Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Uncaria rhynchophylla and its Major Constituents on Central Nervous System: A Review on Their Pharmacological Actions

Author(s): Wen Yang, Siu-Po Ip, Ling Liu, Yan-Fang Xian* and Zhi-Xiu Lin*

Volume 18, Issue 4, 2020

Page: [346 - 357] Pages: 12

DOI: 10.2174/1570161117666190704092841

Price: $65

Abstract

Background: Uncaria rhynchophylla (Miq.) Jacks (Rubinaceae), a common herbal medicine known as Gou-teng in Chinese, is commonly used in Chinese medicine practice for the treatment of convulsions, hypertension, epilepsy, eclampsia and other cerebral diseases. The major active components of U. rhynchophylla are alkaloids, terpenoids and flavonoids. The protective effects of U. rhynchophylla and its major components on central nervous system (CNS) have become a focus of research in recent decades.

Objective: The study aimed to systematically summarize the pharmacological activities of U. rhynchophylla and its major components on the CNS.

Methods: This review summarized the experimental findings from our laboratories, together with other literature data obtained through a comprehensive search of databases including the Pubmed and the Web of Science.

Results: U. rhynchophylla and its major components such as rhynchophylline and isorhynchophylline have been shown to have neuroprotective effects on Alzheimer’s disease, Parkinson’s disease, depression, cerebral ischaemia through a number of mechanisms including anti-oxidant, anti-inflammatory actions and regulation on neurotransmitters.

Conclusion: U. rhynchophylla and its major components have multiple beneficial pharmacological effects on CNS. Further studies on U. rhynchophylla and its major components are warranted to fully illustrate the underlying molecular mechanisms, pharmacokinetics, and toxicological profiles of these naturally occurring compounds and their potential for clinical application.

Keywords: Uncaria rhynchophylla, alkaloids, rhynchophylline, isorhynchophylline, central nervous system, pharmacological actions.

Graphical Abstract

[1]
Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 2010; 9(5): 387-98.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]
[2]
Davie CA. A review of Parkinson’s disease. Br Med Bull 2008; 86: 109-27.
[http://dx.doi.org/10.1093/bmb/ldn013] [PMID: 18398010]
[3]
Liu Y, Tang X. Depressive syndromes in autoimmune disorders of the nervous system: prevalence, etiology, and influence. Front Psychiatry 2018; 9: 451.
[http://dx.doi.org/10.3389/fpsyt.2018.00451] [PMID: 30319458]
[4]
Bruns J Jr, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia 2003; 44(10): 2-10.
[http://dx.doi.org/10.1046/j.1528-1157.44.s10.3.x] [PMID: 14511388]
[5]
de Jong PT. Age-related macular degeneration. N Engl J Med 2006; 355(14): 1474-85.
[http://dx.doi.org/10.1056/NEJMra062326] [PMID: 17021323]
[6]
Shintani K, Shechtman DL, Gurwood AS. Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 2009; 80(7): 384-401.
[http://dx.doi.org/10.1016/j.optm.2008.01.026] [PMID: 19545852]
[7]
Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 2008; 209(2): 294-301.
[http://dx.doi.org/10.1016/j.expneurol.2007.05.014] [PMID: 17617407]
[8]
Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005; 4(3): 206-20.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[9]
State Pharmacopoeia Commission of the PRC. Pharmacopoeia of the People’s Republic of China. Chemical Industry Press, Beijing 2015; 1: 257.
[10]
Imamura S, Tabuchi M, Kushida H, et al. The blood-brain barrier permeability of geissoschizine methyl ether in Uncaria hook, a galenical constituent of the traditional Japanese medicine yokukansan. Cell Mol Neurobiol 2011; 31(5): 787-93.
[http://dx.doi.org/10.1007/s10571-011-9676-3] [PMID: 21442303]
[11]
Lee CJ, Hsueh TY, Lin LC, Tsai TH. Determination of protein-unbound rhynchiphylline brain distribution by microdialysis and ultra-performance liquid chromatography with tandem mass spectrometry. Biomed Chromatogr 2014; 28(6): 901-6.
[http://dx.doi.org/10.1002/bmc.3206] [PMID: 24861762]
[12]
Terasawa K, Shimada Y, Kita T, et al. Choto-san in the treatment of vascular dementia: a double-blind, placebo-controlled study. Phytomedicine 1997; 4(1): 15-22.
[http://dx.doi.org/10.1016/S0944-7113(97)80022-0] [PMID: 23195240]
[13]
Watanabe H, Zhao Q, Matsumoto K, et al. Pharmacological evidence for antidementia effect of Choto-san (Gouteng-san), a traditional Kampo medicine. Pharmacol Biochem Behav 2003; 75(3): 635-43.
[http://dx.doi.org/10.1016/S0091-3057(03)00109-6] [PMID: 12895681]
[14]
Iwasaki K, Satoh-Nakagawa T, Maruyama M, et al. A randomized, observer-blind, controlled trial of the traditional Chinese medicine Yi-Gan San for improvement of behavioral and psychological symptoms and activities of daily living in dementia patients. J Clin Psychiatry 2005; 66(2): 248-52.
[http://dx.doi.org/10.4088/JCP.v66n0214] [PMID: 15705012]
[15]
Tabuchi M, Yamaguchi T, Iizuka S, Imamura S, Ikarashi Y, Kase Y. Ameliorative effects of yokukansan, a traditional Japanese medicine, on learning and non-cognitive disturbances in the Tg2576 mouse model of Alzheimer’s disease. J Ethnopharmacol 2009; 122(1): 157-62.
[http://dx.doi.org/10.1016/j.jep.2008.12.010] [PMID: 19146938]
[16]
Liu LF, Song JX, Lu JH, et al. Tianma Gouteng Yin, a Traditional Chinese Medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson’s disease. Sci Rep 2015; 5: 16862.
[http://dx.doi.org/10.1038/srep16862] [PMID: 26578166]
[17]
Yamanaka E, Kimizuka Y, Aimi N, Sakai S, Haginiwa J. [Studies of plants containing indole alkaloids. IX. Quantitative analysis of tertiary alkaloids in various parts of Uncaria rhynchophylla MIQ]. Yakugaku Zasshi 1983; 103(10): 1028-33.
[http://dx.doi.org/10.1248/yakushi1947.103.10_1028] [PMID: 6674483]
[18]
Li HQ, Ip SP, Yuan QJ, et al. Isorhynchophylline ameliorates cognitive impairment via modulating amyloid pathology, tau hyperphosphorylation and neuroinflammation: Studies in a transgenic mouse model of Alzheimer’s disease. Brain Behav Immun 2019; 82: 264-78.
[http://dx.doi.org/10.1016/j.bbi.2019.08.194] [PMID: 31476414]
[19]
Zhou JY, Mo ZX, Zhou SW. Effect of rhynchophylline on central neurotransmitter levels in amphetamine-induced conditioned place preference rat brain. Fitoterapia 2010; 81(7): 844-8.
[http://dx.doi.org/10.1016/j.fitote.2010.05.007] [PMID: 20546847]
[20]
Zhou JY, Zhou SW. Isorhynchophylline: A plant alkaloid with therapeutic potential for cardiovascular and central nervous system diseases. Fitoterapia 2012; 83(4): 617-26.
[http://dx.doi.org/10.1016/j.fitote.2012.02.010] [PMID: 22406453]
[21]
Hemingway SR, Phillipson JD. Proceedings: Alkaloids from S. American species of Uncaria (Rubiaceae). J Pharm Pharmacol 1974; 26: 113.
[http://dx.doi.org/10.1111/j.2042-7158.1974.tb10144.x] [PMID: 4156706]
[22]
Ozaki Y. [Pharmacological studies of indole alkaloids obtained from domestic plants, Uncaria rhynchophylla Miq. and Amsonia elliptica Roem. et Schult]. Nihon Yakurigaku Zasshi 1989; 94: 17-26.
[PMID: 2792960]
[23]
Zhu M, Phillipson JD, Yu H, Greengrass PM, Norman NG. Application of radioligand-receptor binding assays in the search for the active principles of the traditional Chinese medicine ‘Gouteng’. Phytother Res 1998; 11: 231-6.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199705)11:3<231:AID-PTR86>3.0.CO;2-D]
[24]
Hemingway SR, Phillipson JD. N-oxides isolated during the alkaloid screening of Uncaria species. J Pharm Pharmacol 1972; 24: 169P-70.
[PMID: 4144900]
[25]
Ma B, Liu SK, Xie YY, Kano Y, Yuan D. Flavonol glycosides and triterpenes from the leaves of Uncaria rhynchophylla (Miq.) Jacks. Asian J Tradit Med 2009; 4: 85-91.
[26]
Aimi N, Shito T, Fukushima K, et al. Studies on plants containing indole alkaloids. VIII indole alkaloid glycosides and other constituents of the leaves of Uncaria rhynchophylla Miq. Chem Pharm Bull (Tokyo) 1982; 30: 4046-51.
[http://dx.doi.org/10.1248/cpb.30.4046]
[27]
Yuan D, Ma B, Wu C, et al. Alkaloids from the leaves of Uncaria rhynchophylla and their inhibitory activity on NO production in lipopolysaccharide-activated microglia. J Nat Prod 2008; 71(7): 1271-4.
[http://dx.doi.org/10.1021/np8000305] [PMID: 18588343]
[28]
Phillipson JD, Hemingway SR. Chromatographic and spectroscopic methods for the identification of alkaloids from herbarium samples of the genus Uncaria. J Chromatogr A 1975; 105(1): 163-78.
[http://dx.doi.org/10.1016/S0021-9673(01)81101-8] [PMID: 1141401]
[29]
Phillipson JD, Hemingway SR. Alkaloids from Uncaria species. 4. alkaloids of Uncaria-Attenuata, Uncaria-Orientalis and Uncaria-Canescens. Phytochemistry 1975; 14: 1855-63.
[http://dx.doi.org/10.1016/0031-9422(75)85310-6]
[30]
Phillipson JD, Hemingway SR, Ridsdale CE. Alkaloids of Uncaria V. their occurrence and chemotaxonomy. Lloydia 1978; 41: 503-70.
[31]
Phillipson JD, Hemingway SR, Bisset NG, Houghton PJ, Shellard EJ. Angustine and related alkaloids from species of mitragyna, nauclea, Uncaria, and strychnos. Phytochemistry 1974; 13: 973-8.
[http://dx.doi.org/10.1016/S0031-9422(00)91432-8]
[32]
Qi W, Yue SJ, Sun JH, Simpkins JW, Zhang L, Yuan D. Alkaloids from the hook-bearing branch of Uncariarhynchophylla and their neuroprotective effects against glutamate-induced HT22 cell death. J Asian Nat Prod Res 2014; 16(8): 876-83.
[http://dx.doi.org/10.1080/10286020.2014.918109] [PMID: 24899363]
[33]
Laus G, Teppner H. The alkaloids of an Uncaria rhynchophylla (Rubiaceae-Coptosapelteae). Phyton Annales Rei Botanicae 1996; 36: 185-96.
[34]
Wei X, Jiang LP, Guo Y, et al. Indole alkaloids inhibiting neural stem cell from Uncaria rhynchophylla. Nat Prod Bioprospect 2017; 7(5): 413-9.
[http://dx.doi.org/10.1007/s13659-017-0141-y] [PMID: 28952128]
[35]
Xie S, Shi Y, Wang Y, et al. Systematic identification and quantification of tetracyclic monoterpenoid oxindole alkaloids in Uncaria rhynchophylla and their fragmentations in Q-TOF-MS spectra. J Pharm Biomed Anal 2013; 81-82: 56-64.
[http://dx.doi.org/10.1016/j.jpba.2013.03.017] [PMID: 23624509]
[36]
Ma B, Wu CF, Yang JY, Wang R, Kano Y, Yuan D. Three new alkaloids from the leaves of Uncaria rhynchophylla. Helv Chim Acta 2009; 92: 1575-85.
[http://dx.doi.org/10.1002/hlca.200900021]
[37]
Jiao Y, Wang MQ, Hua D, et al. Studies on chemical constituents from Uncaria rhynchophylla. J Tianjin Med Uni 2013; 19: 107-9.
[38]
Yang ZD, Duan DZ, Du J, Yang MJ, Li S, Yao XJ. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor. Nat Prod Res 2012; 26(1): 22-8.
[http://dx.doi.org/10.1080/14786419.2010.529811] [PMID: 21714741]
[39]
Guo Q, Yang H, Liu X, et al. New zwitterionic monoterpene indole alkaloids from Uncaria rhynchophylla. Fitoterapia 2018; 127: 47-55.
[http://dx.doi.org/10.1016/j.fitote.2018.01.013] [PMID: 29373834]
[40]
Hou WC, Lin RD, Chen CT, Lee MH. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J Ethnopharmacol 2005; 100(1-2): 216-20.
[http://dx.doi.org/10.1016/j.jep.2005.03.017] [PMID: 15890481]
[41]
Deng MC, Jiao W, Dong WW, Yang CB, Lu RH. Study on chemical constituents of Uncaria rhynchophylla. Nat Prod Res Dev 2009; 21: 242-5.
[42]
Li R, Cheng J, Jiao M, et al. New phenylpropanoid-substituted flavan-3-ols and flavonols from the leaves of Uncaria rhynchophylla. Fitoterapia 2017; 116: 17-23.
[http://dx.doi.org/10.1016/j.fitote.2016.11.005] [PMID: 27847306]
[43]
Sun K, Hu Q, Zhou CM, et al. Cerebralcare Granule, a Chinese herb compound preparation, improves cerebral microcirculatory disorder and hippocampal CA1 neuron injury in gerbils after ischemia-reperfusion. J Ethnopharmacol 2010; 130(2): 398-406.
[http://dx.doi.org/10.1016/j.jep.2010.05.030] [PMID: 20580803]
[44]
Lee JS, Kim J, Kim BY, Lee HS, Ahn JS, Chang YS. Inhibition of phospholipase cgamma1 and cancer cell proliferation by triterpene esters from Uncaria rhynchophylla. J Nat Prod 2000; 63(6): 753-6.
[http://dx.doi.org/10.1021/np990478k] [PMID: 10869194]
[45]
Zhang YB, Yang WZ, Yao CL, et al. New triterpenic acids from Uncaria rhynchophylla: chemistry, NO-inhibitory activity, and tandem mass spectrometric analysis. Fitoterapia 2014; 96: 39-47.
[http://dx.doi.org/10.1016/j.fitote.2014.04.004] [PMID: 24727084]
[46]
Shin SC, Lee DU. Ameliorating effect of new constituents from the hooks of Uncaria rhynchophylla on scopolamine-induced memory impairment. Chin J Nat Med 2013; 11(4): 391-5.
[http://dx.doi.org/10.1016/S1875-5364(13)60057-6] [PMID: 23845548]
[47]
Zhang Q, Chen L, Hu LJ, Liu WY, Feng F, Qu W. Two new ortho benzoquinones from Uncaria rhynchophylla. Chin J Nat Med 2016; 14(3): 232-5.
[http://dx.doi.org/10.1016/S1875-5364(16)30021-8] [PMID: 27025371]
[48]
Yoshioka T, Murakami K, Ido K, et al. Semisynthesis and structure-activity studies of Uncarinic Acid C isolated from Uncaria rhynchophylla as a specific inhibitor of the nucleation phase in amyloid beta42 aggregation. J Nat Prod 2016; 79(10): 2521-9.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00392] [PMID: 27700077]
[49]
Fujiwara H, Iwasaki K, Furukawa K, et al. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s beta-amyloid proteins. J Neurosci Res 2006; 84(2): 427-33.
[http://dx.doi.org/10.1002/jnr.20891] [PMID: 16676329]
[50]
Xian YF, Lin ZX, Zhao M, Mao QQ, Ip SP, Che CT. Uncaria rhynchophylla ameliorates cognitive deficits induced by D-galactose in mice. Planta Med 2011; 77(18): 1977-83.
[http://dx.doi.org/10.1055/s-0031-1280125] [PMID: 21858756]
[51]
Shin SJ, Jeong Y, Jeon SG, et al. Uncaria rhynchophylla ameliorates amyloid beta deposition and amyloid beta-mediated pathology in 5XFAD mice. Neurochem Int 2018; 121: 114-24.
[http://dx.doi.org/10.1016/j.neuint.2018.10.003] [PMID: 30291956]
[52]
Xian YF, Lin ZX, Mao QQ, et al. Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against beta-amyloid-induced neurotoxicity. Evid Based Complement Alternat Med 2012; 2012 802625
[http://dx.doi.org/10.1155/2012/802625] [PMID: 22778778]
[53]
Fu AK, Hung KW, Huang H, et al. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proc Natl Acad Sci USA 2014; 111(27): 9959-64.
[http://dx.doi.org/10.1073/pnas.1405803111] [PMID: 24958880]
[54]
Shao H, Mi Z, Ji WG, et al. Rhynchophylline protects against the amyloid beta-induced increase of spontaneous discharges in the hippocampal CA1 region of rats. Neurochem Res 2015; 40(11): 2365-73.
[http://dx.doi.org/10.1007/s11064-015-1730-y] [PMID: 26441223]
[55]
Yang Y, Ji WG, Zhu ZR, Wu YL, Zhang ZY, Qu SC. Rhynchophylline suppresses soluble Aβ1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology 2018; 135: 100-12.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.007] [PMID: 29510187]
[56]
Xian YF, Lin ZX, Mao QQ, Ip SP, Su ZR, Lai XP. Protective effect of isorhynchophylline against β-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 2012; 32(3): 353-60.
[http://dx.doi.org/10.1007/s10571-011-9763-5] [PMID: 22042506]
[57]
Xian YF, Lin ZX, Mao QQ, et al. Isorhynchophylline protects PC12 cells against beta-amyloid-induced apoptosis via PI3K/Akt signaling pathway. Evid Based Complement Alternat Med 2013; 2013 163057
[http://dx.doi.org/10.1155/2013/163057] [PMID: 24319473]
[58]
Xian YF, Mao QQ, Wu JC, et al. Isorhynchophylline treatment improves the amyloid-β-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau protein hyperphosphorylation. J Alzheimers Dis 2014; 39(2): 331-46.
[http://dx.doi.org/10.3233/JAD-131457] [PMID: 24164737]
[59]
Xian YF, Su ZR, Chen JN, et al. Isorhynchophylline improves learning and memory impairments induced by D-galactose in mice. Neurochem Int 2014; 76: 42-9.
[http://dx.doi.org/10.1016/j.neuint.2014.06.011] [PMID: 24984171]
[60]
Li HQ, Ip SP, Zheng GQ, Xian YF, Lin ZX. Isorhynchophylline alleviates learning and memory impairments induced by aluminum chloride in mice. Chin Med 2018; 13: 29.
[http://dx.doi.org/10.1186/s13020-018-0187-8] [PMID: 29946349]
[61]
Jiang WW, Su J, Wu XD, et al. Geissoschizine methyl ether N-oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla. Nat Prod Res 2015; 29(9): 842-7.
[http://dx.doi.org/10.1080/14786419.2014.989847] [PMID: 25496282]
[62]
Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003; 39(6): 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[63]
Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003; 302(5646): 819-22.
[http://dx.doi.org/10.1126/science.1087753] [PMID: 14593166]
[64]
Chua K, Chau C, Li M. Experimental and clinical research literature review of Tianma Gouteng Yin on the treatment of Parkinson’s disease. H K Chin Med Mag 2012; 7: 66-70.
[65]
Lin CM, Lin YT, Lee TL, Imtiyaz Z, Hou WC, Lee MH. In vitro and in vivo evaluation of the neuroprotective activity of Uncaria hirsuta Haviland. Yao Wu Shi Pin Fen Xi 2020; 28(1): 147-58.
[http://dx.doi.org/10.1016/j.jfda.2019.10.004] [PMID: 31883603]
[66]
Lan YL, Zhou JJ, Liu J, et al. Uncaria rhynchophylla ameliorates Parkinson’s disease by inhibiting HSP90 expression: insights from quantitative proteomics. Cell Physiol Biochem 2018; 47(4): 1453-64.
[http://dx.doi.org/10.1159/000490837] [PMID: 29940559]
[67]
Shim JS, Kim HG, Ju MS, Choi JG, Jeong SY, Oh MS. Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease. J Ethnopharmacol 2009; 126(2): 361-5.
[http://dx.doi.org/10.1016/j.jep.2009.08.023] [PMID: 19703534]
[68]
Zhou JY, Mo ZX, Zhou SW. Rhynchophylline down-regulates NR2B expression in cortex and hippocampal CA1 area of amphetamine-induced conditioned place preference rat. Arch Pharm Res 2010; 33(4): 557-65.
[http://dx.doi.org/10.1007/s12272-010-0410-3] [PMID: 20422365]
[69]
Hu S, Mak S, Zuo X, Li H, Wang Y, Han Y. Neuroprotection against MPP(+)-induced cytotoxicity through the activation of PI3-K/Akt/GSK3beta/MEF2D signaling pathway by rhynchophylline, the major tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla. Front Pharmacol 2018; 9: 768.
[http://dx.doi.org/10.3389/fphar.2018.00768] [PMID: 30072894]
[70]
Li XM, Zhang XJ, Dong MX. Isorhynchophylline attenuates MPP(+)-induced apoptosis through endoplasmic reticulum stress- and mitochondria-dependent pathways in PC12 cells: involvement of antioxidant activity. Neuromolecular Med 2017; 19(4): 480-92.
[http://dx.doi.org/10.1007/s12017-017-8462-x] [PMID: 28822073]
[71]
Li Q, Niu C, Zhang X, Dong M. Gastrodin and isorhynchophylline synergistically inhibit MPP(+)-induced oxidative stress in SH-SY5Y cells by targeting ERK1/2 and GSK-3beta pathways: involvement of Nrf2 nuclear translocation. ACS Chem Neurosci 2018; 9(3): 482-93.
[http://dx.doi.org/10.1021/acschemneuro.7b00247] [PMID: 29115830]
[72]
Lu JH, Tan JQ, Durairajan SS, et al. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy 2012; 8(1): 98-108.
[http://dx.doi.org/10.4161/auto.8.1.18313] [PMID: 22113202]
[73]
Chen LL, Song JX, Lu JH, et al. Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR pathway. J Neuroimmune Pharmacol 2014; 9(3): 380-7.
[http://dx.doi.org/10.1007/s11481-014-9528-2] [PMID: 24522518]
[74]
Hsieh CL, Ho TY, Su SY, Lo WY, Liu CH, Tang NY. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats. Am J Chin Med 2009; 37(2): 351-60.
[http://dx.doi.org/10.1142/S0192415X09006898] [PMID: 19507277]
[75]
Tang NY, Liu CH, Su SY, et al. Uncaria rhynchophylla (miq) Jack plays a role in neuronal protection in kainic acid-treated rats. Am J Chin Med 2010; 38(2): 251-63.
[http://dx.doi.org/10.1142/S0192415X10007828] [PMID: 20387223]
[76]
Lin YW, Hsieh CL. Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats. J Ethnopharmacol 2011; 135(2): 313-20.
[http://dx.doi.org/10.1016/j.jep.2011.03.018] [PMID: 21402140]
[77]
Hsu HC, Tang NY, Liu CH, Hsieh CL. Antiepileptic effect of Uncaria rhynchophylla and rhynchophylline involved in the initiation of c-Jun N-Terminal kinase phosphorylation of MAPK signal pathways in acute seizures of kainic acid-treated rats. Evid Based Complement Alternat Med 2013; 2013 961289
[http://dx.doi.org/10.1155/2013/961289] [PMID: 24381640]
[78]
Liu CH, Lin YW, Tang NY, Liu HJ, Hsieh CL. Neuroprotective effect of Uncaria rhynchophylla in kainic acid-induced epileptic seizures by modulating hippocampal mossy fiber sprouting, neuron survival, astrocyte proliferation, and S100B expression. Evid Based Complement Alternat Med 2012; 2012 194790
[PMID: 21837247]
[79]
Ho TY, Tang NY, Hsiang CY, Hsieh CL. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor. Phytomedicine 2014; 21(6): 893-900.
[http://dx.doi.org/10.1016/j.phymed.2014.01.011] [PMID: 24636743]
[80]
Lo WY, Tsai FJ, Liu CH, et al. Uncaria rhynchophylla upregulates the expression of MIF and cyclophilin A in kainic acid-induced epilepsy rats: A proteomic analysis. Am J Chin Med 2010; 38(4): 745-59.
[http://dx.doi.org/10.1142/S0192415X10008214] [PMID: 20626060]
[81]
Tang NY, Lin YW, Ho TY, Cheng CY, Chen CH, Hsieh CL. Long-term intake of Uncaria rhynchophylla reduces S100B and RAGE protein levels in kainic acid-induced epileptic seizures rats. Evid Based Complement Alternat Med 2017; 2017 9732854
[http://dx.doi.org/10.1155/2017/9732854] [PMID: 28386293]
[82]
Shao H, Yang Y, Mi Z, et al. Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience 2016; 337: 355-69.
[http://dx.doi.org/10.1016/j.neuroscience.2016.09.029] [PMID: 27670903]
[83]
Sakakibara I, Terabayashi S, Kubo M, et al. Effect on locomotion of indole alkaloids from the hooks of uncaria plants. Phytomedicine 1999; 6(3): 163-8.
[http://dx.doi.org/10.1016/S0944-7113(99)80004-X] [PMID: 10439480]
[84]
Xian YF, Fan D, Ip SP, Mao QQ, Lin ZX. Antidepressant-like effect of isorhynchophylline in mice. Neurochem Res 2017; 42(2): 678-85.
[http://dx.doi.org/10.1007/s11064-016-2124-5] [PMID: 27900600]
[85]
Geng CA, Yang TH, Huang XY, Ma YB, Zhang XM, Chen JJ. Antidepressant potential of Uncaria rhynchophylla and its active flavanol, catechin, targeting melatonin receptors. J Ethnopharmacol 2019; 232: 39-46.
[http://dx.doi.org/10.1016/j.jep.2018.12.013] [PMID: 30543912]
[86]
Suk K, Kim SY, Leem K, et al. Neuroprotection by methanol extract of Uncaria rhynchophylla against global cerebral ischemia in rats. Life Sci 2002; 70(21): 2467-80.
[http://dx.doi.org/10.1016/S0024-3205(02)01534-5] [PMID: 12173411]
[87]
Lu YF, Xie XL, Wu Q, Wen GR, Yang SF, Shi JS. Effects of rhynchophylline on monoamine transmitter contents of striatum and hippocampus in cerebral ischemic rats. Zhongguo Yaolixue Yu Dulixue Zazhi 2004; 18: 253-8.
[88]
Kang TH, Murakami Y, Takayama H, et al. Protective effect of rhynchophylline and isorhynchophylline on in vitro ischemia-induced neuronal damage in the hippocampus: putative neurotransmitter receptors involved in their action. Life Sci 2004; 76(3): 331-43.
[http://dx.doi.org/10.1016/j.lfs.2004.08.012] [PMID: 15531384]
[89]
Huang H, Zhong R, Xia Z, Song J, Feng L. Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways. Molecules 2014; 19(8): 11196-210.
[http://dx.doi.org/10.3390/molecules190811196] [PMID: 25079660]
[90]
Yuan D, Ma B, Yang JY, et al. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int Immunopharmacol 2009; 9(13-14): 1549-54.
[http://dx.doi.org/10.1016/j.intimp.2009.09.010] [PMID: 19781666]
[91]
Song Y, Qu R, Zhu S, Zhang R, Ma S. Rhynchophylline attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-κB signaling pathways in primary microglia. Phytother Res 2012; 26(10): 1528-33.
[http://dx.doi.org/10.1002/ptr.4614] [PMID: 22322985]
[92]
Jung HY, Nam KN, Woo BC, Kim KP, Kim SO, Lee EH. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation. Mol Med Rep 2013; 7(1): 154-8.
[http://dx.doi.org/10.3892/mmr.2012.1135] [PMID: 23117160]
[93]
Zhou JY, Chen J, Zhou SW, Mo ZX. Individual and combined effects of rhynchophylline and ketamine on proliferation, NMDAR1 and GluA2/3 protein expression in PC12 cells. Fitoterapia 2013; 85: 125-9.
[http://dx.doi.org/10.1016/j.fitote.2013.01.012] [PMID: 23352746]
[94]
Jiang M, Chen Y, Li C, et al. Inhibiting effects of rhynchophylline on zebrafish methamphetamine dependence are associated with amelioration of neurotransmitters content and down-regulation of TH and NR2B expression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 68: 31-43.
[http://dx.doi.org/10.1016/j.pnpbp.2016.03.004] [PMID: 27009763]
[95]
Zhu W, Zhang Y, Huang Y, Lu L. Chinese herbal medicine for the treatment of drug addiction. Int Rev Neurobiol 2017; 135: 279-95.
[http://dx.doi.org/10.1016/bs.irn.2017.02.013] [PMID: 28807162]
[96]
Guo Y, Luo C, Tu G, et al. Rhynchophylline downregulates phosphorylated cAMP response element binding protein, nuclear receptor-related-1, and brain-derived neurotrophic factor expression in the hippocampus of ketamine-induced conditioned place preference rats. Pharmacogn Mag 2018; 14(53): 81-6.
[http://dx.doi.org/10.4103/pm.pm_90_17] [PMID: 29576706]
[97]
Li C, Tu G, Luo C, et al. Effects of rhynchophylline on the hippocampal miRNA expression profile in ketamine-addicted rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86: 379-89.
[http://dx.doi.org/10.1016/j.pnpbp.2018.02.009] [PMID: 29476799]
[98]
Chen L, You W, Chen D, et al. Pharmacokinetic interaction study of ketamine and rhynchophylline in rat plasma by Ultra-performance liquid chromatography tandem mass spectrometry. BioMed Res Int 2018; 2018 6562309
[http://dx.doi.org/10.1155/2018/6562309] [PMID: 29951541]
[99]
Zhang Y, Sun J, Zhu S, et al. The role of rhynchophylline in alleviating early brain injury following subarachnoid hemorrhage in rats. Brain Res 2016; 1631: 92-100.
[http://dx.doi.org/10.1016/j.brainres.2015.11.035] [PMID: 26631843]
[100]
Jung JW, Ahn NY, Oh HR, et al. Anxiolytic effects of the aqueous extract of Uncaria rhynchophylla. J Ethnopharmacol 2006; 108(2): 193-7.
[http://dx.doi.org/10.1016/j.jep.2006.05.019] [PMID: 16829000]
[101]
Wang M, Hua N, Wang CH, et al. Study on the acute toxicity of rhynchophylla total alkaloids sustained-release dropping pills in mice. J Taishan Med Coll 2009; 30: 405-6.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy