Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Editorial

Multiple Perspectives in Anti-cancer Drug Discovery: From old Targets and Natural Products to Innovative Computational Approaches

Author(s): Alejandro Speck-Planche

Volume 19, Issue 2, 2019

Page: [146 - 147] Pages: 2

DOI: 10.2174/187152061902190418105054

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65, 87-108.
[2]
McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr., 2016, 7, 418-419.
[3]
Nguyen, D.; Liao, W.; Zeng, S.X.; Lu, H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol. Ther., 2017, 178, 92-108.
[4]
Worachartcheewan, A.; Mandi, P.; Prachayasittikul, V.; Toropova, A.P.; Toropov, A.A.; Nantasenamat, C. Large-scale QSAR study of aromatase inhibitors using SMILES-based descriptors. Chemom. Intell. Lab. Syst., 2014, 138, 120-126.
[5]
Villadsen, N.L.; Jacobsen, K.M.; Keiding, U.B.; Weibel, E.T.; Christiansen, B.; Vosegaard, T.; Bjerring, M.; Jensen, F.; Johannsen, M.; Torring, T.; Poulsen, T.B. Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products. Nat. Chem., 2017, 9, 264-272.
[6]
Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One, 2017, 12, e0187925.
[7]
Bajaj, S.O.; Shi, P.; Beuning, P.J.; O'Doherty, G.A. Structure activity relationship study of Mezzettiasides natural products and their four new disaccharide analogues for anticancer/antibacterial activity. MedChemComm, 2014, 5, 1138-1142.
[8]
Sun, H.; Wang, Z.; Yakisich, J.S. Natural products targeting autophagy via the PI3K/Akt/mTOR pathway as anticancer agents. Anticancer. Agents Med. Chem., 2013, 13, 1048-1056.
[9]
Romero-Duran, F.J.; Alonso, N.; Yanez, M.; Caamano, O.; Garcia-Mera, X.; Gonzalez-Diaz, H. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives. Neuropharmacology, 2016, 103, 270-278.
[10]
Tenorio-Borroto, E.; Penuelas-Rivas, C.G.; Vasquez-Chagoyan, J.C.; Castanedo, N.; Prado-Prado, F.J.; Garcia-Mera, X.; Gonzalez-Diaz, H. Model for high-throughput screening of drug immunotoxicity - Study of the anti-microbial G1 over peritoneal macrophages using flow cytometry. Eur. J. Med. Chem., 2014, 72, 206-220.
[11]
Speck-Planche, A.; Kleandrova, V.V.; Ruso, J.M.; Cordeiro, M.N.D.S. First multitarget chemo-bioinformatic model to enable the discovery of antibacterial peptides against multiple Gram-positive pathogens. J. Chem. Inf. Model., 2016, 56, 588-598.
[12]
Kleandrova, V.V.; Ruso, J.M.; Speck-Planche, A.; Dias Soeiro Cordeiro, M.N. Enabling the discovery and virtual screening of potent and safe antimicrobial peptides. Simultaneous prediction of antibacterial activity and cytotoxicity. ACS Comb. Sci., 2016, 18, 490-498.
[13]
Speck-Planche, A.; Cordeiro, M.N.D.S. Simultaneous virtual prediction of anti-Escherichia coli activities and ADMET profiles: A chemoinformatic complementary approach for high-throughput screening. ACS Comb. Sci., 2014, 16, 78-84.
[14]
Martinez-Arzate, S.G.; Tenorio-Borroto, E.; Barbabosa Pliego, A.; Diaz-Albiter, H.M.; Vazquez-Chagoyan, J.C.; Gonzalez-Diaz, H. PTML model for proteome mining of B-cell epitopes and theoretical-experimental study of Bm86 protein sequences from colima, Mexico. J. Proteome Res., 2017, 16, 4093-4103.
[15]
Casanola-Martin, G.M.; Le-Thi-Thu, H.; Perez-Gimenez, F.; Marrero-Ponce, Y.; Merino-Sanjuan, M.; Abad, C.; Gonzalez-Diaz, H. Multi-output model with Box-Jenkins operators of linear indices to predict multi-target inhibitors of ubiquitin-proteasome pathway. Mol. Divers., 2015, 19, 347-356.
[16]
Speck-Planche, A.; Cordeiro, M.N.D.S. Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins. Mol. Divers., 2017, 21, 511-523.
[17]
Gonzalez-Diaz, H.; Herrera-Ibata, D.M.; Duardo-Sanchez, A.; Munteanu, C.R.; Orbegozo-Medina, R.A.; Pazos, A. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks. J. Chem. Inf. Model., 2014, 54, 744-755.
[18]
Speck-Planche, A.; Dias Soeiro Cordeiro, M.N. Speeding up early drug discovery in antiviral research: A fragment-based in silico approach for the design of virtual anti-hepatitis C leads. ACS Comb. Sci., 2017, 19, 501-512.
[19]
Speck-Planche, A.; Cordeiro, M.N.D.S. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles. Med. Chem. Res., 2017, 26, 2345-2356.
[20]
Kleandrova, V.V.; Speck Planche, A. Multitasking model for computer-aided design and virtual screening of compounds with high anti-HIV activity and desirable ADMET properties. In In: Multi-Scale Approaches in Drug Discovery: From Empirical Knowledge to In Silico Experiments and Back; 1st ed.; Speck-Planche, A., Ed. Elsevier: Oxford, UK. , 2017; p. pp 55-81.

© 2025 Bentham Science Publishers | Privacy Policy