Abstract
Background: In this project, the growth and volatile metabolites profiles of Escherichia coli (E. coli ) and Staphylococcus aureus were monitored under the influence of silver base chemical, nanoparticle and ultra-highly diluted compounds.
Materials and Methods: The treatments were done for 12000 life cycles using silver nanoparticles (AgNPs) as well as ultra-highly diluted Argentum nitricum (Arg-n). Volatile organic metabolites analysis was performed using gas chromatography mass spectrometry (GC-MS). The results indicated that AgNPs treatment made the bacteria resistant and adapted to growth in the nanoparticle condition. The use of ultra-highly diluted Arg-n initially increased growth but it decreased later. Also, with the continuous usage of these materials, no more bacterial growth was observed.
Results: The most important compounds produced by E. coli are Acetophenone, Octyl acetate, Styrene, 1,8-cineole, 4-t-butyl-2-(1-methyl-2-nitroethyl)cyclohexane, hexadecane and 2-Undecanol. The main compounds derived from S. aureus are Acetophenone,1,8-cineole, Benzaldehyde, 2-Hexan-1-ol, Tridecanol, Dimethyl Octenal and tetradecane. Acetophenone and 1,8-cineole were common and produced by both organisms.
Conclusion: Based on the origin of the produced volatiles, main volatiles percentage of untreated sample is hydrocarbon (>50%), while bacteria treatments convert the ratio in to aldehydes, ketones and alcohols in the case of AgNPs, (>80%) and aldehydes, ketones and terpenes in the case of Arg-n (>70%).
Keywords: Ultra-high diluted compound, silver nanoparticle, Staphylococcus aureus, Escherichia coli, volatile metabolite, gas chromatography.
Graphical Abstract
[http://dx.doi.org/10.1007/s13237-014-0105-0] [PMID: 24637401]
[http://dx.doi.org/10.3844/ajeassp.2016.1164.1172]
(b) Michalsen, A.; Uehleke, B.; Stange, R. Safety and compliance of a complex homeopathic drug (Contramutan N Saft) in the treatment of acute respiratory tract infections: A large observational (non-interventional) study in children and adults focussing on homeopathy specific adverse reactions versus adverse drug reactions. Regul. Toxicol. Pharmacol., 2015, 72(2), 179-184.
[http://dx.doi.org/10.1016/j.yrtph.2015.04.002] [PMID: 25882307]
(c) Ernest, E. Homeopathy: Past present and future. J. Clin. Pharmacol., 1997, 44, 435-437.
[http://dx.doi.org/10.1046/j.1365-2125.1997.t01-1-00611.x]
[http://dx.doi.org/10.1177/1534735406294794] [PMID: 17101761]
(b) Trebbi, G.; Nipoti, P.; Bregola, V.; Brizzi, M.; Dinelli, G.; Betti, L. Ultra high diluted arsenic reduces spore germination of Alternaria brassicicola and dark leaf spot in cauliflower. Hortic. Bras., 2016, 34(3), 318-325.
[http://dx.doi.org/10.1590/S0102-05362016003003]
(c) Canizares, M.; Hogg-Johnson, S.; Gignac, M.A.M.; Glazier, R.H.; Badley, E.M.; Badley, E.M. Changes in the use practitionerbased complementary and alternative medicine over time in Canada: Cohort and period effects. PLoS One, 2017, 12(5) e0177307
[http://dx.doi.org/10.1371/journal.pone.0177307] [PMID: 28494011]
(d) Mohd Mujar, N.M.; Dahlui, M.; Emran, N.A.; Abdul Hadi, I.; Wai, Y.Y.; Arulanantham, S.; Hooi, C.C.; Mohd Taib, N.A. Complementary and alternative medicine (CAM) use and delays in presentation and diagnosis of breast cancer patients in public hospitals in Malaysia. PLoS One, 2017, 12(4) e0176394
[http://dx.doi.org/10.1371/journal.pone.0176394] [PMID: 28448541]
(e) Arora, S.; Aggarwal, A.; Singla, P.; Jyoti, S.; Tandon, S. Anti-proliferative effects of homeopathic medicines on human kidney, colon and breast cancer cells. Homeopathy, 2013, 102(4), 274-282.
[http://dx.doi.org/10.1016/j.homp.2013.06.001] [PMID: 24050774]
(f) Endler, P.C.; Scherer-Pongratz, W.; Lothaller, H.; Stephen, S. Wheat and ultra high diluted gibberellic acid--further experiments and re-analysis of data. Homeopathy, 2015, 104(4), 257-262.
[http://dx.doi.org/10.1016/j.homp.2015.09.007] [PMID: 26678726]
(g) Scherer-Pongratz, W.; Endler, P.C.; Lothaller, H.; Stephen, S. Wheat and ultra high diluted silver nitrate--further experiments and re-analysis of data. Homeopathy, 2015, 104(4), 246-249.
[http://dx.doi.org/10.1016/j.homp.2015.09.009] [PMID: 26678724]
[http://dx.doi.org/10.1080/02604027.2016.1194107]
[http://dx.doi.org/10.1016/j.ccr.2014.10.003]
[http://dx.doi.org/10.1177/0018578717741393] [PMID: 29434385]
(b) Kravchenko-Balasha, N.; Aframian, D.J. A novel strategy for diagnosing viral vs bacterial infection: implications for oral diseases. Oral Dis., 2018, 24(4), 491-493.
[http://dx.doi.org/10.1111/odi.12629] [PMID: 28029726]
(c) dos Santos Trindade, R.; Rodrigues, R.; do Amaral Júnior, A.T.; Gonçalves, L.S.A.; Daher, R.F.; Sudré, C.P. Critical disease components of common bacterial blight to effectively evaluate resistant genotypes of snap bean. J. Gen. Plant Pathol., 2012, 78(3), 201-206.
[http://dx.doi.org/10.1007/s10327-012-0374-x]
[http://dx.doi.org/10.1016/j.resmic.2011.04.009] [PMID: 21530652]
[http://dx.doi.org/10.1039/C5NJ01320H]
[http://dx.doi.org/10.1021/acsanm.8b00548]
[http://dx.doi.org/10.1166/jbns.2016.1349]
(b) Mirzajani, F.; Askari, H.; Hamzelou, S.; Farzaneh, M.; Ghassempour, A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf., 2013, 88, 48-54.
[http://dx.doi.org/10.1016/j.ecoenv.2012.10.018] [PMID: 23174269]
(c) Mirzajani, F.; Askari, H.; Hamzelou, S.; Schober, Y.; Römpp, A.; Ghassempour, A.; Spengler, B. Proteomics study of silver nanoparticles toxicity on Bacillus thuringiensis. Ecotoxicol. Environ. Saf., 2014, 100, 122-130.
[http://dx.doi.org/10.1016/j.ecoenv.2013.10.009] [PMID: 24290895]
(d) Mirzajani, F.; Askari, H.; Hamzelou, S.; Schober, Y.; Römpp, A.; Ghassempour, A.; Spengler, B. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol. Environ. Saf., 2014, 108, 335-339.
[http://dx.doi.org/10.1016/j.ecoenv.2014.07.013] [PMID: 25124680]
[http://dx.doi.org/10.1039/C5RA01864A]
[http://dx.doi.org/10.1016/S0166-445X(96)00835-1]
[http://dx.doi.org/10.1080/15287394.2017.1376727] [PMID: 29020531]
[http://dx.doi.org/10.3390/ijms16047493] [PMID: 25849657]
[http://dx.doi.org/10.1186/s12870-017-1083-6] [PMID: 28768498]
[http://dx.doi.org/10.14715/cmb/2017.63.2.18] [PMID: 28364792]
(b) Karami, N.; Mirzajani, F.; Rezadoost, H.; Karimi, A.; Fallah, F.; Ghassempour, A.; Aliahmadi, A. Initial study of three different pathogenic microorganisms by gas chromatography-mass spectrometry. F1000 Res., 2017, 6, 1415.
[http://dx.doi.org/10.12688/f1000research.12003.2] [PMID: 29375811]
[http://dx.doi.org/10.3109/17435390.2013.773464] [PMID: 23379603]
(b) Butler, K.S.; Peeler, D.J.; Casey, B.J.; Dair, B.J.; Elespuru, R.K. Silver nanoparticles: Correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis, 2015, 30(4), 577-591.
[http://dx.doi.org/10.1093/mutage/gev020] [PMID: 25964273]
[http://dx.doi.org/10.1136/fn.83.2.F158] [PMID: 10952715]
[http://dx.doi.org/10.1016/j.aquatox.2007.03.022] [PMID: 17658626]
[http://dx.doi.org/10.1080/10610278.2010.487565]
(b) Tolaymat, T.M.; El Badawy, A.M.; Genaidy, A.; Scheckel, K.G.; Luxton, T.P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ., 2010, 408(5), 999-1006.
[http://dx.doi.org/10.1016/j.scitotenv.2009.11.003] [PMID: 19945151]
[http://dx.doi.org/10.1631/jzus.B1600482] [PMID: 29405043]
(b) Zhao, C-M.; Wang, W-X. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ. Toxicol. Chem., 2011, 30(4), 885-892.
[http://dx.doi.org/10.1002/etc.451] [PMID: 21191880]
(c) Mao, B-H.; Tsai, J-C.; Chen, C-W.; Yan, S-J.; Wang, Y-J. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology, 2016, 10(8), 1021-1040.
[http://dx.doi.org/10.1080/17435390.2016.1189614] [PMID: 27240148]
[http://dx.doi.org/10.1007/s10646-011-0745-7] [PMID: 21779820]
(b) Durán, N.; Silveira, C.P.; Durán, M.; Martinez, D.S.T. Silver nanoparticle protein corona and toxicity: a mini-review. J. Nanobiotechnology, 2015, 13(1), 55.
[http://dx.doi.org/10.1186/s12951-015-0114-4] [PMID: 26337542]
(c) Cox, A.; Venkatachalam, P.; Sahi, S.; Sharma, N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem., 2016, 107, 147-163.
[http://dx.doi.org/10.1016/j.plaphy.2016.05.022] [PMID: 27288991]
(d) Tripathi, D.K.; Tripathi, A. Shweta; Singh, S.; Singh, Y.; Vishwakarma, K.; Yadav, G.; Sharma, S.; Singh, V.K.; Mishra, R.K.; Upadhyay, R.G.; Dubey, N.K.; Lee, Y.; Chauhan, D.K. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol., 2017, 08, 7.https://www.ncbi.nlm.nih.gov/pubmed/28184215
[http://dx.doi.org/10.3390/ijms 19020444] [PMID: 29393866]
[http://dx.doi.org/10.1016/j.chemphys.2011.07.021]
[http://dx.doi.org/10.1016/j.homp. 2007.05.006] [PMID: 17678809]
[http://dx.doi.org/10.1023/A: 1026048907739] [PMID: 14619985]