Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Mitochondrial Injury and Targeted Intervention in Septic Cardiomyopathy

Author(s): Ying Tan, Sainan Chen, Jiankai Zhong, Jun Ren and Maolong Dong*

Volume 25, Issue 18, 2019

Page: [2060 - 2070] Pages: 11

DOI: 10.2174/1381612825666190708155400

Price: $65

Abstract

Background: Sepsis and septic shock are known to prompt multiple organ failure including cardiac contractile dysfunction, which is typically referred to as septic cardiomyopathy. Among various theories postulated for the etiology of septic cardiomyopathy, mitochondrial injury (both morphology and function) in the heart is perceived as the main culprit for reduced myocardial performance and ultimately heart failure in the face of sepsis.

Methods: Over the past decades, ample of experimental and clinical work have appeared, focusing on myocardial mitochondrial changes and related interventions in septic cardiomyopathy.

Results and Conclusion: Here we will briefly summarize the recent experimental and clinical progress on myocardial mitochondrial morphology and function in sepsis, and discuss possible underlying mechanisms, as well as the contemporary interventional options.

Keywords: Mitochondria, sepsis, heart, contraction, intervention, heart failure.

[1]
Cimolai MC, Alvarez S, Bode C, Bugger H. Mitochondrial mechanisms in septic cardiomyopathy. Int J Mol Sci 2015; 16(8): 17763-78.
[http://dx.doi.org/10.3390/ijms160817763] [PMID: 26247933]
[2]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016; 315(8): 801-10.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[3]
Walkey AJ, Lagu T, Lindenauer PK. Trends in sepsis and infection sources in the United States. A population-based study. Ann Am Thorac Soc 2015; 12(2): 216-20.
[http://dx.doi.org/10.1513/AnnalsATS.201411-498BC] [PMID: 25569845]
[4]
Cohen J, Vincent J-L, Adhikari NK, et al. Sepsis: A roadmap for future research. Lancet Infect Dis 2015; 15(5): 581-614.
[http://dx.doi.org/10.1016/S1473-3099(15)70112-X] [PMID: 25932591]
[5]
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 2016; 193(3): 259-72.
[http://dx.doi.org/10.1164/rccm.201504-0781OC] [PMID: 26414292]
[6]
Soong J, Soni N. Sepsis: Recognition and treatment. Clin Med (Lond) 2012; 12(3): 276-80.
[http://dx.doi.org/10.7861/clinmedicine.12-3-276] [PMID: 22783783]
[7]
Pan P, Wang X, Liu D. The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy. J Int Med Res 2018; 46(6): 2157-69.
[http://dx.doi.org/10.1177/0300060518765896] [PMID: 29637807]
[8]
Zhou J, Qian C, Zhao M, et al. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China. PLoS One 2014; 9(9): e107181.
[http://dx.doi.org/10.1371/journal.pone.0107181] [PMID: 25226033]
[9]
Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol 2016; 81(Pt B): 307-14.
[http://dx.doi.org/10.1016/j.biocel.2016.07.032] [PMID: 27477311]
[10]
Charpentier J, Luyt C-E, Fulla Y, et al. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med 2004; 32(3): 660-5.
[http://dx.doi.org/10.1097/01.CCM.0000114827.93410.D8] [PMID: 15090944]
[11]
Barth E, Stämmler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 1992; 24(7): 669-81.
[http://dx.doi.org/10.1016/0022-2828(92)93381-S] [PMID: 1404407]
[12]
Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002; 360(9328): 219-23.
[http://dx.doi.org/10.1016/S0140-6736(02)09459-X] [PMID: 12133657]
[13]
Durand A, Duburcq T, Dekeyser T, et al. Involvement of Mitochondrial Disorders in Septic Cardiomyopathy. Oxid Med Cell Longev 2017; 2017: 4076348.
[http://dx.doi.org/10.1155/2017/4076348] [PMID: 29201271]
[14]
Kumar A, Parrillo JE. Clinical review: Myocardial depression in sepsis and septic shock 2002; 6: 500.
[15]
Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock 1984. 100: 483-90.
[16]
Parker MM, Shelhamer JH, Natanson C, Alling DW. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: Heart rate as an early predictor of prognosis. Parrillo JEJCcm 1987; 15: 923-9.
[17]
Calvin J, Driedger A, Sibbald WJC. An assessment of myocardial function in human sepsis utilizing ECG gated cardiac scintigraphy 1981; 80: 579-86.
[http://dx.doi.org/10.1378/chest.80.5.579]
[18]
Rudiger A. Mechanisms of sepsis-induced cardiac dysfunction 2007; 35: 1599-608.
[19]
Morelli A, De Castro S, Teboul J-L, et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression 2005; 31: 638-44.
[20]
Poelaert J, Declerck C, Vogelaers D, Colardyn F. Left ventricular systolic and diastolic function in septic shock 1997; 23: 553-60.
[21]
Charpentier J, Luyt C-E, Fulla Y, et al. Chiche J-DJCcm. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis 2004; 32: 660-5.
[22]
Well MH, MacLean LD, Visscher MB. Studies on the circulatory changes in the dog produced by endotoxin from gram-negative microorganisms 1956; 35: 1191-8.
[23]
Postel J. Cardiac depression in bacteremia. Ann Surg 1977; 186: 74-82.
[24]
Packman MI. Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock 1983; 11: 165-9.
[25]
Wilson RF. THAL AP, KINDLING PH, GRIFKA T. Hemodynamic measurements in septic shock 1965; 91: 121-9.
[26]
Weisel RD, Vito L, Dennis RC, Valeri CR. Myocardial depression during sepsis 1977. 133: 512-21.
[27]
Winslow EJ, Loeb HS, Rahimtoola SH, Kamath S. Hemodynamic studies and results of therapy in 50 patients with bacteremic shock 1973. 54: 421-32.
[28]
Ahmed AJ, Kruse JA, Haupt MT, Chandrasekar PH. Hemodynamic responses to gram-positive versus gram-negative sepsis in critically ill patients with and without circulatory shock 1991. 19: 1520-5.
[29]
Carroll GC, Snyder JV. Hyperdynamic severe intravascular sepsis depends on fluid administration in cynomolgus monkey. Am J Physiol 1982; 243: R131-41.
[30]
Teule G, Bronsveld W, Koopman P, Bezemer P, Heidendal G. Effect of volume loading and dopamine on hemodynamics and red-cell redistribution in canine endotoxin shock 1983. 10: 41-50.
[31]
Natanson C, Fink MP, Ballantyne HK, MacVittie TJ, Conklin JJ. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock 1986. 78: 259-70.
[32]
Natanson C, Danner RL, Fink MP, MacVittie TJ, Walker RI, Conklin J. Parrillo JJAJoP-H, Physiology C Cardiovascular performance with E coli challenges in a canine model of human sepsis 1988; 254: H558-69.
[33]
Abi-Gerges N, Tavernier B, Mebazaa A, et al. medicine cc Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat 1999; 160: 1196-204.
[34]
Faivre V, Kaskos H, Callebert J, et al. Cardiac and renal effects of levosimendom, arginine vasopressin and norepinephrine in lipopolysaccharide-treated rabbits. Anesthesiology 2005; 103(3): 514-21.
[35]
Dorn GW II. Mitochondrial dynamism and heart disease: Changing shape and shaping change. EMBO Mol Med 2015; 7(7): 865-77.
[http://dx.doi.org/10.15252/emmm.201404575] [PMID: 25861797]
[36]
Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 2017; 482(3): 426-31.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.088] [PMID: 28212726]
[37]
Chen Y-R, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res 2014; 114(3): 524-37.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300559] [PMID: 24481843]
[38]
Cimolai MC, Alvarez S, Bode C, Bugger H. Mitochondrial Mechanisms in Septic Cardiomyopathy. Int J Mol Sci 2015; 16(8): 17763-78.
[http://dx.doi.org/10.3390/ijms160817763] [PMID: 26247933]
[39]
Solomon MA, Correa R, Alexander HR, et al. Myocardial energy metabolism and morphology in a canine model of sepsis. Am J Physiol 1994; 266(2 Pt 2): H757-68.
[PMID: 8141377]
[40]
Vanasco V, Saez T, Magnani ND, et al. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radic Biol Med 2014; 77: 1-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.08.009] [PMID: 25224040]
[41]
Suliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 2004; 64(2): 279-88.
[http://dx.doi.org/10.1016/j.cardiores.2004.07.005] [PMID: 15485687]
[42]
Gonzalez AS, Elguero ME, Finocchietto P, et al. Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radic Res 2014; 48(7): 769-83.
[http://dx.doi.org/10.3109/10715762.2014.906592] [PMID: 24720571]
[43]
Watts JA, Kline JA, Thornton LR, Grattan RM, Brar SS. Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 2004; 36(1): 141-50.
[http://dx.doi.org/10.1016/j.yjmcc.2003.10.015] [PMID: 14734056]
[44]
Takasu O, Gaut JP, Watanabe E, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med 2013; 187(5): 509-17.
[http://dx.doi.org/10.1164/rccm.201211-1983OC] [PMID: 23348975]
[45]
Soriano FG, Nogueira AC, Caldini EG, et al. Potential role of poly (adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock 2006; 34: 1073-9.
[46]
Ahmed LA. Protective effects of magnesium supplementation on metabolic energy derangements in lipopolysaccharide-induced cardiotoxicity in mice. Eur J Pharmacol 2012; 694(1-3): 75-81.
[http://dx.doi.org/10.1016/j.ejphar.2012.07.036] [PMID: 22939974]
[47]
Smeding L, Leong-Poi H, Hu P, et al. Salutary effect of resveratrol on sepsis-induced myocardial depression. Crit Care Med 2012; 40(6): 1896-907.
[http://dx.doi.org/10.1097/CCM.0b013e31824e1370] [PMID: 22610192]
[48]
Liang D, Huang A, Jin Y, et al. Protective effects of exogenous NaHS against sepsis-induced myocardial mitochondrial injury by enhancing the PGC-1α/NRF2 pathway and mitochondrial biosynthesis in mice. Am J Transl Res 2018; 10(5): 1422-30.
[PMID: 29887956]
[49]
Smeding L, Plötz FB, Groeneveld AB, Kneyber MC. Structural changes of the heart during severe sepsis or septic shock. Shock 2012; 37(5): 449-56.
[http://dx.doi.org/10.1097/SHK.0b013e31824c3238] [PMID: 22301606]
[50]
Larche J, Lancel S, Hassoun SM, et al. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol 2006; 48(2): 377-85.
[http://dx.doi.org/10.1016/j.jacc.2006.02.069] [PMID: 16843190]
[51]
Hassoun SM, Marechal X, Montaigne D, et al. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 2008; 36(9): 2590-6.
[http://dx.doi.org/10.1097/CCM.0b013e3181844276] [PMID: 18679108]
[52]
Preau S, Delguste F, Yu Y, et al. Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy Antioxidants & redox signaling 2016. 24: 529-42.
[http://dx.doi.org/10.1089/ars.2015.6421]
[53]
Joshi MS, Julian MW, Huff JE, Bauer JA, Xia Y, Crouser ED. Calcineurin regulates myocardial function during acute endotoxemia. Am J Respir Crit Care Med 2006; 173(9): 999-1007.
[http://dx.doi.org/10.1164/rccm.200411-1507OC] [PMID: 16424445]
[54]
Vanasco V, Magnani ND, Cimolai MC, et al. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J Bioenerg Biomembr 2012; 44(2): 243-52.
[http://dx.doi.org/10.1007/s10863-012-9426-3] [PMID: 22426814]
[55]
An J, Du J, Wei N, Guan T, Camara AK, Shi Y. Differential sensitivity to LPS-induced myocardial dysfunction in the isolated brown Norway and Dahl S rat hearts: Roles of mitochondrial function, NF-κB activation, and TNF-α production. Shock 2012; 37(3): 325-32.
[http://dx.doi.org/10.1097/SHK.0b013e31823f146f] [PMID: 22089203]
[56]
Chopra M, Golden HB, Mullapudi S, Dowhan W, Dostal DE, Sharma AC. Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat. PLoS One 2011; 6(6): e21285.
[http://dx.doi.org/10.1371/journal.pone.0021285] [PMID: 21712982]
[57]
Vanasco V. Saez TMdLM, Magnani ND, et al. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radic Biol Med 2014; 77: 1-9.
[58]
Corrêa TD, Vuda M, Blaser AR, et al. Effect of treatment delay on disease severity and need for resuscitation in porcine fecal peritonitis. Crit Care Med 2012; 40(10): 2841-9.
[http://dx.doi.org/10.1097/CCM.0b013e31825b916b] [PMID: 22890256]
[59]
Regueira T, Djafarzadeh S, Brandt S, et al. Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia. Acta Anaesthesiol Scand 2012; 56(7): 846-59.
[http://dx.doi.org/10.1111/j.1399-6576.2012.02706.x] [PMID: 22571590]
[60]
Duarte S, Arango D, Parihar A, Hamel P, Yasmeen R, Doseff AI. Apigenin protects endothelial cells from lipopolysaccharide (LPS)-induced inflammation by decreasing caspase-3 activation and modulating mitochondrial function. Int J Mol Sci 2013; 14(9): 17664-79.
[http://dx.doi.org/10.3390/ijms140917664] [PMID: 23989609]
[61]
Groening P, Huang Z, La Gamma EF, Levy RJ. Glutamine restores myocardial cytochrome C oxidase activity and improves cardiac function during experimental sepsis. JPEN J Parenter Enteral Nutr 2011; 35(2): 249-54.
[http://dx.doi.org/10.1177/0148607110383040] [PMID: 21378254]
[62]
Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 2011; 107(1): 57-64.
[http://dx.doi.org/10.1093/bja/aer093] [PMID: 21596843]
[63]
Taylor DE, Ghio AJ, Piantadosi CA. Reactive oxygen species produced by liver mitochondria of rats in sepsis. Arch Biochem Biophys 1995; 316(1): 70-6.
[http://dx.doi.org/10.1006/abbi.1995.1011] [PMID: 7840680]
[64]
Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 1994; 356(2-3): 295-8.
[http://dx.doi.org/10.1016/0014-5793(94)01290-3] [PMID: 7805858]
[65]
van de Sandt AM, Windler R, Gödecke A, et al. Endothelial NOS (NOS3) impairs myocardial function in developing sepsis. Basic Res Cardiol 2013; 108(2): 330.
[http://dx.doi.org/10.1007/s00395-013-0330-8] [PMID: 23397596]
[66]
Burgoyne JR, Rudyk O, Mayr M, Eaton P. Nitrosative protein oxidation is modulated during early endotoxemia. Nitric Oxide 2011; 25(2): 118-24.
[http://dx.doi.org/10.1016/j.niox.2010.11.005] [PMID: 21130178]
[67]
Zang Q, Maass DL, Tsai SJ, Horton JW. Cardiac mitochondrial damage and inflammation responses in sepsis. Surg Infect (Larchmt) 2007; 8(1): 41-54.
[http://dx.doi.org/10.1089/sur.2006.033] [PMID: 17381396]
[68]
Suliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 2004; 64(2): 279-88.
[http://dx.doi.org/10.1016/j.cardiores.2004.07.005] [PMID: 15485687]
[69]
Supinski GS, Murphy MP, Callahan LA. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 2009; 297(4): R1095-102.
[http://dx.doi.org/10.1152/ajpregu.90902.2008] [PMID: 19657095]
[70]
Zang QS, Sadek H, Maass DL, et al. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. Am J Physiol Heart Circ Physiol 2012; 302(9): H1847-59.
[http://dx.doi.org/10.1152/ajpheart.00203.2011] [PMID: 22408027]
[71]
Zang QS, Maass DL, Wigginton JG, Minei JP. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. Am J Physiol Heart Circ Physiol 2012; 302(9): H1847-59.
[http://dx.doi.org/10.1152/ajpheart.00203.2011]
[72]
Torraco A, Carrozzo R, Piemonte F, et al. Effects of levosimendan on mitochondrial function in patients with septic shock: A randomized trial. Biochimie 2014; 102: 166-73.
[http://dx.doi.org/10.1016/j.biochi.2014.03.006] [PMID: 24657218]
[73]
Hao E, Lang F, Chen Y, Zhang H. Resveratrol Alleviates Endotoxin-Induced Myocardial Toxicity via the Nrf2 Transcription Factor. PLoS One 2013; 8(7): e69452.
[74]
Gu J, Luo L, Wang Q, et al. Maresin 1 attenuates mitochondrial dysfunction through the ALX/cAMP/ROS pathway in the cecal ligation and puncture mouse model and sepsis patients. Lab Invest 2018; 98(6): 715-33.
[http://dx.doi.org/10.1038/s41374-018-0031-x] [PMID: 29467458]
[75]
Sánchez-Villamil JP, D’Annunzio V, Finocchietto P, et al. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice Int J Biochem Cell Biol 2016; 81(Pt B): 323-34.
[http://dx.doi.org/10.1016/j.biocel.2016.08.045] [PMID: 27592449]
[76]
Vanasco V, Magnani ND, Cimolai MC, et al. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J Bioenerg Biomembr 2012; 44(2): 243-52.
[http://dx.doi.org/10.1007/s10863-012-9426-3] [PMID: 22426814]
[77]
López A, Lorente JA, Steingrub J, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock. Crit Care Med 2004; 32(1): 21-30.
[http://dx.doi.org/10.1097/01.CCM.0000105581.01815.C6] [PMID: 14707556]
[78]
Valerio A, Nisoli E. Nitric oxide, interorganelle communication, and energy flow: A novel route to slow aging. Front Cell Dev Biol 2015; 3: 6.
[http://dx.doi.org/10.3389/fcell.2015.00006] [PMID: 25705617]
[79]
Boveris A, Alvarez S, Navarro A. The role of mitochondrial nitric oxide synthase in inflammation and septic shock. Free Radic Biol Med 2002; 33(9): 1186-93.
[http://dx.doi.org/10.1016/S0891-5849(02)01009-2] [PMID: 12398926]
[80]
Escames G, López LC, Ortiz F, et al. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J 2007; 274(8): 2135-47.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05755.x] [PMID: 17371545]
[81]
Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F, Scolletta S. Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J Crit Care 2014; 29(4): 500-11.
[http://dx.doi.org/10.1016/j.jcrc.2014.03.028] [PMID: 24794044]
[82]
Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp (Warsz) 2009; 57(3): 165-76.
[http://dx.doi.org/10.1007/s00005-009-0024-y] [PMID: 19479203]
[83]
Pathan N, Franklin JL, Eleftherohorinou H, et al. Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase. Crit Care Med 2011; 39(7): 1692-711.
[http://dx.doi.org/10.1097/CCM.0b013e3182186d27] [PMID: 21494108]
[84]
Vincent J-L, Bakker J, Marécaux G, Schandene L, Kahn RJ, Dupont E. Administration of anti-TNF antibody improves left ventricular function in septic shock patients. Results of a pilot study. Chest 1992; 101(3): 810-5.
[http://dx.doi.org/10.1378/chest.101.3.810] [PMID: 1541150]
[85]
Pan S, Wang N, Bisetto S, Yi B, Sheu S-S. Downregulation of adenine nucleotide translocator 1 exacerbates tumor necrosis factor-α-mediated cardiac inflammatory responses. Am J Physiol Heart Circ Physiol 2015; 308(1): H39-48.
[http://dx.doi.org/10.1152/ajpheart.00330.2014] [PMID: 25380814]
[86]
Zhu H, Shan L, Schiller PW, Mai A, Peng T. Histone deacetylase-3 activation promotes tumor necrosis factor-α (TNF-α) expression in cardiomyocytes during lipopolysaccharide stimulation. J Biol Chem 2010; 285(13): 9429-36.
[http://dx.doi.org/10.1074/jbc.M109.071274] [PMID: 20097764]
[87]
Li F, Lang F, Wang Y, et al. Cyanidin ameliorates endotoxin-induced myocardial toxicity by modulating inflammation and oxidative stress through mitochondria and other factors. Food Chem Toxicol 2018; 120: 104-11.
[http://dx.doi.org/10.1016/j.fct.2018.05.053]
[88]
Schlosser K, Wang J-P, dos Santos C, et al. Effects of Mesenchymal Stem Cell Treatment on Systemic Cytokine Levels in a Phase 1 Dose Escalation Safety Trial of Septic Shock Patients. Crit Care Med 2019; 47(7): 918-25.
[89]
Berry BJ, Trewin AJ, Amitrano AM, Kim M, Wojtovich AP. Use the protonmotive force: Mitochondrial uncoupling and reactive oxygen species. J Mol Biol 2018; 430(21): 3873-91.
[http://dx.doi.org/10.1016/j.jmb.2018.03.025] [PMID: 29626541]
[90]
Bouillaud F, Alves-Guerra M-C, Ricquier D. UCPs, at the interface between bioenergetics and metabolism. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research 2016; 1863: 2443-56.
[91]
Bangash MN, Kong ML, Pearse RM. Use of inotropes and vasopressor agents in critically ill patients. Br J Pharmacol 2012; 165(7): 2015-33.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01588.x] [PMID: 21740415]
[92]
Vajapey R, Rini D, Walston J, Abadir P. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Front Physiol 2014; 5: 439.
[http://dx.doi.org/10.3389/fphys.2014.00439] [PMID: 25505418]
[93]
Yang C-S, Yuk J-M, Kim J-J, et al. Small heterodimer partner-targeting therapy inhibits systemic inflammatory responses through mitochondrial uncoupling protein 2. PLoS One 2013; 8(5): e63435.
[http://dx.doi.org/10.1371/journal.pone.0063435] [PMID: 23704907]
[94]
Kukat A, Dogan SA, Edgar D, et al. Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity. PLoS Genet 2014; 10(6): e1004385.
[http://dx.doi.org/10.1371/journal.pgen.1004385] [PMID: 24945157]
[95]
Righi V, Constantinou C, Mintzopoulos D, et al. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy. FASEB J 2013; 27(6): 2521-30.
[http://dx.doi.org/10.1096/fj.12-220764] [PMID: 23482635]
[96]
Zang QS, Martinez B, Yao X, et al. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2. PLoS One 2012; 7(8): e43424.
[http://dx.doi.org/10.1371/journal.pone.0043424] [PMID: 22952679]
[97]
Inestrosa Cantín N. Brain metabolite clearance: Impact on Alzheimer’s disease. Metab Brain Dis 2014; 29(3): 553-61.
[98]
Chen W, Luo S, Xie P, Hou T, Yu T, Fu X. Overexpressed UCP2 regulates mitochondrial flashes and reverses lipopolysaccharide-induced cardiomyocytes injury. Am J Transl Res 2018; 10(5): 1347-56.
[PMID: 29887950]
[99]
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018; 19(6): 349-64.
[http://dx.doi.org/10.1038/s41580-018-0003-4] [PMID: 29618831]
[100]
Shires SE, Gustafsson ÅB. Mitophagy and heart failure. J Mol Med (Berl) 2015; 93(3): 253-62.
[http://dx.doi.org/10.1007/s00109-015-1254-6] [PMID: 25609139]
[101]
Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 2011; 53(6): 2053-62.
[http://dx.doi.org/10.1002/hep.24324] [PMID: 21437926]
[102]
Carchman EH, Whelan S, Loughran P, et al. Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver. FASEB J 2013; 27(12): 4703-11.
[http://dx.doi.org/10.1096/fj.13-229476] [PMID: 23982147]
[103]
Drosatos K, Khan RS, Trent CM, et al. PPARγ treats septic cardiac dysfunction. Circ Heart Fail 2013; 6: 550.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000177] [PMID: 23572494]
[104]
Ceylan-Isik AF, Zhao P, Zhang B, Xiao X, Su G, Ren J. Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. J Mol Cell Cardiol 2010; 48(2): 367-78.
[http://dx.doi.org/10.1016/j.yjmcc.2009.11.003] [PMID: 19914257]
[105]
Drosatos K, Khan RS, Trent CM, et al. PPARγ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail 2013; 6(3): 550-62.
[106]
Reynolds CM, Suliman HB, Hollingsworth JW, Welty-Wolf KE, Carraway MS, Piantadosi CA. Nitric oxide synthase-2 induction optimizes cardiac mitochondrial biogenesis after endotoxemia. Free Radic Biol Med 2009; 46(5): 564-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.007] [PMID: 19073249]
[107]
Suliman HB, Welty-Wolf KE, Carraway MS, Schwartz DA, Hollingsworth JW, Piantadosi CA. Toll-like receptor 4 mediates mitochondrial DNA damage and biogenic responses after heat-inactivated E. coli. FASEB J 2005; 19(11): 1531-3.
[http://dx.doi.org/10.1096/fj.04-3500fje] [PMID: 15994412]
[108]
Piquereau J, Godin R, Deschênes S, et al. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 2013; 9(11): 1837-51.
[http://dx.doi.org/10.4161/auto.26502] [PMID: 24121678]
[109]
Hsieh C-H, Pai P-Y, Hsueh H-W, Yuan S-S, Hsieh Y-C. Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg 2011; 253(6): 1190-200.
[http://dx.doi.org/10.1097/SLA.0b013e318214b67e] [PMID: 21412148]
[110]
Yuan H, Perry CN, Huang C, et al. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol 2009; 296(2): H470-9.
[http://dx.doi.org/10.1152/ajpheart.01051.2008] [PMID: 19098111]
[111]
Sun Y, Yao X, Zhang Q-J, et al. Beclin-1-Dependent Autophagy Protects the Heart During Sepsis. Circulation 2018; 138(22): 2247-62.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032821]
[112]
Kim M-J, Bae SH, Ryu J-C, et al. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages 2016; 12: 1272-91.
[113]
Li S, Wu H, Han D, et al. A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS. Oxid Med Cell Longev 2018; 2018: 3537609.
[114]
Turdi S, Han X, Huff AF, et al. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: Role of autophagy. Free Radic Biol Med 2012; 53(6): 1327-38.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.084] [PMID: 22902401]
[115]
Lv X, Wang H. Pathophysiology of sepsis-induced myocardial dysfunction. Mil Med Res 2016; 3: 30.
[http://dx.doi.org/10.1186/s40779-016-0099-9] [PMID: 27708836]
[116]
Li L, Hu BC, Chen CQ, et al. Role of mitochondrial damage during cardiac apoptosis in septic rats. Chin Med J (Engl) 2013; 126(10): 1860-6.
[PMID: 23673100]
[117]
He S, Wang X, Zhong Y, et al. Hesperetin post-treatment prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating PI3K/Akt signaling pathway. Biomed Pharmacother 2017; 91: 1106-12.
[http://dx.doi.org/10.1016/j.biopha.2017.05.003] [PMID: 28531921]
[118]
Yang Z, Liu Y, Deng W, et al. Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes. Mol Med Rep 2014; 9(5): 1941-6.
[http://dx.doi.org/10.3892/mmr.2014.2002] [PMID: 24604207]
[119]
Tsai K-L, Liang H-J, Yang Z-D, Lue S-I, Yang S-L, Hsu C. Early inactivation of PKCε associates with late mitochondrial translocation of Bad and apoptosis in ventricle of septic rat. J Surg Res 2014; 186(1): 278-86.
[http://dx.doi.org/10.1016/j.jss.2013.08.010] [PMID: 24011917]
[120]
Tien Y-C, Lin J-Y, Lai C-H, et al. Carthamus tinctorius L. prevents LPS-induced TNFalpha signaling activation and cell apoptosis through JNK1/2-NFkappaB pathway inhibition in H9c2 cardiomyoblast cells. J Ethnopharmacol 2010; 130(3): 505-13.
[http://dx.doi.org/10.1016/j.jep.2010.05.038] [PMID: 20538053]
[121]
Lang CH, Bagby GJ, Ferguson JL. Spitzer JJJAJoP-R, Integrative, Physiology C Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis 1984; 246: R331-7.
[122]
Whitworth P, Cryer H, Garrison R, Baumgarten T. Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats 1989. 27: 111-22.
[123]
Perner A, Haase N, Wiis J, White J, Delaney AJAAS. Central venous oxygen saturation for the diagnosis of low cardiac output in septic shock patients. Acta Anaesthesiol Scand 2010; 54(1): 98-102.
[http://dx.doi.org/10.1111/j.1399-6576.2009.02086.x]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy