Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Structure and Characteristics of Electrospun ZnO Nanofibers for Gas Sensing

Author(s): Tang-Yu Lai, Te-Hua Fang*, Yu-Jen Hsiao and En-Yu Kuo

Volume 16, Issue 2, 2020

Page: [187 - 195] Pages: 9

DOI: 10.2174/1573413715666190710165825

Price: $65

Abstract

Background: A sensing material of zinc oxide (ZnO) was investigated for its use in the electrospun nanofibers for gas sensing. The metal oxide semiconductor gas sensor response is caused by the oxygen that undergoes a chemical reaction on the surface of an oxide, resulting in a change in the measured resistance.

Objective: One-dimensional nanofibers gas sensor have high sensitivity and diverse selectivity.

Methods: One-dimensional nanofiber by an electrospinning method was collected and a sensing membrane was formed. In addition, the gas sensing mechanism was discussed and verified by X-ray photoelectron spectroscopy (XPS).

Results: The ZnO nanofiber membrane had an optimum crystalline phase with a lattice spacing of 0.245 nm and a non-woven fabric structure at a calcination temperature of 500°C, whereas the nanofiber diameter and membrane thickness were about 100 nm and 8 μm, respectively. At an operating temperature of 200°C, the sensing material exhibited good recovery and reproducibility in response to Carbon monoxide (CO), and the concentration was also highly discernible. In addition, the reduction in the peak of OIII at 531.5 to 532.5 eV according to the analysis of XPS was consistent with the description of the sensing mechanism.

Conclusion: The gas sensor of ZnO nanofiber membranes has high sensitivity and diverse selectivity, which can be widely applied in potential applications in various sensors and devices.

Keywords: Zinc oxide (ZnO), gas sensing, metal oxide semiconductor (MOS), nanofiber, electrospinning, one-dimensional.

Graphical Abstract

[1]
Tharsika, T.; Haseeb, A.S.M.A.; Akbar, S.A.; Sabri, M.F.M.; Hoong, W.Y. Enhanced ethanol gas sensing properties of SnO2-core/ZnO-shell nanostructures. Sensors (Basel), 2014, 14(8), 14586-14600.
[http://dx.doi.org/10.3390/s140814586] [PMID: 25116903]
[2]
Khoang, N.D.; Trung, D.D.; Duy, N.V.; Hoa, N.D.; Hieu, N.V. Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens. Actuators B Chem., 2012, 174, 594-601.
[http://dx.doi.org/10.1016/j.snb.2012.07.118]
[3]
Segets, D.; Gradl, J.; Taylor, R.K.; Vassilev, V.; Peukert, W. Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano, 2009, 3(7), 1703-1710.
[http://dx.doi.org/10.1021/nn900223b] [PMID: 19507865]
[4]
Saito, S.; Miyayama, M.; Koumoto, K.; Yanagida, H. Gas sensing characteristics of porous ZnO and Pt/ZnO ceramics. J. Am. Ceram. Soc., 1985, 68(1), 40-43.
[http://dx.doi.org/10.1111/j.1151-2916.1985.tb15248.x]
[5]
Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials (Basel), 2014, 7(4), 2833-2881.
[http://dx.doi.org/10.3390/ma7042833] [PMID: 28788596]
[6]
Alenezi, M.R.; Henley, S.J.; Emerson, N.G.; Silva, S.R.P. From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale, 2014, 6(1), 235-247.
[http://dx.doi.org/10.1039/C3NR04519F] [PMID: 24186303]
[7]
Li, W.; Wu, X.; Han, N.; Chen, J.; Qian, X.; Deng, Y.; Tang, W.; Chen, Y. MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sens. Actuators B Chem., 2016, 225, 158-166.
[http://dx.doi.org/10.1016/j.snb.2015.11.034]
[8]
Zeng, B.; Zhang, L.; Wu, L.; Su, Y.; Lv, Y. Enclosed hollow tubular ZnO: Controllable synthesis and their high performance cataluminescence gas sensing of H2S. Sens. Actuators B Chem., 2017, 242, 1086-1094.
[http://dx.doi.org/10.1016/j.snb.2016.09.141]
[9]
Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for NO2 gas-sensor applications: A review. Nano-Micro Lett., 2015, 7(2), 97-120.
[http://dx.doi.org/10.1007/s40820-014-0023-3] [PMID: 30464961]
[10]
Kim, Y.G.; Shaik, B.; Jang, Y.J.; Park, S.Y.; Kim, J.Y.; Lee, S.G. Synthesis and TFT properties of fluorenyl cored conjugated compound for organic thin film transistors. J. Nanosci. Nanotechnol., 2016, 16(3), 2979-2982.
[http://dx.doi.org/10.1166/jnn.2016.11063] [PMID: 27455745]
[11]
Park, S.; An, S.; Mun, Y.; Lee, C. UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces, 2013, 5(10), 4285-4292.
[http://dx.doi.org/10.1021/am400500a] [PMID: 23627276]
[12]
Md Sin, N.D.; Shafura, A.K.; Malek, M.F.; Mamat, M.H.; Rusop, M. Structural properties of ZnO/SnO2-composite-nanorod deposited using thermal chemical vapour deposition. Mater. Sci. Eng., 2015., 83012002
[13]
Sinha, S.K.; Rakshit, T.; Ray, S.K.; Manna, I. Characterization of ZnO-SnO2 thin film composites prepared by pulsed laser deposition. Appl. Surf. Sci., 2011, 257, 10551-10556.
[http://dx.doi.org/10.1016/j.apsusc.2011.07.049]
[14]
Kulandaisamy, A.J.; Reddy, J.R.; Srinivasan, P.; Babu, K.J.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: Effect of Mg doping. J. Alloys Compd., 2016, 688, 422-429.
[http://dx.doi.org/10.1016/j.jallcom.2016.07.050]
[15]
Tang, W.; Wang, J.; Yao, P.; Li, X. Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sens. Actuators B Chem., 2014, 192, 543-549.
[http://dx.doi.org/10.1016/j.snb.2013.11.003]
[16]
Ghafari, E.; Feng, Y.; Liu, Y.; Ferguson, I.; Lu, N. Investigating process-structure relations of ZnO nanofiber via electrospinning method. Compos., Part B Eng., 2017, 116, 40-45.
[http://dx.doi.org/10.1016/j.compositesb.2017.02.026]
[17]
Andrews, S.C.; Fardy, M.A.; Moore, M.C.; Aloni, S.; Zhang, M.; Radmilovic, V.; Yang, P. Atomic-level control of the thermoelectric properties in polytypoid nanowires. Chem. Sci. (Camb.), 2011, 2(4), 706-714.
[http://dx.doi.org/10.1039/c0sc00537a]
[18]
Wang, S.; Hsiao, Y.; Fang, T. Enhanced electrical conductivity and mechanical properties of Mo-interlayered ZnO multilayer nanofilms for NO sensor. Surf. Coat. Tech., 2016, 307, 622-626.
[http://dx.doi.org/10.1016/j.surfcoat.2016.09.069]
[19]
Ou, J.Z.; Ge, W.; Carey, B.; Daeneke, T.; Rotbart, A.; Shan, W.; Wang, Y.; Fu, Z.; Chrimes, A.F.; Wlodarski, W.; Russo, S.P.; Li, Y.X.; Kalantar-Zadeh, K. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano, 2015, 9(10), 10313-10323.
[http://dx.doi.org/10.1021/acsnano.5b04343] [PMID: 26447741]
[20]
Ma, M.; Khan, H.; Shan, W.; Wang, Y.; Ou, J.Z.; Liu, Z.; Kalantar-zadeh, K.; Li, Y. A novel wireless gas sensor based on LTCC technology. Sens. Actuators B Chem., 2017, 239, 711-717.
[http://dx.doi.org/10.1016/j.snb.2016.08.073]
[21]
Wang, Y.; Ou, J.Z.; Balendhran, S.; Chrimes, A.F.; Mortazavi, M.; Yao, D.D.; Field, M.R.; Latham, K.; Bansal, V.; Friend, J.R.; Zhuiykov, S.; Medhekar, N.V.; Strano, M.S.; Kalantar-Zadeh, K. Electrochemical control of photoluminescence in two-dimensional MoS(2) nanoflakes. ACS Nano, 2013, 7(11), 10083-10093.
[http://dx.doi.org/10.1021/nn4041987] [PMID: 24148149]
[22]
Liu, X.; Gao, S.; Yang, P.; Wang, B.; Ou, J.Z.; Liu, Z.; Wang, Y. Synergetic coupling of Pd nanoparticles and amorphous MoSx toward highly efficient electrocatalytic hydrogen evolution reactions. Appl. Mater. Today, 2018, 13, 158-165.
[http://dx.doi.org/10.1016/j.apmt.2018.09.001]
[23]
Haque, F.; Zavabeti, Z.; Zhang, B.Y.; Datta, R.S.; Yin, Y.; Yi, Z.; Wang, Y.; Mahmood, N.; Pillai, N.; Syed, N.; Khan, H.; Jannat, A.; Wang, N.; Medhekar, N.; Kalantar-zadeh, K.; Ou, J.Z. Ordered intracrystalline pores in planar molybdenum oxide for enhanced alkaline hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(1), 257-268.
[http://dx.doi.org/10.1039/C8TA08330D]
[24]
Liu, Q.; Gong, M.; Cook, B.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Fused nanojunctions of electron‐depleted ZnO nanoparticles for extraordinary performance in ultraviolet detection. Adv. Mater. Interfaces, 2017, 4(6), 1601064
[http://dx.doi.org/10.1002/admi.201601064]
[25]
Chang, C-M.; Hon, M-H.; Leu, I-C. Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms. RSC Advances, 2012, 2(6), 2469-2475.
[http://dx.doi.org/10.1039/c2ra01016j]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy