Bioremediation for Environmental Pollutants

Removal of Heavy Metals using Microbial Bioremediation

Author(s): Deepesh Tiwari, Athar Hussain*, Sunil Kumar Tiwari, Salman Ahmed, Mohd. Wajahat Sultan and Mohd. Imran Ahamed

Pp: 42-64 (23)

DOI: 10.2174/9789815123494123010004

* (Excluding Mailing and Handling)

Abstract

The unorganized dumping of effluents along with different wastes directly into the water and soil has resulted in the rise of the concentration of many harmful metals, chemicals, and other gases in the environment. Widely known heavy metals triggering pollution issues are Lead (Pb), Chromium (Cr), Mercury (Hg), Cadmium (Cd), Copper (Cu), Arsenic (As) and Selenium (Se), as these heavy metals are generally found in the effluents of fertilizers, metallurgy, electroplating, and electronics industries. A number of physical-chemical reactions such as acid-base, oxidationreducing, precipitation- dissolution, solubilization and ion-exchange processes occur and affect metal speciation. The physical methods used for heavy metals removal include magnetic separation, electrostatic separation, mechanical screening method, hydrodynamic classification, gravity concentration, flotation, and attrition scrubbing. The chemical methods used for eliminating heavy metals are chemical precipitation, coagulation and flocculation processes and the heavy metals are therefore removed as sludge. Electro-deposition, membrane filtration, electro-flotation and electrical oxidation are the various electrochemical treatment methods that are used to remove heavy metals from wastewater. Bioremediation is a biological method of eliminating toxins from the environment by using biological microbial bacteria such as Pseudomonas and Sphingomonas. Examples of bioremediation technologies include field farming, bioleaching, phytoremediation, bioventing, bioreactor, bio-stimulation and composting. Bioremediation is a natural process and is quite applicable as a waste treatment process for contaminated soils. The microbes present in the solution or soil can degrade the pollutants. It can also prove to be less expensive than other technologies that are used for clean-up of hazardous waste and are also useful for the destruction of a wide variety of contaminants as many hazardous compounds can be transformed into harmless products.

Related Journals
Related Books
© 2024 Bentham Science Publishers | Privacy Policy