[1]
Bhatti, H.S.; Seshadri, S. Chromophoric potential of the 4(3H)‐quinazolinones. Color. Technol., 2004, 120(3), 101-107.
[2]
Blunt, J.W.; Cop, B.R.; Munro, M.H.G.; Northcot, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2005, 22, 15-61.
[3]
Marella, A.; Tanwar, O.P.; Ali, M.R.; Srivastava, S.; Akhteer, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21, 1-12.
[4]
Khokra, S.L. Jyoti; Chetan; Kaushik, P.; Alam, M.M.; Zaman, M.S.; Ahmad, A.; Khan, S.A.; Husain, A. Quinoline based furanones and their nitrogen analogues: Docking, synthesis and biological evaluation. Saudi Pharm. J., 2016, 24(6), 705-717.
[5]
Savegnago, L.; Vieria, A.I.; Seus, N.; Goldani, B.S.; Castro, M.R.; Lenardao, E.J.; Alves, D. Synthesis and antioxidant properties of novel quinoline–chalcogenium compounds. Tetrahedron Lett., 2013, 54, 40-44.
[6]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. Review on anticancer potential of bioactive heterocycle quinolone. Eur. J. Med. Chem., 2015, 97, 871-910.
[7]
Franck, X.; Fournet, A.; Prina, E.; Mahieux, R.; Hoquemiller, R.; Figadere, B. Biological evaluation of substituted quinolones. Bioorg. Med. Chem. Lett., 2004, 14, 3635-3638.
[8]
Founet, A.; Mahieux, R.; Fakhfakh, M.A.; Franck, X.; Hocquemiller, R.; Figadere, B. Substituted quinolines induce inhibition of proliferation of HTLV-1 infected cells. Bioorg. Med. Chem. Lett., 2003, 13, 891-894.
[9]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[10]
Mahajan, A.; Kremer, L.; Louw, S.; Guéradel, Y.; Chibale, K.; Biot, C. Synthesis and in vitro antitubercular activity of ferrocene-based hydrazones. Bioorg. Med. Chem. Lett., 2011, 21, 2866-2868.
[11]
Eswaran, S.; Adhikari, A.V.; Chowdhury, I.H.; Pal, N.K.; Thomas, K.D. New quinolone derivatives: Synthesis and investigation of antibacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45(8), 3374-3383.
[12]
Wise, R.; Andrews, J.M.; Edwards, L.J. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob. Agents Chemother., 1983, 23(4), 559-564.
[13]
Eswaran, S.; Adhikari, A.V.; Pal, N.K.; Chowdhury, I.H. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(3), 1040-1044.
[14]
Upadhayaya, R.S.; Vandavasi, J.K.; Vasireddy, N.R.; Sharma, V.; Dixit, S.S.; Chattopadhyaya, J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(7), 2830-2841.
[15]
Sureshkumar, B.; Mary, Y.S.; Panicker, C.Y.; Suma, S.; Armakovic´, S.; Armakovic´, S.J.; Alsenoy, C.V.; Narayan, B. Quinoline derivatives as possible lead compounds for anti-malarial drugs: Spectroscopic, DFT and MD study. Arab. J. Chem., 2017. (In Press)
[16]
Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem., 2006, 14(10), 3592-3598.
[17]
Ryu, C.K.; Lee, J.Y.; Jeong, S.H.; Nho, J.H. Synthesis and antifungal activity of 1H-pyrrolo[3,2-g]quinoline-4,9-diones and 4,9-dioxo-4,9-dihydro-1H-benzo[f]indoles. Bioorg. Med. Chem. Lett., 2009, 19(1), 146-148.
[18]
Hoogkamp-Korstanje, J.A. Comparative in vitro activity of five quinoline derivatives and five other antimicrobial agents used in oral therapy. Eur. J. Clin. Microbiol., 1984, 3(4), 333-338.
[19]
Thumar, N.J.; Patel, M.P. Synthesis and antimicrobial activity of some new N-Substituted quinoline derivatives of 1H-Pyrazole. Arch. Pharm. Chem. Life Sci, 2011, 344(2), 91-101.
[20]
Abdel-Wadood, F.K.; Abdel-Monem, M.I.; Fahmy, A.M.; Ahmed, A.G. Synthesis, reactions, and biological activities of some new thieno[3,2-c]quinoline and pyrrolo[3,2-c]quinoline derivatives. Arch. Pharm. Chem. Life Sci, 2014, 347(2), 142-152.
[21]
El-sayed, O.A.; Al-Bassam, B.A.; Hussien, M.E. Synthesis of some novel quinoline-3-carboxylic acids and pyrimidoquinoline derivatives as potential antimicrobial agents. Arch. Pharm. Pharm. Med. Chem, 2002, 335(9), 403-410.
[22]
Wei, C.; Li, F.; Zhao, L.; Quan, Z. Synthesis of 2-substituted-7-heptyloxy-4,5-dihydro-[1,2,4]-triazolo[4,3-a]quinolin-1(2H)-ones with anticonvulsant activity. Arch. Pharm. Chem. Life Sci, 2007, 340(9), 491-495.
[23]
Xiao, Z.; Lei, F.; Chen, X.; Wang, X.; Cao, L.; Ye, K.; Zhu, W.; Xu, S. Design, synthesis, and antitumor evaluation of quinolone-imidazole derivatives. Arch. Pharm. Chem. Life Sci, 2018, 351(6)e1700407
[24]
Rashad, A.E.; El-Sayed, W.A.; Mohamed, A.M.; Ali, M.M. Synthesis of new quinoline derivatives as inhibitors of human tumor cells growth. Arch. Pharm. Chem. Life Sci, 2010, 343(8), 440-448.
[25]
Miri, R.; Motamedi, R.; Rezaei, M.R.; Firuzi, O.; Javidnia, A.; Shafiee, A. Design, synthesis and evaluation of cytotoxicity of novel chromeno[4,3-b]quinoline derivatives. Arch. Pharm. Chem. Life Sci, 2011, 344(2), 111-118.
[26]
Warshakoon, N.C.; Sheville, J.; Bhatt, R.T.; Ji, W.; Mendez-Andino, J.L.; Meyers, K.M.; Kim, N.; Wos, J.A.; Mitchell, C.; Paris, J.L.; Piney, B.B.; Reizes, O.; Hu, X.E. Design and synthesis of substituted quinolines as novel and selective melanin concentrating hormone antagonists as anti-obesity agents. Bioorg. Med. Chem. Lett., 2006, 16(19), 5207-5211.
[27]
Sun, X.; Wei, C.; Chai, K.; Piao, H.; Quan, Z. Synthesis and anti-inflammatory activity evaluation of novel 7-alkoxy-1-amino-4,5-dihydro[1,2,4]triazole[4,3 a]quinolones. Arch. Pharm. Chem. Life Sci, 2008, 341(5), 288-293.
[28]
Chen, S.; Chen, R.; He, M.; Pang, R.; Tan, Z.; Yang, M. Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat-TAR interaction inhibitors. Bioorg. Med. Chem., 2009, 17(5), 1948-1956.
[29]
Li, G.X.; Liu, Z.Q.; Luo, X.Y. Dichloro-4-quinolinol-3-carboxylic acid: synthesis and antioxidant abilities to scavenge radicals and to protect methyl linoleate and DNA. Eur. J. Med. Chem., 2010, 45(5), 1821-1827.
[30]
Menteşe, E.; Akyüz, G.; Yılmaz, F.; Baltaş, N.; Emirik, M. Synthesis of some novel quinazolin-4(3H)-one hybrid molecules as potent urease inhibitors. Arch. Pharm. Chem. Life Sci, 2018, 351(2)e1800182
[31]
Abe, H.; Kawada, M.; Hiroyuki, I.; Ohba, S.; Nomato, A.; Watanabe, T.; Shibasaki, M. Synthesis of intervenolin, an antitumor natural quinolone with unusual substituents. Org. Lett., 2013, 15(9), 2124-2127.
[32]
Chen, P.C.; Lu, P.H.; Pan, S.L.; Teng, C.M.; Kuo, S.C.; Lin, T.P.; Ho, P.F.; Huang, P.C.; Guh, J.H. Quinolone analogue inhibits tubulin polymerization and induces apoptosis via Cdk1-involved signaling pathways. Biochem. Pharmacol., 2007, 74(1), 10-19.
[33]
Joseph, B.; Darro, F.; Behard, A.; Lesur, B.; Collignon, F.; Decaestecker, C.; Frydman, A.; Guill-Aumet, G.; Kiss, R. 3-Aryl-2-quinolone derivatives: Synthesis and characterization of in vitro and in vivo antitumor effects with emphasis on a new therapeutical target connected with cell migration. J. Med. Chem., 2002, 45(12), 2543-2555.
[34]
Andricopulo, A.D.; Salum, L.B.; Abrham, D.J. Structure-based drug design strategies in medicinal hemistry. Curr. Top. Med. Chem., 2009, 9, 771-790.
[35]
Roviello, G.N. Novel insights into nucleoamino acids: Biomolecular recognition and aggregation studies of a thymine-conjugated L-phenyl alanine. Amino Acids, 2018, 50(7), 933-941.
[36]
Musumeci, D.; Roviello, V.; Roviello, G.N. DNA- and RNA-binding ability of oligoDapT, a nucleobase-decorated peptide, for biomedical applications. Int. J. Nanomedicine, 2018, 13, 2613.
[37]
Platella, C.; Guida, S.; Bonmassar, L.; Aquino, A.; Bonmassar, E.; Ravagnan, G.; Montesarchio, D.; Roviello, G.N.; Musumeci, D.; Fuggetta, M.P. Antitumour activity of resveratrol on human melanoma cells: A possible mechanism related to its interaction with malignant cell telomerase. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(11 Pt A), 2843-2851.
[38]
Roviello, G.N.; Iannitti, R.; Palumbo, R.; Simonyan, H.; Vicidomini, C.; Roviello, V. Lac-L-TTA, a novel lactose-based amino acid-sugar conjugate for anti-metastatic applications. Amino Acids, 2017, 49(8), 1347-1353.
[39]
Roviello, G.N.; Vicidomini, C.; Costanzo, V.; Roviello, V. Nucleic acid binding and other biomedical properties of artificial oligolysines. Int. J. Nanomedicine, 2016, 11, 5897-5904.
[40]
Roviello, G.N.; Iannitti, R.; Roviello, V.; Palumbo, R.; Simonyan, H.; Vicidomini, C. Synthesis and biological evaluation of a novel Amadori compound. Amino Acids, 2017, 49(2), 327-335.
[41]
Giovanni, N.R.; Giorgia, O.; Antonella, D.N.; Nicola, B.; Gennaro, P. Synthesis, self-assembly-behavior and biomolecular recognition properties of thyminyl dipeptides. Arab. J. Chem., (2018). In Press
[42]
Bansal, Y.; Silakari, O. Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42.
[43]
Geldenhuys, W.J.; Youdim, M.B.; Carroll, R.T.; Van der Schyf, C.J. The emergencey of designedmultiple ligands for neurodegenerative disorders. Prog. Neurobiol., 2011, 94(4), 347-359.
[44]
Aly, H.M.; Saleh, N.M.; El Hady, H.A. Design and synthesis of some new thiophene, thienopyrimidine and thienothiadiazine derivatives of antipyrine as potential antimicrobial agents. Eur. J. Med. Chem., 2011, 46(9), 4566-4572.
[45]
Hussein, E.; Al-Shareef, H.F.; Aboellil, A.H.; Elhady, H.A. Synthesis of some novel 6′-(4-chlorophenyl)-3,4′-bipyridine-3′-carbonitriles: Assessment of their antimicrobial and cytotoxic activity. Z. Naturforsch, 2015, 70(11), 783.
[46]
Alshareef, H.F.; Mohamed, H.A.; Salaheldin, A. Synthesis and biological evaluation of new tacrine analogues under microwave irradiation. Chem. Pharm. Bull., 2017, 65(8), 732-738.
[47]
Elhady, H.A.; El-Sayed, R.; Al-Nathali, H.S. Design, synthesis and evaluation of anticancer activity of novel 2-thioxoimidazolidin-4-one derivatives bearing pyrazole, triazole and benzoxazole moieties. Chem. Cent. J., 2018, 12, 51.
[48]
Pardahan, A.; Vishwakarma, S.K. Synthesis, Characterisation and antimicrobial activity of Schiff base of 7-Hydroxy-3-Methyl-2-Quinolone. Inter. Theor. Appl. Sci, 2018, 10(1), 40-43.
[49]
Al-Bayati, R.I.H.; Mahdi, F.R. Synthesis of novel 2-quinolone derivatives. Afr. J. Pure Appl. Chem., 2010, 4(10), 228-232.
[50]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[51]
Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-grafted-poly(vinyl pyridine) as basic catalyst. Heterocycles, 2015, 91(6), 1227.
[52]
Bolaños, G.J.M.; Balao da Silva, C.M.; Muñoz, M.P.; Rodríguez, M.A.; Dávila, P.M.; Rodríguez-Martínez, H.; Aparicio, I.M.; Tapia, J.A.; Ortega Ferrusola, C.; Peña, F.J. Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction, 2014, 148(2), 221-235.
[53]
Zaki, I.; Abdelhameid, M.K.; El-Deen, I.M.; Abdel Hady, A.A.; Ashmawy, A.M.; Mohamed, K.O. Design, synthesis and screening of 1, 2, 4-triazinone derivatives as potential antitumor agents with apoptosis inducing activity on MCF-7 breast cancer cell line. Eur. J. Med. Chem., 2018, 156, 563-579.
[54]
Mohamed, K.O.; Zaki, I.; El-Deen, I.M.; Abdel-Hameid, M.K. A new class of diamide scaffold: Design, synthesis and biological evaluation as potent antimitotic agents, tubulin polymerization inhibition and apoptosis inducing activity studies. Bioorg. Chem., 2019, 84, 399-409.