Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

PAn/Cu Bismuthate Nanoflake Composites with Enhanced Electrochemical Performance for TA

Author(s): Z. Wang, H.J. Chen, F.F. Lin, L. Yan, Y. Zhang*, L.Z. Pei* and C.G. Fan

Volume 12, Issue 1, 2020

Page: [48 - 57] Pages: 10

DOI: 10.2174/1876402911666190617111608

Abstract

Background: Measuring tartaric acid in liquid food, such as fruits or fruit products is of great importance for assessing the quality of the food.

Objective: The aim of the research is to obtain polyaniline/Cu bismuthate nanoflake composites by an in-situ polymerization route for the electrochemical detection of tartaric acid.

Methods: Polyaniline/Cu bismuthate nanoflake composites were prepared by in-situ aniline polymerizing route in aqueous solution. The obtained products were characterized by X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM) and high-resolution TEM (HRTEM), respectively. The electrochemical performance for tartaric acid detection has been investigated by cyclic voltammetry method using polyaniline/Cu bismuthate nanoflake composites modified glassy carbon electrode.

Results: The nanocomposites comprise of tetragonal CuBi2O4 phase. Polyaniline particles with the size of less than 100 nm attach to the surface of the nanoflakes. A pair of quasi-reversible cyclic voltammetry peaks are located at -0.01 V and +0.04 V, respectively at the 20wt.% polyaniline/Cu bismuthate nanoflake composites modified glassy carbon electrode. The limit of detection is 0.58 µM with the linear range of 0.001-2 mM. The linear range increases from 0.005-2 mM to 0.001-2 mM and limit of detection decreases from 2.3 µM to 0.43 µM with increasing the polyaniline content from 10wt.% to 40wt.%.

Conclusion: Comparing with the Cu bismuthate nanoflakes modified glassy carbon electrode, polyaniline/ Cu bismuthate nanoflake composites modified glassy carbon electrode shows enhanced electrochemical performance for tartaric acid detection.

Keywords: Polyaniline, Cu bismuthate nanoflakes, composites, electrochemical performance, tartaric acid, capillary electrophoresis.

Graphical Abstract

[1]
Zawada, K.; Plichta, A.; Jańczewski, D.; Hajmowicz, H.; Florjańczyk, Z.; Stepień, M.; Sobiecka, A.; Synoradzki, L. Esters of tartaric acid, a new class of potential “double green” plasticizers. ACS Sustain. Chem. Eng., 2017, 5(7), 5999-6007.
[http://dx.doi.org/10.1021/acssuschemeng.7b00814]
[2]
Wang, N.; Chang, P.R.; Zheng, P.W.; Ma, X.F. Carbon nanotube-cyclodextrin adducts for electrochemical recognition of tartaric acid. Diamond Related Materials, 2015, 55(5), 117-122.
[http://dx.doi.org/10.1016/j.diamond.2015.03.017]
[3]
Fuj, C.G.; Song, L.N.; Fang, Y.Z. Simultaneous determination of sugars and organic acids by co-electroosmotic capillary electrophoresis with amperometric detection at a disk-shaped copper electrode. Anal. Chim. Acta, 1998, 371(1), 81-87.
[http://dx.doi.org/10.1016/S0003-2670(98)00283-9]
[4]
Galkwad, A.; Silva, M.; Pérez-Bendito, D. Sensitive determination of periodate and tartaric acid by stopped-flow chemiluminescence spectrometry. Analyst (Lond.), 1994, 119(8), 1819-1824.
[http://dx.doi.org/10.1039/AN9941901819]
[5]
Zhang, Y.; Nie, J.T.; Wei, H.Y.; Xu, H.T.; Wang, Q.; Cong, Y.Q.; Tao, J.Q.; Zhang, Y.; Chu, L.L.; Zhou, Y.; Wu, X.Y. Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sens. Actuators B Chem., 2018, 258(4), 1107-1116.
[http://dx.doi.org/10.1016/j.snb.2017.12.001]
[6]
Anuar, N.S.; Basirun, W.J.; Ladan, M.; Shalauddin, M.; Mehmood, M.S. Fabrication of platinum nitrogen-doped graphene nanocomposite modified electrode for the electrochemical detection of acetaminophen. Sens. Actuators B Chem., 2018, 266(8), 375-383.
[http://dx.doi.org/10.1016/j.snb.2018.03.138]
[7]
Yu, W.W.; Chen, X.A.; Mei, W.; Chen, C.S.; Tsang, Y.H. Photocatalytic and electrochemical performance of three-dimensional reduced graphene oxide/WS2/Mg-doped ZnO composites. Appl. Surf. Sci., 2017, 400(4), 129-138.
[http://dx.doi.org/10.1016/j.apsusc.2016.12.138]
[8]
Duan, J.F.; Zhu, C.; Du, Y.H.; Wu, Y.L.; Chen, Z.Y.; Li, L.J.; Zhu, H.L.; Zhu, Z.Y. Synthesis of N-doped carbon-coated Zn–Sn mixed oxide cubes/graphene composite with enhanced lithium storage properties. J. Mater. Sci., 2017, 52(17), 10470-10479.
[9]
Cao, S.Y.; Chen, C.S.; Xi, X.D.; Zeng, B.; Ning, X.T.; Liu, T.G.; Chen, X.H.; Meng, X.M.; Xiao, Y. Hypothermia-controlled Co-precipitation route to deposit well-dispersed β-Bi2O3 nanospheres on polymorphic graphene flakes. Vacuum, 2014, 102(4), 1-4.
[http://dx.doi.org/10.1016/j.vacuum.2013.10.025]
[10]
Kvaratskhelia, R.K.; Kvaratskhelia, E.R. Electrochemical behaviour of tartaric acid at solid electrodes in aqueous and mixed solutions. Russ. J. Electrochem., 2008, 44(2), 230-233.
[http://dx.doi.org/10.1134/S1023193508020110]
[11]
Cai, Z.Y.; Pei, L.Z.; Yang, Y.; Pei, Y.Q.; Fan, C.G.; Fu, D.G. Electrochemical behavior of tartaric acid at CuGeO3 nanowire modified glassy carbon electrode. J. Solid State Electrochem., 2012, 16(6), 2243-2249.
[http://dx.doi.org/10.1007/s10008-012-1654-2]
[12]
Pei, L.Z.; Wei, T.; Lin, N.; Fan, C.G.; Yang, Z. Aluminium bismuthate nanorods and electrochemical performance for the detection of tartaric acid. J. Alloys Compd., 2016, 679(9), 39-46.
[http://dx.doi.org/10.1016/j.jallcom.2016.04.034]
[13]
Pei, L.Z.; Wei, T.; Lin, N.; Zhang, Y. Synthesis of bismuth nickelate nanorods and electrochemical detection of tartaric acid using nanorods modified electrode. J. Alloys Compd., 2016, 663(4), 677-685.
[http://dx.doi.org/10.1016/j.jallcom.2015.12.177]
[14]
Pei, L.Z.; Wei, T.; Lin, N.; Cai, Z.Y.; Fan, C.G.; Yang, Z. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine. J. Electrochem. Soc., 2016, 163(2), H1-H8.
[http://dx.doi.org/10.1149/2.0041602jes]
[15]
Zhang, Y.; Lin, F.F.; Wei, T.; Pei, L.Z. Facile hydrothermal synthesis of Cu bismuthate nanosheets and sensitive electrochemical detection of tartaric acid. J. Alloys Compd., 2017, 723(11), 1062-1069.
[http://dx.doi.org/10.1016/j.jallcom.2017.07.001]
[16]
Liu, H.; Zou, Y.J.; Huang, L.Y.; Yin, H.; Xi, C.Q.; Chen, X.; Shentu, H.W.; Li, C.; Zhang, J.J.; Lv, C.J.; Fan, M.Q. Enhanced electrochemical performance of sandwich-structured polyaniline-wrapped silicon oxide/carbon nanotubes for lithium ion batteries. Appl. Surf. Sci., 2018, 442(6), 204-212.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.023]
[17]
Hussain, S.; Kovacevic, E.; Amade, R.; Bemdt, J.; Pattyn, C.; Dias, A.; Boulmer-Leborgne, C.; Ammar, M.R.; Bertran-Serra, E. Plasma synthesis of polyaniline enrobed carbon nanotubes for electrochemical applications. Electrochim. Acta, 2018, 268(4), 218-225.
[http://dx.doi.org/10.1016/j.electacta.2018.02.112]
[18]
Kandasamy, S.K.; Kandasamy, K. Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: A review. J. Inorg. Organomet. Polym. Mater., 2018, 28(3), 559-584.
[http://dx.doi.org/10.1007/s10904-018-0779-x]
[19]
Chen, Z.Y.; Xu, M.; Zhu, H.L.; Xie, T.; Wang, W.H.; Zhao, Q.F. Enhanced electrochemical performance of polyacene coated LiMn2O3.95F0.05 for lithium ion batteries. Appl. Surf. Sci., 2013, 286(12), 177-183.
[http://dx.doi.org/10.1016/j.apsusc.2013.09.044]
[20]
Li, Y.; Chen, C. Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes. J. Mater. Sci., 2017, 52(20), 12348-12357.
[http://dx.doi.org/10.1007/s10853-017-1291-3]
[21]
Pei, L.Z.; Cai, Z.Y.; Xie, Y.K.; Pei, Y.Q.; Fan, C.G.; Fu, D.G. Electrochemical behaviors of ascorbic acid at CuGeO3/polyaniline nanowire modified glassy carbon electrode. J. Electrochem. Soc., 2012, 159(10), G107-G111.
[http://dx.doi.org/10.1149/2.005210jes]
[22]
Lee, K.P.; Komathi, S.; Nam, N.J.; Gopalan, A.I. Sulfonated polyaniline network grafted multi-wall carbon nanotubes for enzyme immobilization, direct electrochemistry and biosensing of glucose. Microchem. J., 2010, 95(1), 74-79.
[http://dx.doi.org/10.1016/j.microc.2009.10.008]
[23]
Xiang, C.; Zou, Y.; Qiu, S.; Sun, L.; Xu, F.; Zhou, H. Bienzymatic glucose biosensor based on direct electrochemistry of cytochrome c on gold nanoparticles/polyaniline nanospheres composite. Talanta, 2013, 110(6), 96-100.
[http://dx.doi.org/10.1016/j.talanta.2013.02.022] [PMID: 23618181]
[24]
Zahed, F.M.; Hatamluyi, B.; Lorestani, F.; Es’haghi, Z. Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sensor for the determination of anticancer drug 5-fluorouracil. J. Pharm. Biomed. Anal., 2018, 161(8), 12-19.
[http://dx.doi.org/10.1016/j.jpba.2018.08.004] [PMID: 30142492]
[25]
Zhang, Y.; Ma, Y.; Wei, T.; Lin, F.F.; Qiu, F.L.; Pei, L.Z. Polyaniline/zinc bismuthate nanocomposites for the enhanced electrochemical performance of the determination of L-Cysteine. Measurement, 2018, 128(12), 55-62.
[http://dx.doi.org/10.1016/j.measurement.2018.06.036]
[26]
He, L.H.; Cui, B.B.; Liu, J.M.; Song, Y.P.; Wang, M.H.; Peng, D.L.; Zhang, Z.H. Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sens. Actuators B Chem., 2018, 258(11), 813-821.
[http://dx.doi.org/10.1016/j.snb.2017.11.161]
[27]
Lu, Z.; Dai, W.; Liu, B.; Mo, G.; Zhang, J.; Ye, J.; Ye, J. One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications. J. Colloid Interface Sci., 2018, 525(9), 86-96.
[http://dx.doi.org/10.1016/j.jcis.2018.04.065] [PMID: 29684734]
[28]
Qu, L.B.; Yang, S.; Li, G.; Yang, R.; Li, J.; Yu, L.L. Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: Application to the electrocatalytic oxidation of l-cysteine. Electrochim. Acta, 2011, 56(7), 2934-2940.
[http://dx.doi.org/10.1016/j.electacta.2010.12.090]
[29]
Yuan, B.Q.; Zeng, X.Y.; Xu, C.Y.; Liu, L.; Ma, Y.H.; Zhang, D.J.; Fan, Y. Electrochemical modification of graphene oxide bearing different types of oxygen functional species for the electro-catalytic oxidation of reduced glutathione. Sens. Actuat. B, 2013, 184(7), 15-20.
[http://dx.doi.org/10.1016/j.snb.2013.04.055]
[30]
Aczél, A. The overpressured thin-layer chromatographie separation of capsanthin-capsorubin. Fresenius′. Z. Anal. Chem., 1988, 330(4-5), 462.
[http://dx.doi.org/10.1007/BF00469369]
[31]
Lourenço, A.S.; Nascimento, R.F.; Silva, A.C.; Ribeiro, W.F.; Araujo, M.C.U.; Oliveira, S.C.B.; Nascimento, V.B. Voltammetric determination of tartaric acid in wines by electrocatalytic oxidation on a cobalt(II)-phthalocyanine-modified electrode associated with multiway calibration. Anal. Chim. Acta, 2018, 1008(4), 29-37.
[http://dx.doi.org/10.1016/j.aca.2018.01.005] [PMID: 29420941]
[32]
Pei, L.Z.; Lin, F.F.; Qiu, F.L.; Wang, W.L.; Zhang, Y.; Fan, C.G. Formation of Ba bismuthate nanobelts and sensitive electrochemical determination of tartaric acid. Mater. Res. Express, 2017, 4(7)075047
[http://dx.doi.org/10.1088/2053-1591/aa7e04]

© 2025 Bentham Science Publishers | Privacy Policy