Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Comprehensive in silico Study of GLUT10: Prediction of Possible Substrate Binding Sites and Interacting Molecules

Author(s): Mohammad J. Hosen *, Mahmudul Hasan, Sourav Chakraborty, Ruhshan A. Abir, Abdullah Zubaer and Paul Coucke

Volume 21, Issue 2, 2020

Page: [117 - 130] Pages: 14

DOI: 10.2174/1389201020666190613152030

Price: $65

Abstract

Objectives: The Arterial Tortuosity Syndrome (ATS) is an autosomal recessive connective tissue disorder, mainly characterized by tortuosity and stenosis of the arteries with a propensity towards aneurysm formation and dissection. It is caused by mutations in the SLC2A10 gene that encodes the facilitative glucose transporter GLUT10. The molecules transported by and interacting with GLUT10 have still not been unambiguously identified. Hence, the study attempts to identify both the substrate binding site of GLUT10 and the molecules interacting with this site.

Methods: As High-resolution X-ray crystallographic structure of GLUT10 was not available, 3D homology model of GLUT10 in open conformation was constructed. Further, molecular docking and bioinformatics investigation were employed.

Results and Discussion: Blind docking of nine reported potential in vitro substrates with this 3D homology model revealed that substrate binding site is possibly made with PRO531, GLU507, GLU437, TRP432, ALA506, LEU519, LEU505, LEU433, GLN525, GLN510, LYS372, LYS373, SER520, SER124, SER533, SER504, SER436 amino acid residues. Virtual screening of all metabolites from the Human Serum Metabolome Database and muscle metabolites from Human Metabolite Database (HMDB) against the GLUT10 revealed possible substrates and interacting molecules for GLUT10, which were found to be involved directly or partially in ATS progression or different arterial disorders. Reported mutation screening revealed that a highly emergent point mutation (c. 1309G>A, p. Glu437Lys) is located in the predicted substrate binding site region.

Conclusion: Virtual screening expands the possibility to explore more compounds that can interact with GLUT10 and may aid in understanding the mechanisms leading to ATS.

Keywords: GLUT10, SLC2A10 gene, the Arterial Tortuosity Syndrome (ATS), human serum metabolome database, virtual screening, substrate binding sites.

Graphical Abstract

[1]
McVie-Wylie, A.J.; Lamson, D.R.; Chen, Y.T. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: A candidate gene for NIDDM susceptibility. Genomics, 2001, 72(1), 113-117.
[http://dx.doi.org/10.1006/geno.2000.6457] [PMID: 11247674]
[2]
Dawson, P.A.; Mychaleckyj, J.C.; Fossey, S.C.; Mihic, S.J.; Craddock, A.L.; Bowden, D.W. Sequence and functional analysis of GLUT10: A glucose transporter in the type 2 diabetes-linked region of chromosome 20q12-13.1. Mol. Genet. Metab., 2001, 74(1-2), 186-199.
[http://dx.doi.org/10.1006/mgme.2001.3212] [PMID: 11592815]
[3]
Thorens, B.; Mueckler, M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab., 2010, 298(2), E141-E145.
[http://dx.doi.org/10.1152/ajpendo.00712.2009] [PMID: 20009031]
[4]
Drera, B.; Guala, A.; Zoppi, N.; Gardella, R.; Franceschini, P.; Barlati, S.; Colombi, M. Two novel SLC2A10/GLUT10 mutations in a patient with arterial tortuosity syndrome. Am. J. Med. Genet. A., 2007, 143A(2), 216-218.
[http://dx.doi.org/10.1002/ajmg.a.31514] [PMID: 17163528]
[5]
Coucke, P.J.; Willaert, A.; Wessels, M.W.; Callewaert, B.; Zoppi, N.; De Backer, J.; Fox, J.E.; Mancini, G.M.; Kambouris, M.; Gardella, R.; Facchetti, F.; Willems, P.J.; Forsyth, R.; Dietz, H.C.; Barlati, S.; Colombi, M.; Loeys, B.; De Paepe, A. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat. Genet., 2006, 38(4), 452-457.
[http://dx.doi.org/10.1038/ng1764] [PMID: 16550171]
[6]
Ritelli, M.; Drera, B.; Vicchio, M.; Puppini, G.; Biban, P.; Pilati, M.; Prioli, M.A.; Barlati, S.; Colombi, M. Arterial tortuosity syndrome in two Italian paediatric patients. Orphanet J. Rare Dis., 2009, 4(1), 20.
[http://dx.doi.org/10.1186/1750-1172-4-20] [PMID: 19781076]
[7]
Bhat, V. Arterial tortuosity syndrome: An approach through imaging perspective. J. Clin. Imaging Sci., 2014, 4, 44.
[http://dx.doi.org/10.4103/2156-7514.139734] [PMID: 25250193]
[8]
Lee, Y.C.; Huang, H.Y.; Chang, C.J.; Cheng, C.H.; Chen, Y.T. Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: Mechanistic insight into arterial tortuosity syndrome. Hum. Mol. Genet., 2010, 19(19), 3721-3733.
[http://dx.doi.org/10.1093/hmg/ddq286] [PMID: 20639396]
[9]
Segade, F. Glucose transporter 10 and arterial tortuosity syndrome: the vitamin C connection. FEBS Lett., 2010, 584(14), 2990-2994.
[http://dx.doi.org/10.1016/j.febslet.2010.06.011] [PMID: 20547159]
[10]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[11]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[12]
Fiser, A.; Šali, A. Modeller: Generation and refinement of homology- based protein structure models. In: Academic Press, 2003, 374, pp. 461-491.
[http://dx.doi.org/10.1016/S0076-6879(03)74020-8]
[13]
Salas-Burgos, A.; Iserovich, P.; Zuniga, F.; Vera, J.C.; Fischbarg, J. Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: Insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys. J., 2004, 87(5), 2990-2999.
[http://dx.doi.org/10.1529/biophysj.104.047886] [PMID: 15326030]
[14]
Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins, 1993, 17(4), 355-362.
[http://dx.doi.org/10.1002/prot.340170404] [PMID: 8108378]
[15]
Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[16]
Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: ϕ, ψ and Cbeta deviation. Proteins, 2003, 50(3), 437-450.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[17]
Zhao, F.Q.; Keating, A.F. Functional properties and genomics of glucose transporters. Curr. Genomics, 2007, 8(2), 113-128.
[http://dx.doi.org/10.2174/138920207780368187] [PMID: 18660845]
[18]
Maiti, R.; Van Domselaar, G.H.; Zhang, H.; Wishart, D.S. SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Res., 2004, 32(2), W590-W594.
[http://dx.doi.org/10.1093/nar/gkh477]
[19]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[20]
Park, J.B. Inhibition of glucose and dehydroascorbic acid uptakes by resveratrol in human transformed myelocytic cells. J. Nat. Prod., 2001, 64(3), 381-384.
[http://dx.doi.org/10.1021/np000411t] [PMID: 11277764]
[21]
Mori, H.; Hashiramoto, M.; Clark, A.E.; Yang, J.; Muraoka, A.; Tamori, Y.; Kasuga, M.; Holman, G.D. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation. J. Biol. Chem., 1994, 269(15), 11578-11583.
[PMID: 8157690]
[22]
Tamori, Y.; Hashiramoto, M.; Clark, A.E.; Mori, H.; Muraoka, A.; Kadowaki, T.; Holman, G.D.; Kasuga, M. Substitution at Pro385 of GLUT1 perturbs the glucose transport function by reducing conformational flexibility. J. Biol. Chem., 1994, 269(4), 2982-2986.
[PMID: 8300630]
[23]
Schürmann, A.; Doege, H.; Ohnimus, H.; Monser, V.; Buchs, A.; Joost, H.G. Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function. Biochemistry, 1997, 36(42), 12897-12902.
[http://dx.doi.org/10.1021/bi971173c] [PMID: 9335548]
[24]
Wood, I.S.; Wang, B.; Lorente-Cebrián, S.; Trayhurn, P. Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-D-glucose uptake in human adipocytes. Biochem. Biophys. Res. Commun., 2007, 361(2), 468-473.
[http://dx.doi.org/10.1016/j.bbrc.2007.07.032] [PMID: 17658463]
[25]
Montel-Hagen, A.; Kinet, S.; Manel, N.; Mongellaz, C.; Prohaska, R.; Battini, J.L.; Delaunay, J.; Sitbon, M.; Taylor, N. Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell, 2008, 132(6), 1039-1048.
[http://dx.doi.org/10.1016/j.cell.2008.01.042] [PMID: 18358815]
[26]
Rumsey, S.C.; Kwon, O.; Xu, G.W.; Burant, C.F.; Simpson, I.; Levine, M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J. Biol. Chem., 1997, 272(30), 18982-18989.
[http://dx.doi.org/10.1074/jbc.272.30.18982] [PMID: 9228080]
[27]
Ung, P.M.U.; Song, W.; Cheng, L.; Zhao, X.; Hu, H.; Chen, L.; Schlessinger, A. Inhibitor discovery for the human GLUT1 from homology modeling and virtual screening. ACS Chem. Biol., 2016, 11(7), 1908-1916.
[http://dx.doi.org/10.1021/acschembio.6b00304] [PMID: 27128978]
[28]
Rivas, C.I.; Zúñiga, F.A.; Salas-Burgos, A.; Mardones, L.; Ormazabal, V.; Vera, J.C. Vitamin C transporters. J. Physiol. Biochem., 2008, 64(4), 357-375.
[http://dx.doi.org/10.1007/BF03174092] [PMID: 19391462]
[29]
Németh, C.E.; Marcolongo, P.; Gamberucci, A.; Fulceri, R.; Benedetti, A.; Zoppi, N.; Ritelli, M.; Chiarelli, N.; Colombi, M.; Willaert, A.; Callewaert, B.L.; Coucke, P.J.; Gróf, P.; Nagy, S.K.; Mészáros, T.; Bánhegyi, G.; Margittai, É. Glucose transporter type 10-lacking in arterial tortuosity syndrome-facilitates dehydroascorbic acid transport. FEBS Lett., 2016, 590(11), 1630-1640.
[http://dx.doi.org/10.1002/1873-3468.12204] [PMID: 27153185]
[30]
Cheeseman, C.I. GLUT2 is the transporter for fructose across the rat intestinal basolateral membrane. Gastroenterology, 1993, 105(4), 1050-1056.
[http://dx.doi.org/10.1016/0016-5085(93)90948-C] [PMID: 8405848]
[31]
Kellett, G.L.; Brot-Laroche, E. Apical GLUT2: A major pathway of intestinal sugar absorption. Diabetes, 2005, 54(10), 3056-3062.
[http://dx.doi.org/10.2337/diabetes.54.10.3056] [PMID: 16186415]
[32]
Mueckler, M.; Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med., 2013, 34(2-3), 121-138.
[http://dx.doi.org/10.1016/j.mam.2012.07.001] [PMID: 23506862]
[33]
Bánhegyi, G.; Benedetti, A.; Margittai, E.; Marcolongo, P.; Fulceri, R.; Németh, C.E.; Szarka, A. Subcellular compartmentation of ascorbate and its variation in disease states. Biochim. Biophys. Acta, 2014, 1843(9), 1909-1916.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.016] [PMID: 24907663]
[34]
Lefevre, P.G. Sugar transport in the red blood cell: Structure-activity relationships in substrates and antagonists. Pharmacol. Rev., 1961, 13(1), 39-70.
[PMID: 13760340]
[35]
Yeagle, P.L. The membranes of cells. In: Chapter 13 - Membrane Transport, 2016.
[36]
Sun, L.; Zeng, X.; Yan, C.; Sun, X.; Gong, X.; Rao, Y.; Yan, N. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature, 2012, 490(7420), 361-366.
[http://dx.doi.org/10.1038/nature11524] [PMID: 23075985]
[37]
Panneerselvam, K.; Freeze, H.H. Mannose enters mammalian cells using a specific transporter that is insensitive to glucose. J. Biol. Chem., 1996, 271(16), 9417-9421.
[http://dx.doi.org/10.1074/jbc.271.16.9417] [PMID: 8621609]
[38]
Zoppi, N.; Chiarelli, N.; Cinquina, V.; Ritelli, M.; Colombi, M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum. Mol. Genet., 2015, 24(23), 6769-6787.
[http://dx.doi.org/10.1093/hmg/ddv382] [PMID: 26376865]
[39]
Robichaud, T.K. GLUT1 Structure Function; Context, Ligand Cooperativity, and Mutagenesis Studies: A Dissertation. University of Massachusetts Medical School. GSBS Dissertations and Theses, 2008.https://escholarship.umassmed.edu/gsbs_diss/393
[40]
Deng, D.; Yan, N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Sci., 2016, 25(3), 546-558.
[http://dx.doi.org/10.1002/pro.2858] [PMID: 26650681]
[41]
Schrodinger, L.L.C. The PyMOL molecular graphics system. Amer. J. Infect. Dis. Microbiol., 2016, 4(3), 61-71.
[42]
Forrest, L.R.; Tang, C.L.; Honig, B. On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys. J., 2006, 91(2), 508-517.
[http://dx.doi.org/10.1529/biophysj.106.082313] [PMID: 16648166]
[43]
Gao, C. Computational studies on membrane protein structures and protein-ligand binding affinities, PhD Thesis, University of Rochester: USA, November 2009.
[44]
Reddy, C.S.; Vijayasarathy, K.; Srinivas, E.; Sastry, G.M.; Sastry, G.N. Homology modeling of membrane proteins: A critical assessment. Comput. Biol. Chem., 2006, 30(2), 120-126.
[http://dx.doi.org/10.1016/j.compbiolchem.2005.12.002] [PMID: 16540373]
[45]
Hasan, M.; Hakim, A.; Iqbal, A.; Bhuiyan, F.R.; Begum, M.K.; Sharmin, S.; Abir, R.A. Computational study and homology modeling of phenol hydroxylase: Key enzyme for phenol degradation. Int. J. Comput. Bioinfo. In Silico Model, 2015, 4(4), 691-698.
[46]
Ritelli, M.; Chiarelli, N.; Dordoni, C.; Reffo, E.; Venturini, M.; Quinzani, S.; Monica, M.D.; Scarano, G.; Santoro, G.; Russo, M.G.; Calzavara-Pinton, P.; Milanesi, O.; Colombi, M. Arterial Tortuosity Syndrome: Homozygosity for two novel and one recurrent SLC2A10 missense mutations in three families with severe cardiopulmonary complications in infancy and a literature review. BMC Med. Genet., 2014, 15(1), 122.
[http://dx.doi.org/10.1186/s12881-014-0122-5] [PMID: 25373504]
[47]
Monden, I.; Olsowski, A.; Krause, G.; Keller, K. The large cytoplasmic loop of the glucose transporter GLUT1 is an essential structural element for function. Biol. Chem., 2001, 382(11), 1551-1558.
[http://dx.doi.org/10.1515/BC.2001.189] [PMID: 11767944]
[48]
Medina, R.A.; Meneses, A.M.; Vera, J.C.; Gúzman, C.; Nualart, F.; Rodriguez, F.; de los Angeles Garcia, M.; Kato, S.; Espinoza, N.; Monsó, C.; Carvajal, A.; Pinto, M.; Owen, G.I. Differential regulation of glucose transporter expression by estrogen and progesterone in Ishikawa endometrial cancer cells. J. Endocrinol., 2004, 182(3), 467-478.
[http://dx.doi.org/10.1677/joe.0.1820467] [PMID: 15350188]
[49]
Hasan, M.; Ghosh, P.P.; Azim, K.F.; Mukta, S.; Abir, R.A.; Nahar, J.; Hasan Khan, M.M. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microb. Pathog., 2019, 130, 19-37.
[http://dx.doi.org/10.1016/j.micpath.2019.02.023] [PMID: 30822457]
[50]
Hasan, M.; Azim, K.F.; Begum, A.; Khan, N.A.; Shammi, T.S.; Imran, A.S.; Chowdhury, I.M.; Urme, S.R.A. Vaccinomics strategy for developing a unique multi-epitope monovalent vaccine against Marburg marburgvirus. Infect. Genet. Evol., 2019, 70, 140-157.
[http://dx.doi.org/10.1016/j.meegid.2019.03.003] [PMID: 30849525]
[51]
Joy, Z.F.; Purkaystha, A.; Das, N.K. Al-Hakim; Hasan, M. Screening for alternative sources of l-asparaginase used in acute lymphoblastic leukaemia (all) treatment: An in silico approach. Bioinformat. Proteomics Open Access Journal, 2019, 3(1), 128.
[52]
Ständer, M.; Naumann, U.; Wick, W.; Weller, M. Transforming growth factor-β and p-21: Multiple molecular targets of decorin-mediated suppression of neoplastic growth. Cell Tissue Res., 1999, 296(2), 221-227.
[http://dx.doi.org/10.1007/s004410051283] [PMID: 10382266]
[53]
Szarka, A.; Lőrincz, T. [Cellular and intracellular transport of vitamin C. The physiologic aspects Orv. Hetil., 2013, 154(42), 1651-1656.
[http://dx.doi.org/10.1556/OH.2013.29712] [PMID: 24121217]
[54]
Bourne, G.H. Vitamin C in the animal cell. Die Ascorbinsäure in der Pflanzenzelle. Vitamin C in the Animal Cell; Springer: Vienna, 1957, pp. 71-161.
[http://dx.doi.org/10.1007/978-3-7091-5761-9_2]
[55]
Redlich, C.A.; Delisser, H.M.; Elias, J.A. Retinoic acid inhibition of transforming growth factor-beta-induced collagen production by human lung fibroblasts. Am. J. Respir. Cell Mol. Biol., 1995, 12(3), 287-295.
[http://dx.doi.org/10.1165/ajrcmb.12.3.7873195] [PMID: 7873195]
[56]
Rishikof, D.C.; Ricupero, D.A.; Liu, H.; Goldstein, R.H. Phenylbutyrate decreases type I collagen production in human fibroblasts. J. Cell. Biochem., 2004, 91(4), 740-748.
[57]
Abboushi, N.; El-Hed, A.; El-Assaad, W.; Kozhaya, L.; El-Sabban, M.E.; Bazarbachi, A.; Badreddine, R.; Bielawska, A.; Usta, J.; Dbaibo, G.S. Ceramide inhibits IL-2 production by preventing protein kinase C-dependent NF-kappaB activation: Possible role in protein kinase Ctheta regulation. J. Immunol., 2004, 173(5), 3193-3200.
[http://dx.doi.org/10.4049/jimmunol.173.5.3193] [PMID: 15322180]
[58]
Zhu, J.; Yamane, H.; Cote-Sierra, J.; Guo, L.; Paul, W.E. GATA-3 promotes Th2 responses through three different mechanisms: Induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res., 2006, 16(1), 3-10.
[http://dx.doi.org/10.1038/sj.cr.7310002] [PMID: 16467870]
[59]
Hu, X.; Dutta, P.; Tsurumi, A.; Li, J.; Wang, J.; Land, H.; Li, W.X. Unphosphorylated STAT5A stabilizes heterochromatin and suppresses tumor growth. Proc. Natl. Acad. Sci. USA, 2013, 110(25), 10213-10218.
[http://dx.doi.org/10.1073/pnas.1221243110] [PMID: 23733954]
[60]
Sadowski, C.L.; Choi, T.S.; Le, M.; Wheeler, T.T.; Wang, L.H.; Sadowski, H.B. Insulin induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 skeletal muscle cells is mediated by Stat5*. J. Biol. Chem., 2001, 276(23), 20703-20710.
[http://dx.doi.org/10.1074/jbc.M101014200] [PMID: 11279166]
[61]
Wilson, D.I.; Appleton, R.E.; Coulthard, M.G.; Lee, R.E.; Wren, C.; Bain, H.H. Fetal and infantile hypertension caused by unilateral renal arterial disease. Arch. Dis. Child., 1990, 65(8), 881-884.
[http://dx.doi.org/10.1136/adc.65.8.881] [PMID: 2400227]
[62]
Yoshitomi, Y.; Yoshimi, H.; Yutani, C. A case of splenic artery aneurysm with Cushing’s syndrome. Int. J. Cardiol., 1996, 54(3), 263-265.
[http://dx.doi.org/10.1016/0167-5273(96)02608-3] [PMID: 8818750]
[63]
Kuisle, A.M.; Gauguet, S.; Karlin, L.I.; Dauber, A.; McCann, M.E. Postoperative adrenal crisis in an adolescent with Loeys-Dietz syndrome and undiagnosed adrenoleukodystrophy. Can. J. Anaesth., 2011, 58(4), 392-395.
[http://dx.doi.org/10.1007/s12630-010-9451-9] [PMID: 21225386]
[64]
Weismann, R.E.; Tobin, R.W. Arterial embolism occurring during systemic heparin therapy. AMA Arch. Surg., 1958, 76(2), 219-225.
[http://dx.doi.org/10.1001/archsurg.1958.01280200041005] [PMID: 13497418]
[65]
Pierce, K.L.; Tohgo, A.; Ahn, S.; Field, M.E.; Luttrell, L.M.; Lefkowitz, R.J. Epidermal Growth Factor (EGF) receptor-dependent ERK activation by G protein-coupled receptors: A co-culture system for identifying intermediates upstream and downstream of heparin-binding EGF shedding. J. Biol. Chem., 2001, 276(25), 23155-23160.
[http://dx.doi.org/10.1074/jbc.M101303200] [PMID: 11290747]
[66]
Cheng, C.W.; Shieh, P.C.; Lin, Y.C.; Chen, Y.J.; Lin, Y.H.; Kuo, D.H.; Liu, J.Y.; Kao, J.Y.; Kao, M.C.; Way, T.D. Indoleamine 2,3-dioxygenase, an immunomodulatory protein, is suppressed by (-)-epigallocatechin-3-gallate via blocking of gamma-interferon-induced JAK-PKC-delta-STAT1 signaling in human oral cancer cells. J. Agric. Food Chem., 2010, 58(2), 887-894.
[http://dx.doi.org/10.1021/jf903377e] [PMID: 19928918]
[67]
Shimoda, K.; Feng, J.; Murakami, H.; Nagata, S.; Watling, D.; Rogers, N.C.; Stark, G.R.; Kerr, I.M.; Ihle, J.N. Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood, 1997, 90(2), 597-604.
[PMID: 9226159]
[68]
Van-Laer, L.; Dietz, H.; Loeys, B. Loeys-dietz syndrome. In Progress in Heritable Soft Connective Tissue Diseases. In: Springer;, Dordrecht. 2014, pp. 95-105.
[http://dx.doi.org/10.1007/978-94-007-7893-1_7]
[69]
Badran, H.M.; Soliman, M.A.; Elmadbouh, I.; Ibrahim, W.A.; Masry, S.F. Relationship of coronary artery disease with testosterone level in young men undergoing coronary angiography. Menoufia Med. J., 2019, 32(1), 18.
[70]
Tivesten, A.; Vandenput, L.; Carlzon, D.; Nilsson, M.; Karlsson, M.K.; Ljunggren, O.; Barrett-Connor, E.; Mellstrom, D.; Ohlsson, C. Dehydroepiandrosterone and its sulfate predict the 5-year risk of coronary heart disease events in elderly men. J. Am. Coll. Cardiol., 2014, 64(17), 1801-1810.
[PMID: 25443702]
[71]
Walker, T.C. Use of testosterone propionate and estrogenic substance in treatment of essential hypertension, angina pectoris and peripheral vascular disease. J. Clin. Endocrinol., 1942, 2(9), 560-568.
[http://dx.doi.org/10.1210/jcem-2-9-560]
[72]
Pénisson-Besnier, I.; Lebouvier, T.; Moizard, M.P.; Ferré, M.; Barth, M.; Marc, G.; Raynaud, M.; Bonneau, D. Carotid artery dissection in an adult with the Simpson-Golabi-Behmel syndrome. Am. J. Med. Genet. A., 2008, 146A(4), 464-467.
[http://dx.doi.org/10.1002/ajmg.a.32154] [PMID: 18203194]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy