Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Tuberculosis: Current Status, Diagnosis, Treatment and Development of Novel Vaccines

Author(s): Jyoti Yadav, Sonali Verma, Darshna Chaudhary, Pawan K. Jaiwal and Ranjana Jaiwal*

Volume 20, Issue 6, 2019

Page: [446 - 458] Pages: 13

DOI: 10.2174/1389201020666190430114121

Price: $65

Abstract

Tuberculosis (TB) is an infectious disease that mainly affects the lungs and spreads to other organs of the body through the haematogenous route. It is one of the ten major causes of mortality worldwide. India has the highest incidence of new- and multidrug-resistant (MDR) - TB cases in the world. Bacille Calmette-Guerin (BCG) is the vaccine commonly available against TB. BCG does offer some protection against serious forms of TB in childhood but its protective effect wanes with age. Many new innovative strategies are being trailed for the development of effective and potent vaccines like mucosal- and epitope-based vaccines, which may replace BCG or boost BCG responses. The use of nanotechnology for diagnosis and treatment of TB is also in the pipeline along with many other vaccines, which are under clinical trials. Further, in-silico models were developed for finding new drug targets and designing drugs against Mycobacterium tuberculosis (Mtb). These models offer the benefit of computational experiments which are easy, inexpensive and give quick results. This review will focus on the available treatments and new approaches to develop potent vaccines for the treatment of TB.

Keywords: Mycobacterium tuberculosis, TB, MDR-TB, BCG, mucosal vaccine, epitope-based vaccine, in-silico models for TB, nanotechnology-based vaccines.

Graphical Abstract

[1]
Bloom, B.R. New Promise for vaccines against tuberculosis. N. Engl. J. Med., 2018, 379(17), 1672-1674.
[http://dx.doi.org/10.1056/ NEJMe1812483]
[2]
Global investments in Tuberculosis research and development: past, present and future. A policy paper prepared for the first WHO global ministerial conference on ending tuberculosis in the sustainable development era: A multisectoral response. Geneva: World Health Organization; 2017, Licence: CC BY-NC-SA 3.0 IGO.
[3]
Singh, S.K.; Kashyap, G.C.; Puri, P. Potential effect of household environment on prevalence of tuberculosis in India: Evidence from the recent round of a cross-sectional survey. BMC Pulm. Med., 2018, 18(66)
[http://dx.doi.org/10.1186/s12890-018-0627-3]
[4]
Mishra, G.P.; Mulani, J.D. First National Anti-Tuberculosis Drug Resistance Survey (NDRS) from India - An Eye Opener. J. Infect., 2018, 1(2), 26-29.
[5]
Tiberi, S.; Plessis, N.; Walzl, G.; Vjecha, M.J.; Rao, M.; Ntoumi, F. Mfinanga. S.; Kapata, N.; Mwaba, P.; McHugh, T.D.; Ippolito, G.; Migliori, G.B.; Maeurer, M.J.; Zumla, A. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis., 2018, 18(7), e183-e198.
[6]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[7]
Mishra, V.K.; Retherford, R.D.; Smith, K.R. Biomass cooking fuels and prevalence of tuberculosis in India. Int. J. Infect. Dis., 1999, 3, 119-129.
[8]
Kolappan, C.; Gopi, P.G.; Subramani, R.; Narayanan, P.R. Selected biological and behavioural risk factors associated with pulmonary tuberculosis. Int. J. Tuberc. Lung Dis., 2007, 11(9), 999-1003.
[9]
Kim, M.J.; Kim, H.R.; Hwang, S.S.; Kim, Y.W.; Han, S.K.; Shim, Y.S.; Yim, J.J. Prevalence and its predictors of Extrapulmonary involvement in patients with pulmonary tuberculosis. J. Korean Med. Sci., 2009, 24(2), 237-241.
[10]
Bhat, J.; Rao, V.G.; Sharma, R.K.; Muniyandi, M.; Yadav, R.; Bhondley, M.K. Investigation of the risk factors for pulmonary tuberculosis: A case-control study among Saharia tribe in Gwalior district, Madhya Pradesh, India. Indian J. Med. Res., 2017, 146(1), 97-104.
[11]
Raviglione, M.C.; Uplekar, M.W. WHO’s new stop TB strategy. Lancet, 2006, 367(9514), 952-955.
[12]
Singh, J.; Sankar, M.M.; Kumar, S.; Gopinath, K.; Singh, N.; Mani, K.; Singh, S. Incidence and prevalence of tuberculosis among household contacts of pulmonary tuberculosis patients in a Peri-urban population of South Delhi, India. PLoS One, 2013, 8(7), 1-11.
[13]
Kan, X.; Chiang, C.Y.; Enarson, D.A.; Chen, W.; Yang, J.; Chen, G. Indoor solid fuel use and tuberculosis in China: A matched case-control study. BMC Public Health, 2011, 11(1), 498.
[14]
Behera, D.; Aggarwal, G. Domestic cooking fuel exposure and tuberculosis in Indian women. Indian J. Chest Dis. Allied Sci., 2010, 52, 139-143.
[15]
Jindal, S.K. Relationship of household air pollution from solid fuel combustion with tuberculosis? Indian J. Med. Res., 2014, 140(2), 167-170.
[16]
World Health Organization.Global tuberculosis report; , 2017. World Health Organization.
[17]
Cuevas, R.Z. Successes and failures in human tuberculosis vaccine development. Expert Opin. Biol. Ther., 2017, 17(12), 1481-1491.
[18]
Choudhary, S.; Kusum, D.V. Potential of nanotechnology as a delivery platform against tuberculosis: Current research review. J. Control. Release, 2015, 202, 65-75.
[19]
Varghese, S.; Anil, A.; Scaria, S.; Abraham, E. Nanoparticulate Technology in the treatment of tuberculosis: A review. Int. J. Pharm. Sci. Res., 2018, 9(10), 4109-4116.
[20]
Schrager, L.K.; Harris, R.C.; Vekeman, J. Research and development of new tuberculosis vaccines: A review. F1000 Res., 2018, 7, 1732.
[21]
Luca, S.; Mihaescu, T. History of BCG Vaccine. MAEDICA -. J. Clin. Med., 2013, 8(1), 53-58.
[22]
Montagnani, C.; Chiappini, E.; Galli, L.; de Martino, M. Vaccine against tuberculosis: What’s new? BMC Infect. Dis., 2014, 14(Suppl. 1), S2.
[23]
Singh, V.K.; Srivastava, R.; Srivastava, B.S. Manipulation of BCG vaccine: A double-edged sword. Eur. J. Clin. Microbiol. Infect. Dis., 2016, 35, 535-543.
[24]
da Costa, A.C.; Nogueira, S.V.; Kipnis, A.; Junqueira-Kipnis, A.P. Recombinant BCG: Innovations on an old vaccine. Scope of BCG strains and strategies to improve long-lasting memory. Front. Immunol., 2014, 5, 152.
[25]
Oettinger, T.; Jorgensen, M.; Ladefoged, A.; Haslov, K.; Andersen, P. Development of the Mycobacterium bovis BCG vaccine: Review of the historical and biochemical evidence for a genealogical tree. Tuber. Lung Dis., 1999, 79(4), 243-250.
[26]
Behr, M.A. BCG-different strains, different vaccines? Lancet Infect. Dis., 2002, 2(2), 86-92.
[27]
Behr, M.A. Correlation between BCG genomics and protective efficacy. Sci. J. Infect. Dis., 2001, 33(4), 249-252.
[28]
Costa, C.D.; Costa, O.; Oliveira, M.D.; Rosa, J.D. A new recombinant BCG vaccine induces specific Th17 and Th1 effector cells with higher protective efficacy against tuberculosis. PLoS One, 2014, 9(12), e122-e848.
[29]
Higgins, J.P.T.; Weiser, K.S.; Lopez, J.A.L.; Kakourou, A.; Chaplin, K.; Christensen, H.; Martin, N.K.; Sterne, J.A.C.; Reingold, A.L. Association of BCG, DTP, and measles containing vaccines with childhood mortality: Systematic review. Brit. Med. J., 2016, 355, i5170.
[30]
Merle, C.S.C.; Cunha, S.S.; Rodrigues, L.C. BCG vaccination and leprosy protection: Review of current evidence and status of BCG in leprosy control. Expert Rev. Vaccines, 2010, 9(2), 209-222.
[31]
Smith, P.G.; Revill, W.D.L.; Lukwago, E.; Rykushin, Y.P. The protective effect of BCG against Mycobacterium ulcerans disease: A controlled trial in an endemic area of Uganda. Trans. R. Soc. Trop. Med. Hyg., 1976, 70(5-6), 449-457.
[32]
Portaels, F.; Aguiar, J.; Debacker, M.; Guedenon, A.; Steunou, C.; Zinsou, C.; Meyers, W.M. Mycobacterium bovis BCG vaccination as prophylaxis against Mycobacterium ulcerans osteomyelitis in Buruli ulcer disease. Infect. Immun., 2004, 72(1), 62-65.
[33]
Colditz, G.A.; Berkey, C.S.; Mosteller, F.; Brewer, T.F.; Wilson, M.E.; Burdick, E.; Fineberg, H.V. The efficacy of Bacillus calmette-guerin vaccination of newborns and infants in the prevention of tuberculosis: Meta-analyses of the published literature. Pediatrics, 1995, 96(1), 29-35.
[34]
Lagranderie, M.R.; Balazuc, A.M.; Deriaud, E.; Leclerc, C.D.; Gheorghiu, M. Comparison of immune responses of mice immunized with five different Mycobacterium bovis BCG vaccine strains. Infect. Immun., 1996, 64, 1-9.
[35]
Phillips, R.O.; Phanzu, D.M.; Beissner, M.; Badziklou, K.; Luzolo, E.K.; Sarfo, F.S.; Halatoko, W.A.; Amoako, Y.; Frimpong, M.; Kabiru, A.M.; Piten, E.; Maman, I.; Bidjada, B.; Koba, A.; Awoussi, K.S.; Kobara, B.; Nitschke, J.; Wiedemann, F.X.; Kere, A.B.; Adjei, O.; Loscher, T.; Fleischer, B.; Bretzel, G.; Herbinger, K.H. Effectiveness of routine BCG vaccination on buruli ulcer disease: A case-control study in the Democratic Republic of Congo, Ghana and Togo. Plos Neglected Trop. Dis., 2015, 9(1), e3457.
[36]
King, H.C.; Butler, T.K.; James, P.; Oakley, B.B.; Erenso, G.; Aseffa, A.; Knight, R.; Wellington, E.M.; Courtenay, O. Environmental reservoirs of pathogenic mycobacteria across the Ethiopian biogeographical landscape. PLoS One, 2017, 12(3), e0173811.
[37]
World Health Organisation.Assessing the programmatic suitability of vaccine candidates for WHO prequalification; , 2014. World Health Organization
[38]
Houben, R.M.G.J.; Dodd, P.J. The global burden of latent tuberculosis infection: A reestimation using mathematical modelling. PLoS Med., 2016, 13(10), e1002152.
[39]
Harris, R.C.; Sumner, T.; Knight, G.M.; White, R.G. Systematic review of mathematical models exploring the epidemiological impact of future TB vaccines. Hum. Vaccin. Immunother., 2016, 12(11), 2813-2832.
[40]
TB Statistics India - National, treatment outcome, state. TBFACTS.ORG 2016 https://www.tbfacts.org/tb-statistics-india/
[41]
INDIA TB Report. Revised National TB Control Programme. Annual Status Report, 2018.
[42]
The Conversation. India’s ambitious new plan to conquer TB needs cash and commitment., 2017.
[43]
Global Tuberculosis Report 2018, Geneva, World Health Organisation 2018 www.who.int/tb/publications/global_report/en/
[44]
Lopez, E.C.J.; Namugga, O.; Mumbowa, F.; Sebidandi, M.; Mbabazi, O.; Moine, S.; Mboowa, G.; Fox, M.P.; Reilly, N.; Ayakaka, I.; Kim, S.; Okwera, A.; Joloba, M.; Fennelly, K.P. Cough aerosols of Mycobacterium tuberculosis predict new infection. A household contact study. Am. J. Respir. Crit. Care Med., 2013, 187, 1007-1015.
[45]
Alamelu, R. Immunology of tuberculosis. Indian J. Med. Res., 2004, 120, 213-232.
[46]
Andersen, P.; Woodworth, J.S. Tuberculosis vaccines-rethinking the current paradigm. Trends Immunol., 2014, 35(8), 387-395.
[47]
Edwards, D.; Kirkpatrick, C.H. The immunology of mycobacterial diseases. Am. Rev. Respir. Dis., 1986, 134(5), 1062-1071.
[48]
Fleischmann, J.; Golde, D.W.; Weisbart, R.H.; Gasson, J.C. Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils. Blood, 1986, 68, 708-711.
[49]
Ogata, K.; Linzer, B.A.; Zuberi, R.I.; Ganz, T.; Lehrer, R.I.; Catanzaro, A. Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium and Mycobacterium intracellulare. Infect. Immun., 1992, 60, 4720-4725.
[50]
Majeed, M.; Perskvist, N.; Ernst, J.D.; Orselius, K.; Stendahl, O. Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophils. Microb. Pathog., 1998, 24, 309-320.
[51]
Molloy, A.; Meyn, P.A.; Smith, K.D.; Kaplan, G. Recognition and destruction of bacillus Calmette-Guerin-infected human monocytes. J. Exp. Med., 1993, 177(6), 1691-1698.
[52]
Matucci, A.; Maggi, E.; Vultaggio, A. Cellular and humoral immune responses during tuberculosis infection: Useful knowledge in the era of biological agents. J. Rheumatol., 2014, 91, 17-23.
[53]
Saraav, I.; Singh, S.; Sharma, S. Outcome of Mycobacterium tuberculosis and Toll-like receptor interaction: Immune response or immune evasion? Immunol. Cell Biol., 2014, 92, 741-746.
[54]
Schlesinger, L.S. Role of mononuclear phagocytes in M. tuberculosis pathogenesis. J. Investig. Med., 1996, 44(6), 312-323.
[55]
Behar, S.M.; Martin, C.J.; Booty, M.G.; Nishimura, T.; Zhao, X.; Gan, H.X.; Divangahi, M.; Remold, H.G. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol., 2011, 4, 279-287.
[56]
Lambrecht, B.N.; Nety, K.; Kessel, C.H.G.; Hammad, H. Lung dendritic cells and pulmonary defence mechanisms to bacteria. Mucosal immunology of acute bacterial pneumonia; Prince A. (ed). , 2013, pp. 49-66.
[57]
Morris, D.; Gonzalez, B.; Khurasany, M.; Kassissa, C.; Luong, J.; Kasko, S.; Pandya, S.; Chu, M.; Chi, P.T.; Bui, S.; Guerra, C.; Chan, J.; Venketaraman, V. Characterization of dendritic cell and regulatory T cell functions against Mycobacterium tuberculosis infection. BioMed Res. Int., 2013, 2013, 402827.
[58]
Andersen, P.; Kaufmann, S.H.E. Novel vaccination strategies against tuberculosis. Cold Spring Harb. Perspect. Med., 2014, 4, a018523.
[59]
Gopal, R.; Monin, L.; Slight, S.; Uche, U.; Blanchard, E.; Junecko, B.A.F.; Payan, R.R.; Stallings, C.L.; Reinhart, T.A.; Kolls, J.K.; Kaushal, D.; Nagarajan, U.; Moreno, J.R.; Khader, S.A. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog., 2014, 10, e1004099.
[60]
Usman, M.M.; Ismail, S.; Teoh, T.C. Vaccine research and development: Tuberculosis as a global health threat. Cent. Eur. J. Immunol., 2017, 42(2), 196-204.
[61]
Green, A.M.; DiFazio, R.; Flynn, J.L. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J. Immunol., 2013, 190, 270-277.
[62]
Sharma, S.; Kalia, N.P.; Suden, P.; Chauhan, P.S.; Kumar, M.; Ram, A.B.; Khajuria, A.; Bani, S.; Khan, I.A. Protective efficacy of piperine against Mycobacterium tuberculosis. Tuberculosis, 2014, 94(4), 389-396.
[63]
Hart, P.D.A.; Armstrong, J.A.; Brown, C.A.; Draper, P. Ultrastructural study of the behaviour of macrophages toward parasitic mycobacteria. Infect. Immun., 1972, 5, 803-807.
[64]
Goren, M.B.; Hart, P.D.; Young, M.R.; Armstrong, J.A. Prevention of phagosome lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 1976, 73, 2510-2514.
[65]
Goren, M.B.; Brokl, O.; Roller, P.; Fales, H.M.; Das, B.C. Sulfatides of Mycobacterium tuberculosis: The structure of the principal sulfatide (SL-I). Biochemistry, 1976, 15, 2728-2735.
[66]
Gordon, A.H.; Hart, P.D.; Young, M.R. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature, 1980, 286, 79-81.
[67]
Newport, M.; Levin, M.; Blackwell, J.; Shaw, M.A.; Williamson, R.; Huxley, C. Evidence for exclusion of a mutation in NRAMP as the cause of familial disseminated atypical mycobacterial infection in a Maltese kindred. J. Med. Genet., 1995, 32(11), 904-906.
[68]
Monin, L.; Khader, S.A. Chemokines in tuberculosis: The good, the bad and the ugly. Semin. Immunol., 2014, 26, 552558.
[69]
Kindt, T.J.; Goldsby, R.A.; Osborne, B.A.; Kuby, J. Kuby Immunology, 6th ed; New York: W.H. Freeman, 2007, pp. 458-460.
[70]
Leung, C.C.; Yam, W.C.; Yew, W.W.; Ho, P.L.; Tam, C.M.; Law, W.S.; Tsui, P.W. T-Spot. TB outperforms tuberculin skin test in predicting tuberculosis disease. Am. J. Respir. Crit. Care Med., 2010, 182(6), 834-840.
[71]
Walsh, K.F.; Souroutzidis, A.; Vilbrun, S.C.; Peeples, M.; Joissaint, G.; Delva, S.; Pape, J.W. Potentially high number of ineffective drugs with the standard shorter course regimen for multidrug-resistant tuberculosis treatment in Haiti. Am. J. Trop. Med. Hyg., 2019, 100(2), 392-398.
[72]
SATVI Annual report. South African Tuberculosis Vaccine Initiative. University of Cape Town 2017.
[73]
Grotz, E.; Tateosian, N.; Amiano, N.; Cagel, M.; Bernabeu, E.; Chiappetta, A.D.; Moretton, A.M. Nanotechnology in tuberculosis: State of the art and the challenges ahead. Pharm. Res., 2018, 35, 213.
[74]
Wang, C.C.; Zhu, B.; Fan, X.; Gicquel, B.; Zhang, Y. Systems approach to tuberculosis vaccine development. Respirology, 2013, 18(3), 412-420.
[75]
Beste, D.J.V.; Hooper, T.; Stewart, G.; Bonde, B.; Rossa, C.A.; Bushell, M.E.; Wheeler, P.; Klamt, S.; Kierzek, A.M.; McFadden, J. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol., 2007, 8, R89.
[76]
Jamshidi, N.; Palsson, B.O. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst. Biol., 2007, 1, 26-46.
[77]
Raman, K.; Bhat, A.G.; Chandra, N. A systems perspective of host–pathogen interactions: Predicting disease outcome in tuberculosis. Mol. Biosyst., 2010, 6(3), 516-530.
[78]
Day, J.; Friedman, A.; Schlesinger, L.S. Modeling the immune rheostat of macrophages in the lung in response to infection. Proc. Natl. Acad. Sci. USA, 2009, 106, 11246-11251.
[79]
Sichani, M.F.; Schaller, M.A.; Kirschner, D.E.; Kunkel, S.L.; Linderman, J.J. Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma. PLOS Comput. Biol., 2010, 6, e1000778.
[80]
Marino, S.; Linderman, J.J.; Kirschner, D.E. A multifaceted approach to modeling the immune response in tuberculosis. Wiley Interdiscip. Rev. Syst. Biol. Med., 2011, 3, 479-489.
[81]
Brodin, P.; Majlessi, L.; Marsollier, L.; de Jonge, M.I.; Bottai, D.; Demangel, C.; Hinds, J.; Neyrolles, O.; Butcher, P.D.; Leclerc, C.; Cole, S.T.; Brosch, R. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect. Immun., 2006, 74(1), 88-98.
[82]
Simeone, R.; Bottai, D.; Brosch, R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr. Opin. Microbiol., 2009, 12(1), 4-10.
[83]
Shabestari, M.S.; Vesal, S.; Bonyadi, M.J.; de Villatay, J.P.; Fischer, A.; Rezaei, N. Novel RAG2 mutation in a patient with TB-severe combined immunodeficiency and disseminated BCG disease. J. Investig. Allergol. Clin. Immunol., 2009, 19(6), 494-496.
[84]
Hoft, D.F.; Blazevic, A.; Abate, G.; Hanekom, W.A.; Kaplan, G.; Soler, J.H.; Weichold, F.; Geiter, L.; Sadoff, J.C.; Horwitz, M.A. A new recombinant bacille Calmette-Guérin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J. Infect. Dis., 2008, 198(10), 1491-1501.
[85]
Olsen, A.W.; Williams, A.; Okkels, L.M.; Hatch, G.; Andersen, P. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect. Immun., 2004, 72(10), 6148-6150.
[86]
Cuevas, R.Z. Update on the development of TB vaccines. Curr. Pharm. Biotechnol., 2013, 14, 940-946.
[87]
Lakshmi, P.S.; Verma, D.; Yang, X.; Lloyd, B.; Daniell, H. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS One, 2013, 8(1), e54708.
[88]
Permyakova, N.V.; Zagorskaya, A.A.; Belavin, P.A.; Uvarova, E.A.; Nosareva, O.V.; Nesterov, A.E.; Deineko, E.V. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice. BioMed Res. Int., 2015.
[89]
Soria-Guerra, R.E.; Moreno-Fierros, L.; Rosales-Mendoza, S. Two decades of plant-based candidate vaccines: A review of the chimeric protein approaches. Plant Cell Rep., 2011, 30(8), 1367-1382.
[90]
McShane, H. Tuberculosis vaccines: Beyond bacilli Calmette-Guerin. Philos. Trans. R. Soc. B.: Biol. Sci., 2011, 366, 2782-2789.
[91]
Nieuwenhuizen, N.E.; Kulkarni, P.S.; Shaligram, U.; Cotton, M.F.; Rentsch, C.A.; Eisele, B.; Kaufmann, S.H. The recombinant bacille Calmette-Guérin vaccine VPM1002: Ready for clinical efficacy testing. Front. Immunol., 2017, 8, 1147.
[92]
Gupta, M.; Kaushal, K. An update on newer vaccines in development phase for malaria, tuberculosis, and human immunodeficiency virus/acquired immune deficiency syndrome. Int. J. Non-commun. Dis., 2018, 3(5), 20.
[93]
Yao, J.; Weng, Y.; Dickey, A.; Wang, K.Y. Plants as factories for human pharmaceuticals: Applications and challenges. Int. J. Mol. Sci., 2015, 16(12), 28549-28565.
[94]
Tschofen, M.; Knopp, D.; Hood, E.; Stoger, E. Plant molecular farming: Much more than medicines. Annu. Rev. Anal. Chem., 2016, 9, 271-294.
[95]
Kim, S.H.; Jang, Y.S. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin. Exp. Vaccine Res., 2017, 6, 15-21.
[96]
Stylianou, E.; Diogo, G.R.; Pepponi, I.; Dolleweerd, C.V.; Arias, M.A.; Locht, C.; Rider, C.C.; Sibley, L.; Cutting, S.M.; Loxley, A.; Julian, K.C. Ma, Reljic, R. Mucosal delivery of antigen-coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice. Eur. J. Immunol., 2014, 44, 440-449.
[97]
Reljic, R.; Sibley, L.; Huang, J.M.; Pepponi, I.; Hoppe, A.; Hong, H.A.; Cutting, S.M. Mucosal vaccination against tuberculosis using inert bioparticles. Infect. Immun., 2013, 81(11), 4071-4080.
[98]
Thakur, A.; Ingvarsson, P.T.; Schmidt, S.T.; Rose, F.; Andersen, P.; Christensen, D.; Foged, C. Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder. Vaccine, 2018, 36(23), 3331-3339.
[99]
Poland, G.A.; Kennedy, R.B.; McKinney, B.A.; Ovsyannikova, I.G.; Lambert, N.D.; Jacobson, R.M.; Oberg, A.L. Vaccinomics, adversomics immune response network theory: Individualized vaccinology in the 21st century. Semin. Immunol., 2013, 25(2), 89-103.
[100]
Day, J.; Schlesinger, L.S.; Friedman, A. Tuberculosis research: Going forward with a powerful translational systems biology approach. Tuberculosis, 2010, 90, 7-8.
[101]
Querec, T.D.; Akondy, R.S.; Lee, E.K.; Cao, W.; Nakaya, H.I.; Teuwen, D.; Pirani, A.; Gernert, K.; Deng, J.; Marzolf, B.; Kennedy, K.; Wu, H.; Bennouna, S.; Oluoch, H.; Miller, J.; Vencio, R.Z.; Mulligan, M.; Aderem, A.; Ahmed, R.; Pulendran, B. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol., 2008, 10, 116-125.
[102]
Locht, C.; Hougardy, J.M.; Rouanet, C.; Place, S.; Mascart, F. Heparin-binding hemagglutinin, from an extrapulmonary dissemination factor to a powerful diagnostic and protective antigen against tuberculosis. Tuberculosis, 2006, 86, 303-309.
[103]
Wang, X.; Xie, G.; Liao, J.; Yin, D.; Wenyan, G.; Pan, M.; Li, J.; Li, Y. Design and evaluation of a multiepitope assembly peptide (MEAP) against herpes simplex virus type 2 infection in BALB/c mice. Virol. J., 2011, 8, 232.
[104]
Yedidia, T.B.; Arnon, R. Epitope-based vaccine against influenza. Expert Rev. Vaccines, 2007, 6(6), 939-948.
[105]
Hossain, M.; Azad, A.K.; Chowdhury, P.A.; Wakayama, M. Computational identification and characterization of a promiscuous T-cell epitope on the extracellular protein 85B of Mycobacterium spp. for peptide-based subunit vaccine design. BioMed Res. Int., 2017, 4826030
[http://dx.doi.org/10.1155/2017/4826030]
[106]
Gothi, G.D.; Narayan, R.; Nair, S.S.; Chakraborty, A.K.; Srikantaramu, N. Estimation of prevalence of bacillary tuberculosis on the basis of chest X-ray and/or symptomatic screening. Indian J. Med. Res., 1976, 64(8), 1150-1159.
[107]
Steingart, K.R.; Ramsay, A.; Pai, M. Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev. Anti Infect. Ther., 2007, 5(3), 327-331.
[108]
Steingart, K.R.; Flores, L.L.; Dendukuri, N.; Schiller, I.; Laal, S.; Ramsay, A.; Pai, M. Commercial serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: An updated systematic review and meta-analysis. PLoS Med., 2011, 8(8), e1001062.
[109]
Sester, M.; Sotgiu, G.; Lange, C.; Giehl, C.; Girardi, E.; Migliori, G.B.; Lipman, M. Interferon-γ release assays for the diagnosis of active tuberculosis: A systematic review and meta-analysis. Eur. Respir. J., 2011, 37(1), 100-111.
[110]
Zeka, A.N.; Tasbakan, S.; Cavusoglu, C. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J. Clin. Microbiol., 2011, 49(12), 4138-4141.
[111]
Nikam, C.; Kazi, M.; Nair, C.; Jaggannath, M.; Manoj, M.; Vinaya, R.; Rodrigues, C. Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. Int. J. Mycobacteriol., 2014, 3(3), 205-210.
[112]
Tuberculosis Vaccine Initiative (Tbvi) PIPEline of vaccine. The current TB vaccine pipeline (last update October 2018) https://www.tbvi.eu/what-we-do/pipeline-of-vaccines/
[113]
Wingfield, C.; Jefferys, R. The Tuberculosis vaccine pipeline In: Pipeline report HIV, hepatitis C virus and tuberculosis drugs, diagnostics, vaccines, preventive technologies, 2nd ed.; HIV i-Base/ Treatment action group: London, 2011, pp. 155-162.
[114]
Frick, M. The tuberculosis vaccines pipeline: A new path to the same destination? In: Pipeline report HIV, hepatitis C virus and tuberculosis drugs, diagnostics, vaccines, preventive technologies towards a cure and immune-based and gene therapies in development; Anderea B, Ed.; HIV i-Base/Treatment action group: London, 2015, pp. 163-178.
[115]
Ocampo, M.C. Vaccines-recent advances and clinical trials. In:Tuberculosis-expanding knowledge; Wellman, R., Ed.; InTech, 2015, pp. 103-121.
[http://dx.doi.org/10.5772/58737]
[116]
Pang, Y.; Zhao, A.; Cohen, C.; Kang, W.; Lu, J.; Wang, G.; Zhao, Y.; Zheng, S. Current status of new tuberculosis vaccine in children. Hum. Vaccin. Immunother., 2016, 12(4), 960-970.
[117]
Floss, D.M.; Mockey, M.; Zanello, G.; Brosson, D.; Diogon, M.; Frutos, R.; Bruel, T.; Rodrigue, V.; Garzon, E.; Chevaleyre, C.; Berri, M. Salmon; Conrad, U.; Dedieu, L. Expression and immunogenicity of the mycobacterial Ag85B/ESAT-6 antigens produced in transgenic plants by elastin-like peptide fusion strategy. J. Biomed. Biotechnol., 2010, 274346
[http://dx.doi.org/10.1155/2010/274346]
[118]
Rigano, M.M.; Dreitz, S.; Kipnis, A.P.; Izzo, A.A.; Walmsley, A.M. Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine, 2006, 24(5), 691-695.
[119]
Peterson, A.A.; Yu, V.M.; Matvieieva, N.A.; Kuchuk, M.V. Accumulation of recombinant fusion protein - secretory analog of ag85b and esat6 Mycobacterium tuberculosis proteins - in transgenic Lemna minor L. plants. Biotechnol. Acta, 2015, 8(5)
[http://dx.doi.org/10.15407/biotech8.05.039]
[120]
Matvieieva, N.A.; Vasylenko, M.Y.; Shahovsky, A.M.; Bannykova, M.O.; Kvasko, O.Y.; Kuchu, N.V. Effective agrobacterium mediated transformation of chicory (Cichorium intybus L.) with Mycobacterium tuberculosis antigene ESAT6. Tsitol. Genet., 2011, 45, 11-17.
[121]
Uvarova, E.A.; Belavin, P.A.; Permyakova, N.V.; Zagorskaya, A.A.; Nosareva, O.V.; Kakimzhanova, A.A.; Deineko, E.V. Oral immunogenicity of plant-made Mycobacterium tuberculosis ESAT6 and CFP10. BioMed Res. Int., 2013, 2013, 316304.
[122]
Zhang, Y.; Chen, S.; Li, J.; Liu, Y.; Hu, Y.; Cai, H. Oral immunogenicity of potato-derived antigens to Mycobacterium tuberculosis in mice. Acta Biochim. Biophys. Sin., 2012, 44, 823-830.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy