Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Research Article

Synthesis, Docking Studies into CDK-2 and Anticancer Activity of New Derivatives Based Pyrimidine Scaffold and Their Derived Glycosides

Author(s): Adel A.H. Abdel Rahman, Ibrahim F. Nassar*, Amira K.F. Shaban, Dina S. EL-Kady, Hanem M. Awad and Wael A. El Sayed*

Volume 19, Issue 13, 2019

Page: [1093 - 1110] Pages: 18

DOI: 10.2174/1389557519666190312165717

Price: $65

Abstract

Background & Objective: New diaryl-substituted pyrimidinedione compounds, their thioxo derivatives as well as their bicyclic thiazole compounds were synthesized and characterized.

Methods: The glycosylamino derivatives of the synthesized disubstituted derivatives of the pyrimidine scaffold were also prepared via reaction of the N3-amino derivatives with a number of monosaccharides followed by acetylation.

Results: The anticancer activity of the synthesized compounds was studied against human liver cancer (HepG2) and RPE-1cell lines. Compounds 2a, 2b, 3a and 12 showed potent activities with IC50 results comparable to that of doxorubicin.

Conclusion: Docking investigations into Cyclin-dependent kinase 2 (CDK-2) enzyme, a potential target for cancer medication, were also reported showing the possible binding interaction into the enzyme active site to support their activity behavior.

Keywords: Pyrimidine, thiopyrimidine, thiazolopyrimidine, glycosides, anticancer, HepG2, Docking, CDK2.

« Previous
Graphical Abstract

[1]
Morgan, D.O. The cell cycle: Principles of control, 1st ed; , 2007. New Science Press: London.
[2]
Lee, M.G.; Nurse, P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature, 1987, 327, 31-35.
[3]
Peyressatre, M.; Prével, C.; Pellerano, M.; Morris, M.C. Targeting cyclin-dependent kinases in human cancers: From small molecules to peptide inhibitors. Cancers, 2015, 7, 179-237.
[4]
Rossi, A.G.; Sawatzky, D.A.; Walker, A.; Ward, C.; Sheldrake, T.A.; Riley, N.A.; Caldicott, A.; Martinez-Losa, M.; Walker, T.R.; Duffin, R.; Gray, M.; Crescenzi, E.; Martin, M.C.; Brady, H.J.; Savill, J.S.; Dransfield, I.; Haslett, C. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat. Med., 2006, 12, 1056-1064.
[5]
Senderowicz, A.M. Flavopiridol the first cyclin-dependent kinase inhibitor in human clinical trials. Invest. New Drugs, 1999, 17, 313-320.
[6]
Abdel Mohsen, H.T.; Ragab, F.A.F.; Ramla, M.M.; El Diwani, H.I. Novel benzimidazole-pyrimidine conjugates as potent antitumor agents. Eur. J. Med. Chem., 2010, 45, 2336-2344.
[7]
Yoon, J.S.; Jarhad, D.B.; Kim, G.L.; Zhao, X.; Yu, J.; Kim, H-R.; Lee, J.Y.; Mulamoottil, V.A.; Chandra, G.; Byun, W.S.; Lee, S.K.; Kim, Y-C.; Jeong, L.S. Design, synthesis and anticancer activity of fluorocyclopentenyl-purines and - pyrimidines. Eur. J. Med. Chem., 2018, 155, 406-417.
[8]
Ramiz, M.M.M.; El-Sayed, W.A.; Hagag, E.; Abdel-Rahman, A.A-H. Synthesis and antiviral activity of new substituted pyrimidine Glycosides. J. Heterocycl. Chem., 2011, 48, 1028-1038.
[9]
Pertusati, F.; Serafini, S.; Albadry, N.; Snoeck, R.; Andrei, G. Phosphonoamidate pro drugs of C5-substituted pyrimidine acyclic nucleosides for antiviral therapy. Antiviral Res., 2017, 143, 262-268.
[10]
Bai, S.; Liu, S.; Zhu, Y.; Wu, Q. Asymmetric synthesis and antiviral activity of novel chiral amino-pyrimidine derivatives. Tetrahedron Lett., 2018, 59, 3179-3183.
[11]
Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.; Ferrara, M.; Fiore, F.; Gardelli, C.; Paz, O.G.; Hazuda, D.J.; Jones, P.; Kinzel, O.; Laufer, R.; Monteagudo, E.; Muraglia, E.; Nizi, E. Orvieto, F.; Pace, P.; Pescatore, G.; Scarpelli, R.; Stillmock, K.; Witmer, M.V.; Rowley, M. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. Med. Chem., 2008, 51, 5843-5855.
[12]
Deshmukh, M.B.; Salunkhe, S. M.; Patil, D. R.; Anbhule. P.V. A. novel an efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their anti-bacterial activity. Eur. J. Med. Chem., 2009, 44, 2651-2654.
[13]
Mai, A.; Rotili, D.; Massa, S.; Brosch, G.; Simonetti, G.; Passariello, C.; Palamara, A.T. Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans. Bioorg. Med. Chem. Lett., 2007, 17, 1221-1225.
[14]
Gholap, A.R.; Toti, K.S.; Shirazi, F.; Deshpande, M.V.; Srinivasan, K.V. Efficient synthesis of antifungal pyrimidines via palladium catalyzed Suzuki/Sonogashira cross-coupling reaction from Biginelli 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron, 2008, 64, 10214-10223.
[15]
McCarthy, O.; Musso-Buendia, A.; Kaiser, M.; Brun, R.; Ruiz-Perez, L.M.; Johansson, N.G.; Pacanowska, D.G.; Gilbert, I.H. Design, synthesis and evaluation of novel uracil acetamide derivatives as potential inhibitors of Plasmodium falciparum dUTPnucleotide hydrolase. Eur. J. Med. Chem., 2009, 44, 678-688.
[16]
Singh, B.K.; Mishra, M.; Saxena, N.; Yadav, G.P.; Maulik, P.R.; Sahoo, M.K.; Gaur, R.L.; Murthy, P.K.; Tripathi, R.P. Synthesis of 2-sulfanyl-6-methyl-1,4-dihydropyrimidines as a new class of antifilarial agents. Eur. J. Med. Chem., 2008, 43, 2717-2723.
[17]
van der Westhuyzen, A.E. Frolova, L.V.; Kornienko, A.; van Otterlo W.A.L. The Rigidins: Isolation, bioactivity, and total synthesis-novel pyrrolo[2,3-d]pyrimidine analogues using multicomponent reactions. In the alkaloids: Chemistry and Biology. Chapter Four, 2018, 79, 191-220.
[18]
Gillespie, R.J.; Bamford, S.J.; Clay, A.; Gaur, S.; Haymes, T.; Jackson, P.S.; Jordan, A.M.; Klenke, B.; Leonardi, S.; Liu, J.; Mansell, H.L.; Ng, S.; Saadi, M.; Simmonite, H.; Stratton, G.C.; Todd, R.S.; Williamson, D.S.; Yule, I.A. Antagonists of the human A2A receptor. Part 6: Further optimization of pyrimidine-4-carboxamides. Bioorg. Med. Chem., 2009, 17, 6590-05.
[19]
Siddiqui, A.A.; Rajesh, R.; Islam, M.U.; Alagarsamy, V.; De Clercq, E. Synthesis, antiviral, antituberculostic, and antibacterial activities of some novel, 4-(4-substituted phenyl)-6-(4-nitrophenyl)-2-(substituted imino)pyrimidines). Arch. Pharm., 2007, 340, 95-102.
[20]
Haiba, M.E.; Fathalla, O.A.; Zeid, I.F.; Soliman, A.M.; Abd El-Moez, S.I.; El-serwy, W.S. Synthesis and evaluation of some novel tetrahydropyrimidine derivatives as antimicrobial and cytotoxic agents. Res. Chem. Intermed., 2013, 39, 3763-3774.
[21]
Singh, P. Paul. K. Anti-cancer activities of 5-acyl-6-[2-hydroxy/ benzyloxy-3-(amino)-propylamino]-1,3-dialkyl-1H-pyrimidin-2,4-diones. Bioorg. Med. Chem., 2006, 14, 8622-8625.
[22]
Geist, J.G.; Lauw, S.; Illarionova, V.; Illarionov, B.; Fischer, M.; Gräwert, T.; Rohdich, F.; Eisenreich, W.; Kaiser, J.; Groll, M.; Scheurer, C. Thiazolopyrimidine inhibitors of 2-methylerythritol 2,4-cyclodiphosphate synthase (IspF) from Mycobacterium tuberculosis and Plasmodium falciparum. ChemMedChem, 2010, 5, 1092-1101.
[23]
Amr, A.E-G.; Maigali, S.S.; Abdulla, M.M. Synthesis, and analgesic and antiparkinsonian activities of thiopyrimidine, pyrane, pyrazoline, and thiazolopyrimidine derivatives from 2-chloro-6-ethoxy-4-acetylpyridine. Monatsh. Chem., 2008, 139, 1409-1415.
[24]
Yousif1, M.N.M.; El-Sayed, W.A.; Abbas, H.S.; Awad, H.M.; Yousif, N.M. Cytotoxic activity of new substituted pyrimidines, their thioglycosides and thiazolopyrimidine derivatives. J. Appl. Pharm. Sci., 2017, 7, 21-32.
[25]
Flefel, E.M.; El-Sayed, W.A.; El-Sofany, W.; Mohamed, A.M.; Awad, H.M. Synthesis and anticancer activity of new 1-thia-4-azaspiro[4.5]decane, their derived thiazolopyrimidine and 1,3,4-thiadiazole thioglycosides. Molecules, 2017, 22, 170-183.
[26]
Rashad, A.E.; Shamroukh, A.H.; Abdel-Megeid, R.E.; El-Sayed, W.A. Synthesis, reactions and antimicrobial evaluation of some polycondensedthieno-pyrimidine derivatives. Synth. Commun., 2010, 40, 1149-1160.
[27]
Kolb, S.; Mondésert, O.; Goddard, M.L.; Jullien, D.; Villoutreix, B.O.; Ducommun, B.; Garbay, C.; Braud, E. Development of novel thiazolopyrimidines as CDC25B phosphatase inhibitors. ChemMedChem, 2009, 4, 633-648.
[28]
Zhi, H.; Chen, L.; Zhang, L.; Liu, S.; Wan, D.C.C.; Lin, H.; Hu, C. Design, synthesis, and biological evaluation of 5H-thiazolo[3,2- a]pyrimidine derivatives as a new type of acetylcholinesterase inhibitors. ARKIVOC, 2008, xiii, 266-277.
[29]
El-Sayed, W.A.; El-Sofany, W.I.; Hussein, H.A.R.; Fathy, N.M. Synthesis and anticancer activity of new [(Indolyl)pyrazolyl]-1,3,4-oxadiazole thioglycosides and acyclic nucleoside analogs. Nucleosides Nucleotides Nucleic Acids, 2017, 36, 474-495.
[30]
El Ashry, E.S.H.; Rashed, N.; Awad, L.F.; Ramadan, E.; Abdel-Mageed, S.M.; Rezki, N. Novel regioselective hydroxyl-alkylation of 4,5-diphenylimidazole-2-thione and A competitive intramolecular ring closure of the SHydroxyalkyl-Imidazoles to Imidazo[2,1-b]thiazines and thiazoles. Role of catalyst, microwave irradiation, and solid support. Nucleosides Nucleotides Nucleic Acids, 2007, 26, 423-435.
[31]
El-Sayed, W.A.; Abbas, H-A.S.; Abdel Mageid, R.E.; Magdziarz, T. Synthesis, antimicrobial activity and docking studies of new N-ethyl-3-indolyl heterocycles. Med. Chem. Res., 2016, 25, 339-355.
[32]
Kumar, G.; Aggarwal, H. Gupta. R. Cobalt Complexes Appended with para- and meta-Arylcarboxylic Acids: Influence of cation, solvent, and symmetry on hydrogen-bonded assemblies. Cryst. Growth Des., 2013, 13, 74-90.
[33]
Ali, A.; Hundal, G.; Gupta, R. Co3+ -based Building blocks with appended phenol and catechol groups: examples of placing hydrogen-bond donors and acceptors in a single molecule. Cryst. Growth Des., 2012, 12, 1308-1312.
[34]
Chou, Y.M. M.C. Lai, T.M. Hwang, C.W Ong. Bioorg. Med. Chem. Lett., 1999, 9, 2643-2646.
[35]
Alagarsamy, V.; U.S., Pathak; R., Revathi Anticancer, antibacterial and antifungal activities of some 2-substituted (1,3,4) thiadiazolothieno (3,2-e) - pyrimidin-5(4H)-onesInd, J. Heterocycl. Chem.,2003, 12, 335-338. (b) Abdullah, E.S.A. Synthesis and anticancer activity of some novel tetralin-6-yl-pyrazoline, 2-thioxopyrimidine, 2-oxopyridine, 2-thioxo-pyridine and 2-iminopyridine derivatives. Molecule, 2011, 16, 3410-3419.
[36]
Abdel-Mohsen, H.T.; Ragab, F.A.F.; Ramla, M.M.; Diwani, H.I.E. Novel benzimidazole-pyrimidine conjugates as potent antitumor agents. Eur. J. Med. Chem., 2010, 45, 2336-2344.
[37]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances of nuleosides and nucleotides analogs for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12, 447-464.
[38]
Fahmy, H.T.Y.; Rostom, S.A.F.; Saudi, M.N.; Zjawiony, J.K.; Robins, D.J. Synthesis and antitumor evaluation of new polysubstituted thiazole and derived thiazolo[4,5-d]pyrimidine systems. Arch. Pharm. Pharm. Med. Chem., 2003, 3, 1-10.
[39]
El-Sayed, W.A.; Nassar, I.F.; Abdel Rahman, A.A-H. Synthesis and antitumor activity of new 1,2,4-triazine and [1,2,4]triazolo[4,3-b][1,2,4]triazine derivatives and their thioglycoside and acyclic C-Nucleoside analogous. J. Heterocycl. Chem., 2011, 48, 135-143.
[40]
El-Sayed, W.A.; Ali, O.M. l; Faheem, M.S.l Zied, I.F. Abdel-Rahman A.A.-H. Synthesis and antimicrobial activity of new 1,2,3-triazolopyrimidine derivatives and their glycoside and acyclic nucleoside analogs. J. Heterocycl. Chem., 2012, 49, 607-612.
[41]
El-Sayed, W.A.; Khalaf, H.S.; Mohamed, S.F.; Hssien, H.A.; Kutkat, O.M.; Amr, A.E.E. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russ. J. Gen. Chem., 2017, 87, 2444-2453.
[42]
Nassar, I.F. Synthesis and antitumor activity of new substituted mercapto‐1,2,4‐triazine derivatives, their thioglycosides, and Acyclic thioglycoside analogs. J. Heterocycl. Chem., 2013, 50, 129-134.
[43]
Nassar, I.F.; Atta-Allah, S.R.; Elgazwy, A.S.H. A convenient synthesis and molecular modeling study of Novel Pyrazolo[3,4-d]pyrimidine and Pyrazole derivatives as antitumor agents. J. Enzyme Inhib. Med. Chem., 2015, 30, 396-405.
[44]
Nassar, I.F.; El-Sayed, W.A.; Ragab, T.I.M.; Shalaby, A.S.G.; Mehany, A.B.M. Design, synthesis of novel pyridine and pyrimidine sugar compounds as antagonists targeting the ERα via structurebased virtual screening mini reviews in medicinal chemistry (DOI: 10.2174/1389557518666180820125210).
[45]
Mahato, S.; Chatterjee, R.; Santra, S.; Zyryanov, G.V.; Hajra, A.; Majee, A.A. Domino Approach for the Synthesis of a-Iodo-b-dicarbonyl Compounds from a-Epoxycarbonyls. ChemistrySelect, 2017, 2, 6254-6259.
[46]
Hamdy, N.A.; Anwar, M.M.; Abu-Zied, K.M.; Awad, H.M. Synthesis, tumor inhibitory and antioxidant activity of new polyfunctionally 2-substituted 5,6,7,8-tetrahydronaphthalene derivatives containing pyridine, thioxopyridine and pyrazolopyridine moieties. Acta Poloniae Pharmaceutica -. Drug Res., 2013, 70, 987-1001.
[47]
Almajhdi, F.N.; Fouad, H.; Khalil, K.A.; Awad, H.M.; Mohamed, S.H.S.; Elsarnagawy, T.; Albarrag, A.M.; Al-Jassir, F.F.; Abdo, H.S. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofibers composites prepared by electrospinning. J. Mater. Sci. Mater. Med., 2014, 25, 1-9.
[48]
Staker, B.L.; Feese, M.D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L. Structure of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J. Med. Chem., 2005, 48, 2336-2345.
[49]
Kaminski, G.; Jorgensen, W. L Performance of the AMBER94, MMFF94 and OPLS-AA force fields for modeling organic liquids. J. Phys. Chem., 1996, 100, 18010-13013.
[50]
Lensink, M.F.; Méndez, R.; Wodak, S.J. Docking and scoring protein complexes: CAPRI 3rd Edition. Proteins 2007, 69, 704- 718.
[51]
Flefel, E.E.; Salama, M.A.; El-Shahat, M.; El-Hashash, M.A.; El-Farargy, A.F. A Novel synthesis of some new pyrimidine and thiazolopyrimidine derivatives for anticancer evaluation. Phosphorus, Sulfur, and Silicon, 2007, 182, 1739-1756.
[52]
Abdel-Megeed, M.F.; Saleh, M.A.; Abdo, M.A.; El-Hiti, G.A. Reaction of 6-substituted 3-amino-2-phenyl-4(3H)-quinazolinones with D-ribose and L-arabinose. Collect. Czech. Chem. Commun., 1995, 60, 1016-1025.
[53]
El-Sayed, W.A.; Abdel-Rahman, A.A-H.; Ramiz, M.M.M. Anti-Hepatitis B virus activity of new N4-β-D-glycoside pyrazolo[3,4-d]pyrimidine derivatives. Zeitschriftfür Naturforschung, 2009, 64c, 323-328.
[54]
Gorin, P.; Mazurek, M. Further studies on the assignment of signals in 13C magnetic resonance spectra of aldoses and derived methyl glycosides. Can. J. Chem., 1975, 53, 1212-1223.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy