol., 2018, 14(7), 709-720.
[http://dx.doi.org/10.1080/17425255.2018.1487397] [PMID: 29888644]
[98]
Li, A.; Yeo, K.; Welty, D.; Rong, H. Development of guanfacine extended-release dosing strategies in children and adolescents with ADHD using a physiologically based pharmacokinetic model to predict drug-drug interactions with moderate CYP3A4 inhibitors or inducers. Paediatr. Drugs, 2018, 20(2), 181-194.
[http://dx.doi.org/10.1007/s40272-017-0270-0] [PMID: 29098603]
[99]
Cocco, G.; Jerie, P. Torsades de pointes induced by the concomitant use of ivabradine and azithromycin: an unexpected dangerous interaction. Cardiovasc. Toxicol., 2015, 15(1), 104-106.
[http://dx.doi.org/10.1007/s12012-014-9274-y] [PMID: 25158669]
[100]
Guo, Y.J.; Liang, D.L.; Xu, Z.S.; Ye, Q. In vivo inhibitory effects of puerarin on selected rat cytochrome P450 isoenzymes. Pharmazie, 2014, 69(5), 367-370.
[PMID: 24855829]
[101]
Romero-León, J.M.; Gálvez-Contreras, M.C.; Díez-García, L.F. Symptomatic Bradycardia and Heart Failure Triggered by Ivabradine in a Patient Receiving Antiretroviral Therapy. Rev. Esp. Cardiol. (Engl. Ed.), 2016, 69(5), 529-530.
[http://dx.doi.org/10.1016/j.rec.2016.02.005] [PMID: 27012681]
[102]
Morales-Martínez de Tejada, Á. About bradycardia and secondary heart failure induced by ivabradine in a patient with HIV. Rev. Esp. Cardiol. (Engl. Ed.), 2016, 69(8), 799-800.
[http://dx.doi.org/10.1016/j.rec.2016.04.019] [PMID: 27328994]
[103]
Al-Husein, B.A.; Al-Azzam, S.I.; Alzoubi, K.H.; Khabour, O.F.; Nusair, M.B.; Alzayadeen, S. Investigating the effect of demographics, clinical characteristics, and polymorphism of mdr-1, cyp1a2, cyp3a4, and cyp3a5 on clopidogrel resistance. J. Cardiovasc. Pharmacol., 2018, 72(6), 296-302.
[http://dx.doi.org/10.1097/FJC.0000000000000627] [PMID: 30422888]
[104]
Elsby, R.; Hare, V.; Neal, H.; Outteridge, S.; Pearson, C.; Plant, K.; Gill, R.U.; Butler, P.; Riley, R.J. Mechanistic in vitro studies indicate that the clinical drug-drug interaction between telithromycin and simvastatin acid is driven by time-dependent inhibition of CYP3A4 with minimal effect on OATP1B1. Drug Metab. Dispos., 2019, 47(1), 1-8.
[http://dx.doi.org/10.1124/dmd.118.083832] [PMID: 30348903]
[105]
Owczarek, J.; Jasińska-Stroschein, M.; Orszulak-Michalak, D. Concomitant administration of different doses of simvastatin with ivabradine influence on PAI-1 and heart rate in normo- and hypercholesterolaemic rats. ScientificWorldJournal, 2012, 2012976519
[http://dx.doi.org/10.1100/2012/976519] [PMID: 22645493]
[106]
Shang, W.; Liu, J.; Chen, R.; Ning, R.; Xiong, J.; Liu, W.; Mao, Z.; Hu, G.; Yang, J. Fluoxetine reduces CES1, CES2, and CYP3A4 expression through decreasing PXR and increasing DEC1 in HepG2 cells. Xenobiotica, 2016, 46(5), 393-405.
[http://dx.doi.org/10.3109/00498254.2015.1082209] [PMID: 26340669]
[107]
Laurian, V.A.P. Pharmacokinetic interaction study between ivabradine with fluoxetine or metronidazole in healthy volunteers. Farmacia, 2010, 58(4), 471-477.
[108]
Wang, R.; Sun, Y.; Yin, Q.; Xie, H.; Li, W.; Wang, C.; Guo, J.; Hao, Y.; Tao, R.; Jia, Z. The effects of metronidazole on Cytochrome P450 Activity and Expression in rats after acute exposure to high altitude of 4300m. Biomed. Pharmacother., 2017, 85, 296-302.
[http://dx.doi.org/10.1016/j.biopha.2016.11.024] [PMID: 27899252]
[109]
Sawicka, K.M.; Wawryniuk, A.; Zwolak, A.; Daniluk, J.; Szpringer, M.; Florek-Luszczki, M.; Drop, B.; Zolkowska, D.; Luszczki, J.J. Influence of ivabradine on the anticonvulsant action of four classical antiepileptic drugs against maximal electroshock-induced seizures in mice. Neurochem. Res., 2017, 42(4), 1038-1043.
[http://dx.doi.org/10.1007/s11064-016-2136-1] [PMID: 28083847]
[110]
Vlase, L.; Neag, M.; Popa, A.; Muntean, D.; Bâldea, I.; Leucuta, S.E. Pharmacokinetic interaction between ivabradine and carbamazepine in healthy volunteers. J. Clin. Pharm. Ther., 2011, 36(2), 225-229.
[http://dx.doi.org/10.1111/j.1365-2710.2010.01170.x] [PMID: 21366652]
[111]
Chbili, C.; Fathallah, N.; Laouani, A.; Nouira, M.; Hassine, A.; Ben Amor, S.; Ben Ammou, S.; Ben Salem, C.; Saguem, S. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J. Neurogenet., 2016, 30(1), 16-21.
[http://dx.doi.org/10.3109/01677063.2016.1155571] [PMID: 27276192]
[112]
Gardin, A.; Gray, C.; Neelakantham, S.; Huth, F.; Davidson, A.M.; Dumitras, S.; Legangneux, E.; Shakeri-Nejad, K. Siponimod pharmacokinetics, safety, and tolerability in combination with rifampin, a CYP2C9/3A4 inducer, in healthy subjects. Eur. J. Clin. Pharmacol., 2018, 74(12), 1593-1604.
[http://dx.doi.org/10.1007/s00228-018-2533-2] [PMID: 30105453]
[113]
Bocchi, E.A.; Böhm, M.; Borer, J.S.; Ford, I.; Komajda, M.; Swedberg, K.; Tavazzi, L. SHIFT investigators Effect of combining ivabradine and β-blockers: Focus on the use of carvedilol in the SHIFT population. Cardiology, 2015, 131(4), 218-224.
[http://dx.doi.org/10.1159/000380812] [PMID: 25968495]
[114]
Gee, M.E.; Watkins, A.K.; Brown, J.N.; Young, E.J.A. Ivabradine for the treatment of postural orthostatic tachycardia syndrome: A systematic review. Am. J. Cardiovasc. Drugs, 2018, 18(3), 195-204.
[http://dx.doi.org/10.1007/s40256-017-0252-1] [PMID: 29330767]
[115]
Perings, S.; Stöckl, G.; Kelm, M. RESPONSIfVE study investigators.Effectiveness and tolerability of ivabradine with or without concomitant beta-blocker therapy in patients with chronic stable angina in routine clinical practice. Adv. Ther., 2016, 33(9), 1550-1564.
[http://dx.doi.org/10.1007/s12325-016-0377-7] [PMID: 27432382]
[116]
Mathis, T.; Vignot, S.; Leal, C.; Caujolle, J.P.; Maschi, C.; Mauget-Faÿsse, M.; Kodjikian, L.; Baillif, S.; Herault, J.; Thariat, J. Mechanisms of phosphenes in irradiated patients. Oncotarget, 2017, 8(38), 64579-64590.
[http://dx.doi.org/10.18632/oncotarget.18719] [PMID: 28969095]
[117]
Bartholomew, R.N.; Sheridan, D.J. What are luminous phenomena? Nursing, 2017, 47(10), 70.
[http://dx.doi.org/10.1097/01.NURSE.0000522001.52654.49] [PMID: 28953703]
[118]
Lu, Y.; Li, K.; Liu, X.S.; Zhang, N.; Li, G.; Liu, T. Ivabradine and atrial fibrillation: A double-edged sword. Int. J. Cardiol., 2016, 223, 182-185.
[http://dx.doi.org/10.1016/j.ijcard.2016.08.100] [PMID: 27541651]
[119]
Frommeyer, G.; Sterneberg, M.; Dechering, D.G.; Ellermann, C.; Bögeholz, N.; Kochhäuser, S.; Pott, C.; Fehr, M.; Eckardt, L. Effective suppression of atrial fibrillation by ivabradine: Novel target for an established drug? Int. J. Cardiol., 2017, 236, 237-243.
[http://dx.doi.org/10.1016/j.ijcard.2017.02.055] [PMID: 28262346]
[120]
Musiałek, P. Drug action(s), drug marketing, and clinical medicine. Suppression of ventricular arrhythmogenicity with If blockade in human heart failure: emerging clinical evidence for ivabradine treatment benefit beyond heart rate control. Kardiol. Pol., 2017, 75(12), 1368-1371.
[http://dx.doi.org/10.5603/KP.2017.0238] [PMID: 29251762]
[121]
Borer, J.S.; Deedwania, P.C.; Kim, J.B.; Böhm, M. Benefits of heart rate slowing with ivabradine in patients with systolic heart failure and coronary artery disease. Am. J. Cardiol., 2016, 118(12), 1948-1953.
[http://dx.doi.org/10.1016/j.amjcard.2016.08.089] [PMID: 27780557]
[122]
Chaudhry, S.P.; Stewart, G.C. New pharmacological and technological management strategies in heart failure. Vasc. Health Risk Manag., 2017, 13, 111-121.
[http://dx.doi.org/10.2147/VHRM.S106841] [PMID: 28356751]
[123]
Zugck, C.; Martinka, P.; Stöckl, G. Ivabradine treatment in a chronic heart failure patient cohort: symptom reduction and improvement in quality of life in clinical practice. Adv. Ther., 2014, 31(9), 961-974.
[http://dx.doi.org/10.1007/s12325-014-0147-3] [PMID: 25160945]
[124]
Tardif, J.C.; O’Meara, E.; Komajda, M.; Böhm, M.; Borer, J.S.; Ford, I.; Tavazzi, L.; Swedberg, K.; Investigators, S. SHIFT Investigators.Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur. Heart J., 2011, 32(20), 2507-2515.
[http://dx.doi.org/10.1093/eurheartj/ehr311] [PMID: 21875858]
[125]
Tendera, M.; Talajic, M.; Robertson, M.; Tardif, J.C.; Ferrari, R.; Ford, I.; Steg, P.G.; Fox, K.; Investigators, B. BEAUTIFUL Investigators. Safety of ivabradine in patients with coronary artery disease and left ventricular systolic dysfunction (from the BEAUTIFUL Holter Substudy). Am. J. Cardiol., 2011, 107(6), 805-811.
[http://dx.doi.org/10.1016/j.amjcard.2010.10.065] [PMID: 21247517]
[126]
Xing, R.; Moerman, A.M.; Ridwan, R.Y.; Gaalen, K.V.; Meester, E.J.; van der Steen, A.F.W.; Evans, P.C.; Gijsen, F.J.H.; Van der Heiden, K. The effect of the heart rate lowering drug Ivabradine on hemodynamics in atherosclerotic mice. Sci. Rep., 2018, 8(1), 14014.
[http://dx.doi.org/10.1038/s41598-018-32458-3] [PMID: 30228313]
[127]
Volterrani, M.; Cice, G.; Caminiti, G.; Vitale, C.; D’Isa, S.; Perrone Filardi, P.; Acquistapace, F.; Marazzi, G.; Fini, M.; Rosano, G.M. Effect of Carvedilol, Ivabradine or their combination on exercise capacity in patients with Heart Failure (the CARVIVA HF trial). Int. J. Cardiol., 2011, 151(2), 218-224.
[http://dx.doi.org/10.1016/j.ijcard.2011.06.098] [PMID: 21764469]
[128]
Hidalgo, F.J.; Anguita, M.; Castillo, J.C.; Rodríguez, S.; Pardo, L.; Durán, E.; Sánchez, J.J.; Ferreiro, C.; Pan, M.; Mesa, D.; Delgado, M.; Ruiz, M. Effect of early treatment with ivabradine combined with beta-blockers versus beta-blockers alone in patients hospitalised with heart failure and reduced left ventricular ejection fraction (ETHIC-AHF): A randomised study. Int. J. Cardiol., 2016, 217, 7-11.
[http://dx.doi.org/10.1016/j.ijcard.2016.04.136] [PMID: 27167103]
[129]
Rousan, T.A.; Mathew, S.T.; Thadani, U. The risk of cardiovascular side effects with anti-anginal drugs. Expert Opin. Drug Saf., 2016, 15(12), 1609-1623.
[http://dx.doi.org/10.1080/14740338.2016.1238457] [PMID: 27659354]
[130]
Komajda, M.; Isnard, R.; Cohen-Solal, A.; Metra, M.; Pieske, B.; Ponikowski, P.; Voors, A.A.; Dominjon, F.; Henon-Goburdhun, C.; Pannaux, M.; Böhm, M. prEserveD left ventricular ejectIon fraction chronic heart Failure with ivabradine studY (EDIFY) Investigators. Effect of ivabradine in patients with heart failure with preserved ejection fraction: the EDIFY randomized placebo-controlled trial. Eur. J. Heart Fail., 2017, 19(11), 1495-1503.
[http://dx.doi.org/10.1002/ejhf.876] [PMID: 28462519]
[131]
Li-Sha, G.; Li, L.; De-Pu, Z.; Zhe-Wei, S.; Xiaohong, G.; Guang-Yi, C.; Jia, L.; Jia-Feng, L.; Maoping, C.; Yue-Chun, L. Ivabradine treatment reduces cardiomyocyte apoptosis in a murine model of chronic viral myocarditis. Front. Pharmacol., 2018, 9, 182.
[http://dx.doi.org/10.3389/fphar.2018.00182] [PMID: 29556195]
[132]
Jozwiak, M.; Melka, J.; Rienzo, M.; Bizé, A.; Sambin, L.; Hittinger, L.; Berdeaux, A.; Su, J.B.; Bouhemad, B.; Ghaleh, B. Ivabradine improves left ventricular twist and untwist during chronic hypertension. Int. J. Cardiol., 2018, 252, 175-180.
[http://dx.doi.org/10.1016/j.ijcard.2017.11.049] [PMID: 29196088]
[133]
Mathew, S.T.; Po, S.S.; Thadani, U. Inappropriate sinus tachycardia-symptom and heart rate reduction with ivabradine: A pooled analysis of prospective studies. Heart Rhythm, 2018, 15(2), 240-247.
[http://dx.doi.org/10.1016/j.hrthm.2017.10.004] [PMID: 29017929]
[134]
Sarocchi, M.; Arboscello, E.; Ghigliotti, G.; Murialdo, R.; Bighin, C.; Gualandi, F.; Sicbaldi, V.; Balbi, M.; Brunelli, C.; Spallarossa, P. Ivabradine in cancer treatment-related left ventricular dysfunction. Chemotherapy, 2018, 63(6), 315-320.
[http://dx.doi.org/10.1159/000495576] [PMID: 30840967]
[135]
Cai, M.; Huang, H.; Su, L.; Lin, N.; Wu, X.; Xie, X.; An, G.; Li, Y.; Lin, Y.; Xu, L. Fetal congenital heart disease: Associated anomalies, identification of genetic anomalies by single-nucleotide polymorphism array analysis, and postnatal outcome. Medicine (Baltimore), 2018, 97(50)e13617
[http://dx.doi.org/10.1097/MD.0000000000013617] [PMID: 30558042]
[136]
Aydin, H.R.; Turgut, H.; Kurt, A.; Sahan, R.; Kalkan, O.F.; Eren, H.; Ayar, A. Ivabradine inhibits carbachol-induced contractions of isolated rat urinary bladder. Adv. Clin. Exp. Med., 2018, 27(7), 893-897.
[http://dx.doi.org/10.17219/acem/71197] [PMID: 29905410]
[137]
Dubin, J.M.; Greer, A.B.; Carrasquillo, R.; O’Brien, I.T.; Leue, E.P.; Ramasamy, R. Erectile dysfunction among male adult entertainers:A survey. Transl. Androl. Urol., 2018, 7(6), 926-930.
[http://dx.doi.org/10.21037/tau.2018.08.13] [PMID: 30505729]
[138]
Aydın, F.; Bektur, S.; Taşdelen, Y.; Kıvrak, Y.; Hüseyinoglu Aydın, A. How does ivabradine effect erectile dysfunction in patients with heart failure? Kardiol. Pol., 2017, 75(9), 893-898.
[http://dx.doi.org/10.5603/KP.a2017.0095] [PMID: 28541595]
[139]
Nuding, S.; Schröder, J.; Presek, P.; Wienke, A.; Müller-Werdan, U.; Ebelt, H.; Werdan, K. Reducing elevated heart rates in patients with multiple organ dysfunction syndrome with the if (funny channel current) inhibitor ivabradine. Shock, 2018, 49(4), 402-411.
[http://dx.doi.org/10.1097/SHK.0000000000000992] [PMID: 28930912]
[140]
Zivlas, C.; Foley, P.W.X. Ivabradine - well tolerated in elderly patients with systolic heart failure. Int. J. Cardiol., 2017, 249, 330-331.
[http://dx.doi.org/10.1016/j.ijcard.2017.09.012] [PMID: 29121737]
[141]
Zachariah, D.; Stevens, D.; Sidorowicz, G.; Spooner, C.; Rowell, N.; Taylor, J.; Kay, R.; Salek, M.S.; Kalra, P.R. LIVE:LIFE study investigators. Quality of life improvement in older patients with heart failure initiated on ivabradine: Results from the UK multi-centre LIVE:LIFE prospective cohort study. Int. J. Cardiol., 2017, 249, 313-318.
[http://dx.doi.org/10.1016/j.ijcard.2017.08.001] [PMID: 29121732]
[142]
Peigné, S.; Bouzom, F.; Brendel, K.; Gesson, C.; Fouliard, S.; Chenel, M. Model-based approaches for ivabradine development in paediatric population, part I: study preparation assessment. J. Pharmacokinet. Pharmacodyn., 2016, 43(1), 13-27.
[http://dx.doi.org/10.1007/s10928-015-9451-z] [PMID: 26563503]
[143]
Bonnet, D.; Berger, F.; Jokinen, E.; Kantor, P.F.; Daubeney, P.E.F. Ivabradine in children with dilated cardiomyopathy and symptomatic chronic heart failure. J. Am. Coll. Cardiol., 2017, 70(10), 1262-1272.
[http://dx.doi.org/10.1016/j.jacc.2017.07.725] [PMID: 28859790]
[144]
Peigné, S.; Fouliard, S.; Decourcelle, S.; Chenel, M. Model-based approaches for ivabradine development in paediatric population, part II: PK and PK/PD assessment. J. Pharmacokinet. Pharmacodyn., 2016, 43(1), 29-43.
[http://dx.doi.org/10.1007/s10928-015-9452-y] [PMID: 26578442]
[145]
Sağ, S.; Çoşkun, H.; Baran, İ.; Güllülü, S.; Aydınlar, A. Inappropriate sinus tachycardia-induced cardiomyopathy during pregnancy and successful treatment with ivabradine. Anatol. J. Cardiol., 2016, 16(3), 212-213.
[http://dx.doi.org/10.14744/AnatolJCardiol.2016.6813] [PMID: 27067557]
[146]
Ritchie, H.E.; Telenius, C.; Gustaffson, E.; Webster, W.S. The effects of nifedipine and ivabradine on the functionality of the early rat embryonic heart. Are these drugs a risk in early human pregnancy? Birth Defects Res., 2019, 111(5), 281-288.
[http://dx.doi.org/10.1002/bdr2.1457] [PMID: 30653849]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy