Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Therapeutic Potential of Endophytic Compounds: A Special Reference to Drug Transporter Inhibitors

Author(s): Khusbu Singh, Gaurav Raj Dwivedi*, A. Swaroop Sanket and Sanghamitra Pati

Volume 19, Issue 10, 2019

Page: [754 - 783] Pages: 30

DOI: 10.2174/1568026619666190412095105

Price: $65

Abstract

From the discovery to the golden age of antibiotics (miracle), millions of lives have been saved. The era of negligence towards chemotherapeutic agents gave birth to drug resistance. Among all the regulators of drug resistance, drug transporters are considered to be the key regulators for multidrug resistance. These transporters are prevalent from prokaryotes to eukaryotes. Endophytes are one of the unexplored wealths of nature. Endophytes are a model mutualistic partner of plants. They are the reservoir of novel therapeutics. The present review deals with endophytes as novel drug resistance reversal agents by inhibiting the drug transporters across the genera. This review also focuses on drug transporters, and mutualistic chemical diversity, exploring drug transporter modulating potential of endophytes.

Keywords: Endophytes, Antibiotics, Multidrug resistance, Drug transporters, Therapeutics, Modulator.

Graphical Abstract

[1]
Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial services of arbuscular mycorrhizal fungi - From ecology to application. Front. Plant Sci., 2018, 9, 1270.
[http://dx.doi.org/10.3389/fpls.2018.01270] [PMID: 30233616]
[2]
Golinska, P.; Wypij, M.; Agarkar, G.; Rathod, D.; Dahm, H.; Rai, M. Endophytic actinobacteria of medicinal plants: Diversity and bioactivity. Antonie van Leeuwenhoek, 2015, 108(2), 267-289.
[http://dx.doi.org/10.1007/s10482-015-0502-7] [PMID: 26093915]
[3]
Ryan, R.P.; Germaine, K.; Franks, A.; Ryan, D.J.; Dowling, D.N. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett., 2008, 278(1), 1-9.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00918.x] [PMID: 18034833]
[4]
Gouda, S.; Das, G.; Sen, S.K.; Shin, H-S.; Patra, J.K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol., 2016, 7, 1538.
[http://dx.doi.org/10.3389/fmicb.2016.01538] [PMID: 27746767]
[5]
Dwivedi, G.R.; Tiwari, N.; Singh, A.; Kumar, A.; Roy, S.; Negi, A.S.; Pal, A.; Chanda, D.; Sharma, A.; Darokar, M.P. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli. Appl. Microbiol. Biotechnol., 2016, 100(5), 2311-2325.
[http://dx.doi.org/10.1007/s00253-015-7152-6] [PMID: 26658982]
[6]
Omrane, S.; Audéon, C.; Ignace, A.; Duplaix, C.; Aouini, L.; Kema, G.; Walker, A-S.; Fillinger, S. Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen Zymoseptoria tritici. MSphere, 2017, 2(5), 2.
[http://dx.doi.org/10.1128/mSphere.00393-17] [PMID: 29085913]
[7]
Lin, J.; Zhao, C.; Liu, C.; Fu, S.; Han, L.; Lu, X.; Yang, C. Redox-responsive F127-folate/F127-disulfide bond-d-α-tocopheryl polyethylene glycol 1000 succinate/P123 mixed micelles loaded with paclitaxel for the reversal of multidrug resistance in tumors. Int. J. Nanomedicine, 2018, 13, 805-830.
[http://dx.doi.org/10.2147/IJN.S152395] [PMID: 29445276]
[8]
Dwivedi, G.R. Sanchita; Singh, D.P.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Nano particles: Emerging warheads against bacterial superbugs. Curr. Top. Med. Chem., 2016, 16(18), 1963-1975.
[http://dx.doi.org/10.2174/1568026616666160215154556] [PMID: 26876525]
[9]
Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem., 2009, 78, 119-146.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[10]
Abdalla, M.A.; McGaw, L.J. Bioprospecting of south african plants as a unique resource for bioactive endophytic microbes. Front. Pharmacol., 2018, 9, 456.
[http://dx.doi.org/10.3389/fphar.2018.00456] [PMID: 29867466]
[11]
Rosenblueth, M.; Martínez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact., 2006, 19(8), 827-837.
[http://dx.doi.org/10.1094/MPMI-19-0827] [PMID: 16903349]
[12]
Hardoim, P.R.; van Overbeek, L.S.; Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol., 2008, 16(10), 463-471.
[http://dx.doi.org/10.1016/j.tim.2008.07.008] [PMID: 18789693]
[13]
Bérdy, J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. (Tokyo), 2012, 65(8), 385-395.
[http://dx.doi.org/10.1038/ja.2012.27] [PMID: 22511224]
[14]
Zhao, K.; Penttinen, P.; Guan, T.; Xiao, J.; Chen, Q.; Xu, J.; Lindström, K.; Zhang, L.; Zhang, X.; Strobel, G.A. The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr. Microbiol., 2011, 62(1), 182-190.
[http://dx.doi.org/10.1007/s00284-010-9685-3] [PMID: 20567975]
[15]
Yan, Q.; Sadée, W. Human membrane transporter database: a Web-accessible relational database for drug transport studies and pharmacogenomics. AAPS PharmSci, 2000, 2(3), E20.
[http://dx.doi.org/10.1208/ps020320] [PMID: 11741236]
[16]
Gupta, S.; Mishra, M.; Sen, N.; Parihar, R.; Dwivedi, G.R.; Khan, F.; Sharma, A. DbMDR: a relational database for multidrug resistance genes as potential drug targets. Chem. Biol. Drug Des., 2011, 78(4), 734-738.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01188.x] [PMID: 21781283]
[17]
Ganea, C.; Fendler, K. Bacterial transporters: charge translocation and mechanism. Biochim. Biophys. Acta, 2009, 1787(6), 706-713.
[http://dx.doi.org/10.1016/j.bbabio.2009.02.002] [PMID: 19366604]
[18]
Piddock, L.J.V. Multidrug-resistance efflux pumps - not just for resistance. Nat. Rev. Microbiol., 2006, 4(8), 629-636.
[http://dx.doi.org/10.1038/nrmicro1464] [PMID: 16845433]
[19]
Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun., 2014, 453(2), 254-267.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.090] [PMID: 24878531]
[20]
Paulsen, I.T.; Brown, M.H.; Skurray, R.A. Proton-dependent multidrug efflux systems. Microbiol. Rev., 1996, 60(4), 575-608.
[PMID: 8987357]
[21]
Poole, K. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med., 2007, 39(3), 162-176.
[http://dx.doi.org/10.1080/07853890701195262] [PMID: 17457715]
[22]
Gupta, P.; Zhang, Y-K.; Zhang, X-Y.; Wang, Y-J.; Lu, K.W.; Hall, T.; Peng, R.; Yang, D-H.; Xie, N.; Chen, Z-S. Voruciclib, a potent CDK4/6 inhibitor, antagonizes ABCB1 and ABCG2-mediated multi-drug resistance in cancer cells. Cell. Physiol. Biochem., 2018, 45(4), 1515-1528.
[http://dx.doi.org/10.1159/000487578] [PMID: 29486476]
[23]
Gillet, J-P.; Gottesman, M.M. Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Curr. Pharm. Biotechnol., 2011, 12(4), 686-692.
[http://dx.doi.org/10.2174/138920111795163931] [PMID: 21118086]
[24]
Gottesman, M.M.; Ambudkar, S.V. Overview: ABC transporters and human disease. J. Bioenerg. Biomembr., 2001, 33(6), 453-458.
[http://dx.doi.org/10.1023/A:1012866803188] [PMID: 11804186]
[25]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z-S. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]
[26]
Anreddy, N.; Gupta, P.; Kathawala, R.J.; Patel, A.; Wurpel, J.N.D.; Chen, Z-S. Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules, 2014, 19(9), 13848-13877.
[http://dx.doi.org/10.3390/molecules190913848] [PMID: 25191874]
[27]
Kim, S-W.; Kwon, H.Y.; Chi, D-W.; Shim, J-H.; Park, J-D.; Lee, Y-H.; Pyo, S.; Rhee, D-K. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3). Biochem. Pharmacol., 2003, 65(1), 75-82.
[http://dx.doi.org/10.1016/S0006-2952(02)01446-6] [PMID: 12473381]
[28]
Ozvegy-Laczka, C.; Hegedus, T.; Várady, G.; Ujhelly, O.; Schuetz, J.D.; Váradi, A.; Kéri, G.; Orfi, L.; Német, K.; Sarkadi, B. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol. Pharmacol., 2004, 65(6), 1485-1495.
[http://dx.doi.org/10.1124/mol.65.6.1485] [PMID: 15155841]
[29]
Shukla, S.; Chen, Z-S.; Ambudkar, S.V. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist. Updat., 2012, 15(1-2), 70-80.
[http://dx.doi.org/10.1016/j.drup.2012.01.005] [PMID: 22325423]
[30]
Lemos, C.; Jansen, G.; Peters, G.J. Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. Br. J. Cancer, 2008, 98(5), 857-862.
[http://dx.doi.org/10.1038/sj.bjc.6604213] [PMID: 18253130]
[31]
Marchetti, S.; de Vries, N.A.; Buckle, T.; Bolijn, M.J.; van Eijndhoven, M.A.J.; Beijnen, J.H.; Mazzanti, R.; van Tellingen, O.; Schellens, J.H.M. Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol. Cancer Ther., 2008, 7(8), 2280-2287.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2250] [PMID: 18723475]
[32]
Borges-Walmsley, M.I.; Walmsley, A.R. The structure and function of drug pumps. Trends Microbiol., 2001, 9(2), 71-79.
[http://dx.doi.org/10.1016/S0966-842X(00)01920-X] [PMID: 11173246]
[33]
Borges-Walmsley, M.I.; McKeegan, K.S.; Walmsley, A.R. Structure and function of efflux pumps that confer resistance to drugs. Biochem. J., 2003, 376(Pt 2), 313-338.
[http://dx.doi.org/10.1042/bj20020957] [PMID: 13678421]
[34]
Jarmuła, A.; Obłąk, E.; Wawrzycka, D.; Gutowicz, J. Efflux-mediated antimicrobial multidrug resistance. Postepy Hig. Med. Dosw., 2011, 65, 216-227.
[http://dx.doi.org/10.5604/17322693.937011]
[35]
Markham, P.N.; Neyfakh, A.A. Efflux-mediated drug resistance in Gram-positive bacteria. Curr. Opin. Microbiol., 2001, 4(5), 509-514.
[http://dx.doi.org/10.1016/S1369-5274(00)00243-5] [PMID: 11587925]
[36]
Poole, K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother., 2005, 56(1), 20-51.
[http://dx.doi.org/10.1093/jac/dki171] [PMID: 15914491]
[37]
Handzlik, J.; Matys, A.; Kieć-Kononowicz, K. Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of gram-positive bacteria S. aureus. Antibiotics (Basel), 2013, 2(1), 28-45.
[http://dx.doi.org/10.3390/antibiotics2010028] [PMID: 27029290]
[38]
Masuda, N.; Sakagawa, E.; Ohya, S.; Gotoh, N.; Tsujimoto, H.; Nishino, T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2000, 44(12), 3322-3327.
[http://dx.doi.org/10.1128/AAC.44.12.3322-3327.2000] [PMID: 11083635]
[39]
Nakashima, R.; Sakurai, K.; Yamasaki, S.; Nishino, K.; Yamaguchi, A. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature, 2011, 480(7378), 565-569.
[http://dx.doi.org/10.1038/nature10641] [PMID: 22121023]
[40]
Ma, D.; Cook, D.N.; Alberti, M.; Pon, N.G.; Nikaido, H.; Hearst, J.E. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J. Bacteriol., 1993, 175(19), 6299-6313.
[http://dx.doi.org/10.1128/jb.175.19.6299-6313.1993] [PMID: 8407802]
[41]
Kikukawa, T.; Nara, T.; Araiso, T.; Miyauchi, S.; Kamo, N. Two-component bacterial multidrug transporter, EbrAB: Mutations making each component solely functional. Biochim. Biophys. Acta, 2006, 1758(5), 673-679.
[http://dx.doi.org/10.1016/j.bbamem.2006.04.004] [PMID: 16750162]
[42]
Putman, M.; van Veen, H.W.; Konings, W.N. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev., 2000, 64(4), 672-693.
[http://dx.doi.org/10.1128/MMBR.64.4.672-693.2000] [PMID: 11104814]
[43]
Van Bambeke, F.; Glupczynski, Y.; Plésiat, P.; Pechère, J.C.; Tulkens, P.M. Antibiotic efflux pumps in prokaryotic cells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J. Antimicrob. Chemother., 2003, 51(5), 1055-1065.
[http://dx.doi.org/10.1093/jac/dkg224] [PMID: 12697642]
[44]
Jack, D.L.; Yang, N.M.; Saier, M.H., Jr The drug/metabolite transporter superfamily. Eur. J. Biochem., 2001, 268(13), 3620-3639.
[http://dx.doi.org/10.1046/j.1432-1327.2001.02265.x] [PMID: 11432728]
[45]
He, X.; Szewczyk, P.; Karyakin, A.; Evin, M.; Hong, W-X.; Zhang, Q.; Chang, G. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature, 2010, 467(7318), 991-994.
[http://dx.doi.org/10.1038/nature09408] [PMID: 20861838]
[46]
Morita, Y.; Kodama, K.; Shiota, S.; Mine, T.; Kataoka, A.; Mizushima, T.; Tsuchiya, T. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob. Agents Chemother., 1998, 42(7), 1778-1782.
[http://dx.doi.org/10.1128/AAC.42.7.1778] [PMID: 9661020]
[47]
Omote, H.; Hiasa, M.; Matsumoto, T.; Otsuka, M.; Moriyama, Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol. Sci., 2006, 27(11), 587-593.
[http://dx.doi.org/10.1016/j.tips.2006.09.001] [PMID: 16996621]
[48]
Wasaznik, A.; Grinholc, M.; Bielawski, K.P. Active efflux as the multidrug resistance mechanism. Postepy Hig. Med. Dosw., 2009, 63, 123-133.
[PMID: 19373193]
[49]
Yang, S.; Clayton, S.R.; Zechiedrich, E.L. Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J. Antimicrob. Chemother., 2003, 51(3), 545-556.
[http://dx.doi.org/10.1093/jac/dkg126] [PMID: 12615854]
[50]
Verma, P.; Maurya, P.; Tiwari, M.; Tiwari, V. In-silico interaction studies suggest RND efflux pump mediates polymyxin resistance in Acinetobacter baumannii. J. Biomol. Struct. Dyn., 2019, 37(1), 95-103.
[PMID: 29246087]
[51]
Piddock, L.J.V. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev., 2006, 19(2), 382-402.
[http://dx.doi.org/10.1128/CMR.19.2.382-402.2006] [PMID: 16614254]
[52]
Pumbwe, L.; Piddock, L.J.V. Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol. Lett., 2002, 206(2), 185-189.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11007.x] [PMID: 11814661]
[53]
Kaatz, G.W.; McAleese, F.; Seo, S.M. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob. Agents Chemother., 2005, 49(5), 1857-1864.
[http://dx.doi.org/10.1128/AAC.49.5.1857-1864.2005] [PMID: 15855507]
[54]
Robertson, G.T.; Doyle, T.B.; Lynch, A.S. Use of an efflux-deficient streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob. Agents Chemother., 2005, 49(11), 4781-4783.
[http://dx.doi.org/10.1128/AAC.49.11.4781-4783.2005] [PMID: 16251330]
[55]
Yoshida, H.; Bogaki, M.; Nakamura, S.; Ubukata, K.; Konno, M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J. Bacteriol., 1990, 172(12), 6942-6949.
[http://dx.doi.org/10.1128/jb.172.12.6942-6949.1990] [PMID: 2174864]
[56]
Okandeji, B.O.; Greenwald, D.M.; Wroten, J.; Sello, J.K. Synthesis and evaluation of inhibitors of bacterial drug efflux pumps of the major facilitator superfamily. Bioorg. Med. Chem., 2011, 19(24), 7679-7689.
[http://dx.doi.org/10.1016/j.bmc.2011.10.011] [PMID: 22055717]
[57]
Truong-Bolduc, Q.C.; Dunman, P.M.; Strahilevitz, J.; Projan, S.J.; Hooper, D.C. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J. Bacteriol., 2005, 187(7), 2395-2405.
[http://dx.doi.org/10.1128/JB.187.7.2395-2405.2005] [PMID: 15774883]
[58]
DeMarco, C.E.; Cushing, L.A.; Frempong-Manso, E.; Seo, S.M.; Jaravaza, T.A.A.; Kaatz, G.W. Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob. Agents Chemother., 2007, 51(9), 3235-3239.
[http://dx.doi.org/10.1128/AAC.00430-07] [PMID: 17576828]
[59]
Huang, J.; O’Toole, P.W.; Shen, W.; Amrine-Madsen, H.; Jiang, X.; Lobo, N.; Palmer, L.M.; Voelker, L.; Fan, F.; Gwynn, M.N.; McDevitt, D. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob. Agents Chemother., 2004, 48(3), 909-917.
[http://dx.doi.org/10.1128/AAC.48.3.909-917.2004] [PMID: 14982783]
[60]
Tseng, T.T.; Gratwick, K.S.; Kollman, J.; Park, D.; Nies, D.H.; Goffeau, A.; Saier, M.H., Jr The RND permease superfamily: An ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol., 1999, 1(1), 107-125.
[PMID: 10941792]
[61]
Gunatilaka, A.A.L. Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod., 2006, 69(3), 509-526.
[http://dx.doi.org/10.1021/np058128n] [PMID: 16562864]
[62]
Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep., 2006, 23(5), 753-771.
[http://dx.doi.org/10.1039/b609472b] [PMID: 17003908]
[63]
Arora, P.; Wani, Z.A.; Nalli, Y.; Ali, A.; Riyaz-Ul-Hassan, S. Antimicrobial potential of Thiodiketopiperazine derivatives produced by phoma sp., an endophyte of glycyrrhiza glabra linn. Microb. Ecol., 2016, 72(4), 802-812.
[http://dx.doi.org/10.1007/s00248-016-0805-x] [PMID: 27357141]
[64]
Wang, P.; Kong, F.; Wei, J.; Wang, Y.; Wang, W.; Hong, K.; Zhu, W. Alkaloids from the mangrove-derived actinomycete Jishengella endophytica 161111. Mar. Drugs, 2014, 12(1), 477-490.
[http://dx.doi.org/10.3390/md12010477] [PMID: 24451190]
[65]
Cao, L.; Qiu, Z.; You, J.; Tan, H.; Zhou, S. Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol. Lett., 2005, 247(2), 147-152.
[http://dx.doi.org/10.1016/j.femsle.2005.05.006] [PMID: 15935565]
[66]
Rungin, S.; Indananda, C.; Suttiviriya, P.; Kruasuwan, W.; Jaemsaeng, R.; Thamchaipenet, A. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie van Leeuwenhoek, 2012, 102(3), 463-472.
[http://dx.doi.org/10.1007/s10482-012-9778-z] [PMID: 22836676]
[67]
Zhang, J.; Wang, J-D.; Liu, C-X.; Yuan, J-H.; Wang, X-J.; Xiang, W-S. A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat. Prod. Res., 2014, 28(7), 431-437.
[http://dx.doi.org/10.1080/14786419.2013.871546] [PMID: 24443904]
[68]
Maehara, S.; Simanjuntak, P.; Kitamura, C.; Ohashi, K.; Shibuya, H. Cinchona alkaloids are also produced by an endophytic filamentous fungus living in cinchona plant. Chem. Pharm. Bull. (Tokyo), 2011, 59(8), 1073-1074.
[http://dx.doi.org/10.1248/cpb.59.1073] [PMID: 21804259]
[69]
Stierle, A.A.; Stierle, D.B. Bioactive secondary metabolites produced by the fungal endophytes of conifers. Nat. Prod. Commun., 2015, 10(10), 1671-1682.
[http://dx.doi.org/10.1177/1934578X1501001012] [PMID: 26669101]
[70]
Wall, M.E.; Wani, M.C. Camptothecin and taxol: Discovery to clinic--thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res., 1995, 55(4), 753-760.
[PMID: 7850785]
[71]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[72]
Talbot, N.J. Plant Immunity: A little help from fungal friends. Curr. Biol., 2015, 25(22), R1074-R1076.
[http://dx.doi.org/10.1016/j.cub.2015.09.068] [PMID: 26583896]
[73]
Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878.
[PMID: 2997227]
[74]
Liu, Y-Q.; Li, W-Q.; Morris-Natschke, S.L.; Qian, K.; Yang, L.; Zhu, G-X.; Wu, X-B.; Chen, A-L.; Zhang, S-Y.; Nan, X.; Lee, K-H. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev., 2015, 35(4), 753-789.
[http://dx.doi.org/10.1002/med.21342] [PMID: 25808858]
[75]
Liu, L.F.; Desai, S.D.; Li, T.K.; Mao, Y.; Sun, M.; Sim, S.P. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci., 2000, 922, 1-10.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07020.x] [PMID: 11193884]
[76]
Canel, C.; Moraes, R.M.; Dayan, F.E.; Ferreira, D. Podophyllotoxin. Phytochemistry, 2000, 54(2), 115-120.
[http://dx.doi.org/10.1016/S0031-9422(00)00094-7] [PMID: 10872202]
[77]
Damayanthi, Y.; Lown, J.W. Podophyllotoxins: Current status and recent developments. Curr. Med. Chem., 1998, 5(3), 205-252.
[PMID: 9562603]
[78]
Castillo, U.; Harper, J.K.; Strobel, G.A.; Sears, J.; Alesi, K.; Ford, E.; Lin, J.; Hunter, M.; Maranta, M.; Ge, H.; Yaver, D.; Jensen, J.B.; Porter, H.; Robison, R.; Millar, D.; Hess, W.M.; Condron, M.; Teplow, D. Kakadumycins, novel antibiotics from Streptomyces sp NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol. Lett., 2003, 224(2), 183-190.
[http://dx.doi.org/10.1016/S0378-1097(03)00426-9] [PMID: 12892881]
[79]
Akshatha, V.J.; Nalini, M.S.; D’Souza, C.; Prakash, H.S. Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake. Lett. Appl. Microbiol., 2014, 58(5), 433-439.
[http://dx.doi.org/10.1111/lam.12209] [PMID: 24330131]
[80]
Zhou, H.; Yang, Y.; Peng, T.; Li, W.; Zhao, L.; Xu, L.; Ding, Z. Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Nat. Prod. Res., 2014, 28(4), 265-267.
[http://dx.doi.org/10.1080/14786419.2013.830219] [PMID: 23972103]
[81]
Zhou, H.; Yang, Y.; Zhang, J.; Peng, T.; Zhao, L.; Xu, L.; Ding, Z. Alkaloids from an endophytic streptomyces sp. YIM66017. Nat. Prod. Commun., 2013, 8(10), 1393-1396.
[http://dx.doi.org/10.1177/1934578X1300801012] [PMID: 24354182]
[82]
Tanvir, R.; Sajid, I.; Hasnain, S. Larvicidal potential of Asteraceae family endophytic actinomycetes against Culex quinquefasciatus mosquito larvae. Nat. Prod. Res., 2014, 28(22), 2048-2052.
[http://dx.doi.org/10.1080/14786419.2014.919579] [PMID: 24865275]
[83]
Jinfeng, E.C.; Mohamad Rafi, M.I.; Chai Hoon, K.; Kok Lian, H.; Yoke Kqueen, C. Analysis of chemical constituents, antimicrobial and anticancer activities of dichloromethane extracts of Sordariomycetes sp. endophytic fungi isolated from Strobilanthes crispus. World J. Microbiol. Biotechnol., 2017, 33(1), 5.
[http://dx.doi.org/10.1007/s11274-016-2175-4] [PMID: 27844243]
[84]
Wijeratne, E.M.K.; He, H.; Franzblau, S.G.; Hoffman, A.M.; Gunatilaka, A.A.L. Phomapyrrolidones A-C, antitubercular alkaloids from the endophytic fungus Phoma sp. NRRL 46751. J. Nat. Prod., 2013, 76(10), 1860-1865.
[http://dx.doi.org/10.1021/np400391p] [PMID: 24079882]
[85]
Saleem, M.; Tousif, M.I.; Riaz, N.; Ahmed, I.; Schulz, B.; Ashraf, M.; Nasar, R.; Pescitelli, G.; Hussain, H.; Jabbar, A.; Shafiq, N.; Krohn, K. Cryptosporioptide: A bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp. Phytochemistry, 2013, 93, 199-202.
[http://dx.doi.org/10.1016/j.phytochem.2013.03.018] [PMID: 23642454]
[86]
Zhang, W.; Krohn, K.; Flörke, U.; Pescitelli, G.; Di Bari, L.; Antus, S.; Kurtán, T.; Rheinheimer, J.; Draeger, S.; Schulz, B. New mono- and dimeric members of the secalonic acid family: blennolides A-G isolated from the fungus Blennoria sp. Chemistry, 2008, 14(16), 4913-4923.
[http://dx.doi.org/10.1002/chem.200800035] [PMID: 18425741]
[87]
Sun, P.; Huo, J.; Kurtán, T.; Mándi, A.; Antus, S.; Tang, H.; Draeger, S.; Schulz, B.; Hussain, H.; Krohn, K.; Pan, W.; Yi, Y.; Zhang, W. Structural and stereochemical studies of hydroxyanthraquinone derivatives from the endophytic fungus Coniothyrium sp. Chirality, 2013, 25(2), 141-148.
[http://dx.doi.org/10.1002/chir.22128] [PMID: 23255384]
[88]
Bascom-Slack, C.A.; Ma, C.; Moore, E.; Babbs, B.; Fenn, K.; Greene, J.S.; Hann, B.D.; Keehner, J.; Kelley-Swift, E.G.; Kembaiyan, V.; Lee, S.J.; Li, P.; Light, D.Y.; Lin, E.H.; Schorn, M.A.; Vekhter, D.; Boulanger, L-A.; Hess, W.M.; Vargas, P.N.; Strobel, G.A.; Strobel, S.A. Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microb. Ecol., 2009, 58(2), 374-383.
[http://dx.doi.org/10.1007/s00248-009-9494-z] [PMID: 19252940]
[89]
Subban, K.; Subramani, R.; Johnpaul, M. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat. Prod. Res., 2013, 27(16), 1445-1449.
[http://dx.doi.org/10.1080/14786419.2012.722091] [PMID: 22950879]
[90]
Brady, S.F.; Wagenaar, M.M.; Singh, M.P.; Janso, J.E.; Clardy, J. The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org. Lett., 2000, 2(25), 4043-4046.
[http://dx.doi.org/10.1021/ol006680s] [PMID: 11112639]
[91]
Ma, Y-M.; Qiao, K.; Kong, Y.; Li, M-Y.; Guo, L-X.; Miao, Z.; Fan, C. A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum. Nat. Prod. Res., 2017, 31(8), 951-958.
[http://dx.doi.org/10.1080/14786419.2016.1258556] [PMID: 27910702]
[92]
Zhang, W.; Draeger, S.; Schulz, B.; Krohn, K. Ring B aromatic steroids from an endophytic fungus, Colletotrichum sp. Nat. Prod. Commun., 2009, 4(11), 1449-1454.
[http://dx.doi.org/10.1177/1934578X0900401101] [PMID: 19967971]
[93]
Lu, S.; Draeger, S.; Schulz, B.; Krohn, K.; Ahmed, I.; Hussain, H.; Yi, Y.; Li, L.; Zhang, W. Bioactive aromatic derivatives from endophytic fungus, Cytospora sp. Nat. Prod. Commun., 2011, 6(5), 661-666.
[http://dx.doi.org/10.1177/1934578X1100600518] [PMID: 21615028]
[94]
Ezra, D.; Castillo, U.F.; Strobel, G.A.; Hess, W.M.; Porter, H.; Jensen, J.B.; Condron, M.A.M.; Teplow, D.B.; Sears, J.; Maranta, M.; Hunter, M.; Weber, B.; Yaver, D. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology, 2004, 150(Pt 4), 785-793.
[http://dx.doi.org/10.1099/mic.0.26645-0] [PMID: 15073289]
[95]
Ding, G.; Chen, A.J.; Lan, J.; Zhang, H.; Chen, X.; Liu, X.; Zou, Z. Sesquiterpenes and cyclopeptides from the endophytic fungus Trichoderma asperellum SAMUELS, LIECKF. & NIRENBERG. Chem. Biodivers., 2012, 9(6), 1205-1212.
[http://dx.doi.org/10.1002/cbdv.201100185] [PMID: 22700238]
[96]
Zou, W.X.; Meng, J.C.; Lu, H.; Chen, G.X.; Shi, G.X.; Zhang, T.Y.; Tan, R.X. Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J. Nat. Prod., 2000, 63(11), 1529-1530.
[http://dx.doi.org/10.1021/np000204t] [PMID: 11087599]
[97]
Zhang, Y-J.; Zhang, W-D.; Qin, S.; Bian, G-K.; Xing, K.; Li, Y-F.; Cao, C-L.; Jiang, J-H. Saccharopolyspora dendranthemae sp. nov. a halotolerant endophytic actinomycete isolated from a coastal salt marsh plant in Jiangsu, China. Antonie van Leeuwenhoek, 2013, 103(6), 1369-1376.
[http://dx.doi.org/10.1007/s10482-013-9917-1] [PMID: 23559043]
[98]
Hussain, H.; Tchimene, M.K.; Ahmed, I.; Meier, K.; Steinert, M.; Draeger, S.; Schulz, B.; Krohn, K. Antimicrobial chemical constituents from the endophytic fungus Phomopsis sp. from Notobasis syriaca. Nat. Prod. Commun., 2011, 6(12), 1905-1906.
[http://dx.doi.org/10.1177/1934578X1100601228] [PMID: 22312735]
[99]
Wang, W-X.; Kusari, S.; Laatsch, H.; Golz, C.; Kusari, P.; Strohmann, C.; Kayser, O.; Spiteller, M. Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J. Nat. Prod., 2016, 79(4), 704-710.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00436] [PMID: 26905687]
[100]
Chen, H-H.; Qin, S.; Li, J.; Zhang, Y-Q.; Xu, L-H.; Jiang, C-L.; Kim, C-J.; Li, W-J. Pseudonocardia endophytica sp. nov., isolated from the pharmaceutical plant Lobelia clavata. Int. J. Syst. Evol. Microbiol., 2009, 59(Pt 3), 559-563.
[http://dx.doi.org/10.1099/ijs.0.64740-0] [PMID: 19244441]
[101]
Du, H-J.; Zhang, Y-Q.; Liu, H-Y.; Su, J.; Wei, Y-Z.; Ma, B-P.; Guo, B-L.; Yu, L-Y. Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int. J. Syst. Evol. Microbiol., 2013, 63(Pt 3), 900-904.
[http://dx.doi.org/10.1099/ijs.0.041491-0] [PMID: 22634703]
[102]
Qin, S.; Chen, H-H.; Zhao, G-Z.; Li, J.; Zhu, W-Y.; Xu, L-H.; Jiang, J-H.; Li, W-J. Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ. Microbiol. Rep., 2012, 4(5), 522-531.
[http://dx.doi.org/10.1111/j.1758-2229.2012.00357.x] [PMID: 23760897]
[103]
Qin, S.; Li, J.; Chen, H-H.; Zhao, G-Z.; Zhu, W-Y.; Jiang, C-L.; Xu, L-H.; Li, W-J. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl. Environ. Microbiol., 2009, 75(19), 6176-6186.
[http://dx.doi.org/10.1128/AEM.01034-09] [PMID: 19648362]
[104]
Pullen, C.; Schmitz, P.; Meurer, K.; Bamberg, D.D.; Lohmann, S.; De Castro França, S.; Groth, I.; Schlegel, B.; Möllmann, U.; Gollmick, F.; Gräfe, U.; Leistner, E. New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. Planta, 2002, 216(1), 162-167.
[http://dx.doi.org/10.1007/s00425-002-0874-6] [PMID: 12430026]
[105]
Lu, C.; Shen, Y. A new macrolide antibiotic with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri. J. Antibiot. (Tokyo), 2003, 56(4), 415-418.
[http://dx.doi.org/10.7164/antibiotics.56.415] [PMID: 12817815]
[106]
Dai, W.J.; Dai, H.F.; Wu, J.; Liu, J.; Mei, W.L. A new 5-acyl-2-methylpyrrole from the endophytic fungus S20 of Cephalotaxus hainanensis. Nat. Prod. Commun., 2009, 4(11), 1489-1490.
[http://dx.doi.org/10.1177/1934578X0900401110] [PMID: 19967980]
[107]
Dai, W-J.; Wu, J.; Han, Z.; Mei, W-L.; Dai, H-F. Metabolites from endophytic fungus S20 of Cephalotaxus hainanensis. J. Asian Nat. Prod. Res., 2009, 11(8), 704-709.
[http://dx.doi.org/10.1080/10286020902858846] [PMID: 20183311]
[108]
Hussain, H.; Ahmed, I.; Schulz, B.; Draeger, S.; Krohn, K. Pyrenocines J-M: four new pyrenocines from the endophytic fungus, Phomopsis sp. Fitoterapia, 2012, 83(3), 523-526.
[http://dx.doi.org/10.1016/j.fitote.2011.12.017] [PMID: 22233864]
[109]
Pongcharoen, W.; Rukachaisirikul, V.; Phongpaichit, S.; Sakayaroj, J. A new dihydrobenzofuran derivative from the endophytic fungus Botryosphaeria mamane PSU-M76. Chem. Pharm. Bull. (Tokyo), 2007, 55(9), 1404-1405.
[http://dx.doi.org/10.1248/cpb.55.1404] [PMID: 17827773]
[110]
Sommart, U.; Rukachaisirikul, V.; Sukpondma, Y.; Phongpaichit, S.; Sakayaroj, J.; Kirtikara, K. Hydronaphthalenones and a dihydroramulosin from the endophytic fungus PSU-N24. Chem. Pharm. Bull. (Tokyo), 2008, 56(12), 1687-1690.
[http://dx.doi.org/10.1248/cpb.56.1687] [PMID: 19043240]
[111]
Sebastianes, F.L.S.; Cabedo, N.; El Aouad, N.; Valente, A.M.M.P.; Lacava, P.T.; Azevedo, J.L.; Pizzirani-Kleiner, A.A.; Cortes, D. 3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr. Microbiol., 2012, 65(5), 622-632.
[http://dx.doi.org/10.1007/s00284-012-0206-4] [PMID: 22886401]
[112]
Singh, M.P.; Janso, J.E.; Brady, S.F. Cytoskyrins and cytosporones produced by Cytospora sp. CR200: Ttaxonomy, fermentation and biological activities. Mar. Drugs, 2007, 5(3), 71-84.
[http://dx.doi.org/10.3390/md503071] [PMID: 18463719]
[113]
Glassner, H.; Zchori-Fein, E.; Compant, S.; Sessitsch, A.; Katzir, N.; Portnoy, V.; Yaron, S. Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.). FEMS Microbiol. Ecol., 2015, 91(7), 91.
[http://dx.doi.org/10.1093/femsec/fiv074] [PMID: 26183916]
[114]
Shahzad, R.; Khan, A.L.; Bilal, S.; Asaf, S.; Lee, I-J. What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front. Plant Sci., 2018, 9, 24.
[http://dx.doi.org/10.3389/fpls.2018.00024] [PMID: 29410675]
[115]
Fürnkranz, M.; Lukesch, B.; Müller, H.; Huss, H.; Grube, M.; Berg, G. Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb. Ecol., 2012, 63(2), 418-428.
[http://dx.doi.org/10.1007/s00248-011-9942-4] [PMID: 21947430]
[116]
Qin, S.; Wang, H-B.; Chen, H-H.; Zhang, Y-Q.; Jiang, C-L.; Xu, L-H.; Li, W-J. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int. J. Syst. Evol. Microbiol., 2008, 58(Pt 11), 2525-2528.
[http://dx.doi.org/10.1099/ijs.0.2008/000398-0] [PMID: 18984687]
[117]
Cai, X.; Shan, T.; Li, P.; Huang, Y.; Xu, L.; Zhou, L.; Wang, M.; Jiang, W. Spirobisnaphthalenes from the endophytic fungus Dzf12 of Dioscorea zingiberensis and their antimicrobial activities. Nat. Prod. Commun., 2009, 4(11), 1469-1472.
[http://dx.doi.org/10.1177/1934578X0900401105] [PMID: 19967975]
[118]
Xu, L.; Wang, J.; Zhao, J.; Li, P.; Shan, T.; Wang, J.; Li, X.; Zhou, L. Beauvericin from the endophytic fungus, Fusarium redolens, isolated from Dioscorea zingiberensis and its antibacterial activity. Nat. Prod. Commun., 2010, 5(5), 811-814.
[http://dx.doi.org/10.1177/1934578X1000500527] [PMID: 20521553]
[119]
Wang, F-W.; Ye, Y-H.; Ding, H.; Chen, Y-X.; Tan, R-X.; Song, Y-C. Benzophenones from Guignardia sp. IFB-E028, an endophyte on Hopea hainanensis. Chem. Biodivers., 2010, 7(1), 216-220.
[http://dx.doi.org/10.1002/cbdv.200800353] [PMID: 20087992]
[120]
Chen, X.; Sang, X.; Li, S.; Zhang, S.; Bai, L. Studies on a chlorogenic acid-producing endophytic fungi isolated from Eucommia ulmoides Oliver. J. Ind. Microbiol. Biotechnol., 2010, 37(5), 447-454.
[http://dx.doi.org/10.1007/s10295-010-0690-0] [PMID: 20127271]
[121]
Qin, S.; Yuan, B.; Zhang, Y-J.; Bian, G-K.; Tamura, T.; Sun, B-Z.; Li, W-J.; Jiang, J-H. Nocardioides panzhihuaensis sp. nov., a novel endophytic actinomycete isolated from medicinal plant Jatropha curcas L. Antonie van Leeuwenhoek, 2012, 102(2), 353-360.
[http://dx.doi.org/10.1007/s10482-012-9745-8] [PMID: 22552630]
[122]
Qin, S.; Xing, K.; Jiang, J-H.; Xu, L-H.; Li, W. J. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl. Microbiol. Biotechnol., 2011, 89(3), 457-473.
[http://dx.doi.org/10.1007/s00253-010-2923-6] [PMID: 20941490]
[123]
Kim, N.; Shin, J.C.; Kim, W.; Hwang, B.Y.; Kim, B.S.; Hong, Y-S.; Lee, D. Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J. Antibiot. (Tokyo), 2006, 59(12), 797-800.
[http://dx.doi.org/10.1038/ja.2006.105] [PMID: 17323647]
[124]
Pinheiro, E.A.A.; Carvalho, J.M.; dos Santos, D.C.P.; Feitosa, A. de O.; Marinho, P.S.B.; Guilhon, G.M.S.P.; de Souza, A.D.L.; da Silva, F.M.A.; Marinho, A.M. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat. Prod. Res., 2013, 27(18), 1633-1638.
[http://dx.doi.org/10.1080/14786419.2012.750316] [PMID: 23234304]
[125]
Liu, S.; Dai, H.; Makhloufi, G.; Heering, C.; Janiak, C.; Hartmann, R.; Mándi, A.; Kurtán, T.; Müller, W.E.G.; Kassack, M.U.; Lin, W.; Liu, Z.; Proksch, P. Cytotoxic 14-membered macrolides from a mangrove-derived endophytic fungus. Pestalotiopsis Microspora. J. Nat. Prod., 2016, 79(9), 2332-2340.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00473] [PMID: 27556865]
[126]
Weber, D.; Sterner, O.; Anke, T.; Gorzalczancy, S.; Martino, V.; Acevedo, C. Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J. Antibiot. (Tokyo), 2004, 57(9), 559-563.
[http://dx.doi.org/10.7164/antibiotics.57.559] [PMID: 15580955]
[127]
López-López, A.; Rogel, M.A.; Ormeño-Orrillo, E.; Martínez-Romero, J.; Martínez-Romero, E. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst. Appl. Microbiol., 2010, 33(6), 322-327.
[http://dx.doi.org/10.1016/j.syapm.2010.07.005] [PMID: 20822874]
[128]
Oehrle, N.W.; Karr, D.B.; Kremer, R.J.; Emerich, D.W. Enhanced attachment of Bradyrhizobium japonicum to soybean through reduced root colonization of internally seedborne microorganisms. Can. J. Microbiol., 2000, 46(7), 600-606.
[http://dx.doi.org/10.1139/w00-030] [PMID: 10932352]
[129]
Castillo, U.F.; Strobel, G.A.; Ford, E.J.; Hess, W.M.; Porter, H.; Jensen, J.B.; Albert, H.; Robison, R.; Condron, M.A.M.; Teplow, D.B.; Stevens, D.; Yaver, D. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology, 2002, 148(Pt 9), 2675-2685.
[http://dx.doi.org/10.1099/00221287-148-9-2675] [PMID: 12213914]
[130]
Shang, Z.; Li, X-M.; Li, C-S.; Wang, B-G. Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media. Chem. Biodivers., 2012, 9(7), 1338-1348.
[http://dx.doi.org/10.1002/cbdv.201100216] [PMID: 22782879]
[131]
Chimwamurombe, P.M.; Grönemeyer, J.L.; Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol., 2016, 92(6), fiw083.
[http://dx.doi.org/10.1093/femsec/fiw083] [PMID: 27118727]
[132]
Shu, R.G.; Wang, F.W.; Yang, Y.M.; Liu, Y.X.; Tan, R.X. Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp. IFB-121, an endophytic fungus in Quercus variabilis. Lipids, 2004, 39(7), 667-673.
[http://dx.doi.org/10.1007/s11745-004-1280-9] [PMID: 15588024]
[133]
Casella, T.M.; Eparvier, V.; Mandavid, H.; Bendelac, A.; Odonne, G.; Dayan, L.; Duplais, C.; Espindola, L.S.; Stien, D. Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry, 2013, 96, 370-377.
[http://dx.doi.org/10.1016/j.phytochem.2013.10.004] [PMID: 24189345]
[134]
Liu, X.; Dong, M.; Chen, X.; Jiang, M.; Lv, X.; Zhou, J. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biotechnol., 2008, 78(2), 241-247.
[http://dx.doi.org/10.1007/s00253-007-1305-1] [PMID: 18092158]
[135]
Yu, F-X.; Li, Z.; Chen, Y.; Yang, Y-H.; Li, G-H.; Zhao, P-J. Four new steroids from the endophytic fungus Chaetomium sp. M453 derived of Chinese herbal medicine Huperzia serrata. Fitoterapia, 2017, 117, 41-46.
[http://dx.doi.org/10.1016/j.fitote.2016.12.012] [PMID: 28041908]
[136]
Wagenaar, M.M.; Clardy, J. Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J. Nat. Prod., 2001, 64(8), 1006-1009.
[http://dx.doi.org/10.1021/np010020u] [PMID: 11520215]
[137]
Debbab, A.; Aly, A.H.; Edrada-Ebel, R.; Wray, V.; Müller, W.E.G.; Totzke, F.; Zirrgiebel, U.; Schächtele, C.; Kubbutat, M.H.G.; Lin, W.H.; Mosaddak, M.; Hakiki, A.; Proksch, P.; Ebel, R. Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J. Nat. Prod., 2009, 72(4), 626-631.
[http://dx.doi.org/10.1021/np8004997] [PMID: 19271717]
[138]
Lai, D.; Brötz-Oesterhelt, H.; Müller, W.E.G.; Wray, V.; Proksch, P. Bioactive polyketides and alkaloids from Penicillium citrinum, a fungal endophyte isolated from Ocimum tenuiflorum. Fitoterapia, 2013, 91, 100-106.
[http://dx.doi.org/10.1016/j.fitote.2013.08.017] [PMID: 23999155]
[139]
Wang, Q-X.; Li, S-F.; Zhao, F.; Dai, H-Q.; Bao, L.; Ding, R.; Gao, H.; Zhang, L-X.; Wen, H-A.; Liu, H-W. Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia, 2011, 82(5), 777-781.
[http://dx.doi.org/10.1016/j.fitote.2011.04.002] [PMID: 21497643]
[140]
Kjer, J.; Wray, V.; Edrada-Ebel, R.; Ebel, R.; Pretsch, A.; Lin, W.; Proksch, P. Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J. Nat. Prod., 2009, 72(11), 2053-2057.
[http://dx.doi.org/10.1021/np900417g] [PMID: 19835393]
[141]
Cui, H.; Liu, Y.; Nie, Y.; Liu, Z.; Chen, S.; Zhang, Z.; Lu, Y.; He, L.; Huang, X.; She, Z. Polyketides from the mangrove-derived endophytic fungus Nectria sp. HN001 and Their α-Glucosidase Inhibitory Activity. Mar. Drugs, 2016, 14(5), 14.
[http://dx.doi.org/10.3390/md14050086] [PMID: 27136568]
[142]
Zhao, J.; Mou, Y.; Shan, T.; Li, Y.; Zhou, L.; Wang, M.; Wang, J. Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules, 2010, 15(11), 7961-7970.
[http://dx.doi.org/10.3390/molecules15117961] [PMID: 21060302]
[143]
Kharwar, R.N.; Verma, V.C.; Kumar, A.; Gond, S.K.; Harper, J.K.; Hess, W.M.; Lobkovosky, E.; Ma, C.; Ren, Y.; Strobel, G.A. Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr. Microbiol., 2009, 58(3), 233-238.
[http://dx.doi.org/10.1007/s00284-008-9313-7] [PMID: 19018591]
[144]
Senadeera, S.P.D.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. A novel tricyclic polyketide and its biosynthetic precursor azaphilone derivatives from the endophytic fungus Dothideomycete sp. Org. Biomol. Chem., 2012, 10(35), 7220-7226.
[http://dx.doi.org/10.1039/c2ob25959a] [PMID: 22847560]
[145]
Zhang, N.; Zhang, C.; Xiao, X.; Zhang, Q.; Huang, B. New cytotoxic compounds of endophytic fungus Alternaria sp. isolated from Broussonetia papyrifera (L.) Vent. Fitoterapia, 2016, 110, 173-180.
[http://dx.doi.org/10.1016/j.fitote.2016.03.014] [PMID: 27001249]
[146]
Sun, Z-H.; Li, H-H.; Liang, F-L.; Chen, Y-C.; Liu, H-X.; Li, S-N.; Tan, G-H.; Zhang, W-M. Two new secondary metabolites from the endophytic fungus Endomelanconiopsis endophytica. Molecules, 2016, 21(7), 21.
[http://dx.doi.org/10.3390/molecules21070943] [PMID: 27447605]
[147]
Akone, S.H.; Daletos, G.; Lin, W.; Proksch, P. Unguisin F, a new cyclic peptide from the endophytic fungus Mucor irregularis. Z. Natforsch. C J. Biosci., 2016, 71(1-2), 15-19.
[http://dx.doi.org/10.1515/znc-2015-0137] [PMID: 26812868]
[148]
Ferreira, A.; Quecine, M.C.; Lacava, P.T.; Oda, S.; Azevedo, J.L.; Araújo, W.L. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol. Lett., 2008, 287(1), 8-14.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01258.x] [PMID: 18710397]
[149]
Donnarumma, F.; Capuana, M.; Vettori, C.; Petrini, G.; Giannini, R.; Indorato, C.; Mastromei, G. Isolation and characterisation of bacterial colonies from seeds and in vitro cultures of Fraxinus spp. from Italian sites. Plant Biol (Stuttg), 2011, 13(1), 169-176.
[http://dx.doi.org/10.1111/j.1438-8677.2010.00334.x] [PMID: 21143738]
[150]
Krohn, K.; Farooq, U.; Hussain, H.; Ahmed, I.; Rheinheimer, J.; Draeger, S.; Schulz, B.; van Ree, T. Phomosines H-J, novel highly substituted biaryl ethers, isolated from the endophytic fungus Phomopsis sp. from Ligustrum vulgare. Nat. Prod. Commun., 2011, 6(12), 1907-1912.
[http://dx.doi.org/10.1177/1934578X1100601229] [PMID: 22312736]
[151]
Lin, Z-J.; Lu, X-M.; Zhu, T-J.; Fang, Y-C.; Gu, Q-Q.; Zhu, W. GPR12 selections of the metabolites from an endophytic Streptomyces sp. associated with Cistanches deserticola. Arch. Pharm. Res., 2008, 31(9), 1108-1114.
[http://dx.doi.org/10.1007/s12272-001-1276-4] [PMID: 18806952]
[152]
Wu, S-H.; Zhao, L-X.; Chen, Y-W.; Huang, R.; Miao, C-P.; Wang, J. Sesquiterpenoids from the endophytic fungus Trichoderma sp. PR-35 of Paeonia delavayi. Chem. Biodivers., 2011, 8(9), 1717-1723.
[http://dx.doi.org/10.1002/cbdv.201000236] [PMID: 21922660]
[153]
Wang, X-J.; Min, C-L.; Ge, M.; Zuo, R-H. An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr. Microbiol., 2014, 68(3), 336-341.
[http://dx.doi.org/10.1007/s00284-013-0482-7] [PMID: 24166154]
[154]
Shiono, Y.; Hatakeyama, T.; Murayama, T.; Koseki, T. Polyketide metabolites from the endophytic fungus Microdiplodia sp. KS 75-1. Nat. Prod. Commun., 2012, 7(8), 1065-1068.
[http://dx.doi.org/10.1177/1934578X1200700825] [PMID: 22978230]
[155]
Luo, J.; Liu, X.; Li, E.; Guo, L.; Che, Y. Arundinols A-C and arundinones A and B from the plant endophytic fungus Microsphaeropsis arundinis. J. Nat. Prod., 2013, 76(1), 107-112.
[http://dx.doi.org/10.1021/np300806a] [PMID: 23294378]
[156]
Verma, V.C.; Lobkovsky, E.; Gange, A.C.; Singh, S.K.; Prakash, S. Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J. Antibiot. (Tokyo), 2011, 64(6), 427-431.
[http://dx.doi.org/10.1038/ja.2011.27] [PMID: 21505472]
[157]
Bian, G-K.; Feng, Z-Z.; Qin, S.; Xing, K.; Wang, Z.; Cao, C-L.; Liu, C-H.; Dai, C-C.; Jiang, J-H. Kineococcus endophytica sp. nov., a novel endophytic actinomycete isolated from a coastal halophyte in Jiangsu, China. Antonie van Leeuwenhoek, 2012, 102(4), 621-628.
[http://dx.doi.org/10.1007/s10482-012-9757-4] [PMID: 22669199]
[158]
Ge, H.M.; Zhang, Q.; Xu, S.H.; Guo, Z.K.; Song, Y.C.; Huang, W.Y.; Tan, R.X. Chaetoglocins A-D, four new metabolites from the endophytic fungus Chaetomium globosum. Planta Med., 2011, 77(3), 277-280.
[http://dx.doi.org/10.1055/s-0030-1250292] [PMID: 20814854]
[159]
Ma, Y.M.; Li, Y.; Liu, J.Y.; Song, Y.C.; Tan, R.X. Anti-Helicobacter pylori metabolites from Rhizoctonia sp. Cy064, an endophytic fungus in Cynodon dactylon. Fitoterapia, 2004, 75(5), 451-456.
[http://dx.doi.org/10.1016/j.fitote.2004.03.007] [PMID: 15261382]
[160]
Rozpądek, P.; Wężowicz, K.; Nosek, M.; Ważny, R.; Tokarz, K.; Lembicz, M.; Miszalski, Z.; Turnau, K. The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta, 2015, 242(4), 1025-1035.
[http://dx.doi.org/10.1007/s00425-015-2337-x] [PMID: 26059605]
[161]
Wiewióra, B.; Żurek, G.; Pańka, D. Is the vertical transmission of Neotyphodium lolii in perennial ryegrass the only possible way to the spread of endophytes? PLoS One, 2015, 10(2), e0117231.
[http://dx.doi.org/10.1371/journal.pone.0117231] [PMID: 25680199]
[162]
Hardoim, P.R.; Hardoim, C.C.P.; van Overbeek, L.S.; van Elsas, J.D. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One, 2012, 7(2), e30438.
[http://dx.doi.org/10.1371/journal.pone.0030438] [PMID: 22363438]
[163]
Kaga, H.; Mano, H.; Tanaka, F.; Watanabe, A.; Kaneko, S.; Morisaki, H. Rice seeds as sources of endophytic bacteria. Microbes Environ., 2009, 24(2), 154-162.
[http://dx.doi.org/10.1264/jsme2.ME09113] [PMID: 21566368]
[164]
Ruiz, D.; Agaras, B.; de Werra, P.; Wall, L.G.; Valverde, C.; Wall, L.G.; Valverde, C. Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. J. Microbiol., 2011, 49(6), 902-912.
[http://dx.doi.org/10.1007/s12275-011-1073-6] [PMID: 22203552]
[165]
Shahzad, R.; Waqas, M.; Khan, A.L.; Al-Hosni, K.; Kang, S-M.; Seo, C-W.; Lee, I-J. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol. Hung., 2017, 68(2), 175-186.
[http://dx.doi.org/10.1556/018.68.2017.2.5] [PMID: 28605980]
[166]
Shahzad, R.; Waqas, M.; Khan, A.L.; Asaf, S.; Khan, M.A.; Kang, S-M.; Yun, B-W.; Lee, I-J. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol. Biochem., 2016, 106, 236-243.
[http://dx.doi.org/10.1016/j.plaphy.2016.05.006] [PMID: 27182958]
[167]
Verma, S.K.; Kingsley, K.; Irizarry, I.; Bergen, M.; Kharwar, R.N.; White, J.F., Jr Seed-vectored endophytic bacteria modulate development of rice seedlings. J. Appl. Microbiol., 2017, 122(6), 1680-1691.
[http://dx.doi.org/10.1111/jam.13463] [PMID: 28375579]
[168]
Devi, P.; Rodrigues, C.; Naik, C.G.; D’Souza, L. Isolation and characterization of antibacterial compound from a mangrove-endophytic fungus, Penicillium chrysogenum MTCC 5108. Indian J. Microbiol., 2012, 52(4), 617-623.
[http://dx.doi.org/10.1007/s12088-012-0277-8] [PMID: 24293720]
[169]
Young, C.A.; Hume, D.E.; McCulley, R.L. Forages and pastures symposium: fungal endophytes of tall fescue and perennial ryegrass: Pasture friend or foe? J. Anim. Sci., 2013, 91(5), 2379-2394.
[http://dx.doi.org/10.2527/jas.2012-5951] [PMID: 23307839]
[170]
Díaz Herrera, S.; Grossi, C.; Zawoznik, M.; Groppa, M.D. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol. Res., 2016, 186-187, 37-43.
[http://dx.doi.org/10.1016/j.micres.2016.03.002] [PMID: 27242141]
[171]
Rijavec, T.; Lapanje, A.; Dermastia, M.; Rupnik, M. Isolation of bacterial endophytes from germinated maize kernels. Can. J. Microbiol., 2007, 53(6), 802-808.
[http://dx.doi.org/10.1139/W07-048] [PMID: 17668041]
[172]
Wicklow, D.T.; Poling, S.M. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize. Phytopathology, 2009, 99(1), 109-115.
[http://dx.doi.org/10.1094/PHYTO-99-1-0109] [PMID: 19055442]
[173]
Schmeda-Hirschmann, G.; Hormazabal, E.; Rodriguez, J.A.; Theoduloz, C. Cycloaspeptide A and pseurotin A from the endophytic fungus Penicillium janczewskii. Z. Natforsch. C J. Biosci., 2008, 63(5-6), 383-388.
[http://dx.doi.org/10.1515/znc-2008-5-612] [PMID: 18669024]
[174]
You, X.; Feng, S.; Luo, S.; Cong, D.; Yu, Z.; Yang, Z.; Zhang, J. Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia, 2013, 85, 161-168.
[http://dx.doi.org/10.1016/j.fitote.2012.12.010] [PMID: 23266728]
[175]
Maehara, S.; Agusta, A.; Kitamura, C.; Ohashi, K.; Shibuya, H. Composition of the endophytic filamentous fungi associated with Cinchona ledgeriana seeds and production of Cinchona alkaloids. J. Nat. Med., 2016, 70(2), 271-275.
[http://dx.doi.org/10.1007/s11418-015-0954-0] [PMID: 26645397]
[176]
Vega, F.E.; Pava-Ripoll, M.; Posada, F.; Buyer, J.S. Endophytic bacteria in Coffea arabica L. J. Basic Microbiol., 2005, 45(5), 371-380.
[http://dx.doi.org/10.1002/jobm.200410551] [PMID: 16187260]
[177]
Mandavid, H.; Rodrigues, A.M.S.; Espindola, L.S.; Eparvier, V.; Stien, D. Secondary metabolites isolated from the amazonian endophytic fungus diaporthe sp. SNB-GSS10. J. Nat. Prod., 2015, 78(7), 1735-1739.
[http://dx.doi.org/10.1021/np501029s] [PMID: 26149922]
[178]
Mei, W-L.; Zheng, B.; Zhao, Y-X.; Zhong, H-M.; Chen, X-L.W.; Zeng, Y-B.; Dong, W-H.; Huang, J-L.; Proksch, P.; Dai, H-F. Meroterpenes from endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea. Mar. Drugs, 2012, 10(9), 1993-2001.
[http://dx.doi.org/10.3390/md10091993] [PMID: 23118716]
[179]
Du, F-Y.; Li, X-M.; Li, C-S.; Shang, Z.; Wang, B-G. Cristatumins A-D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220. Bioorg. Med. Chem. Lett., 2012, 22(14), 4650-4653.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.088] [PMID: 22727636]
[180]
Siddiqui, I.N.; Zahoor, A.; Hussain, H.; Ahmed, I.; Ahmad, V.U.; Padula, D.; Draeger, S.; Schulz, B.; Meier, K.; Steinert, M.; Kurtán, T.; Flörke, U.; Pescitelli, G.; Krohn, K. Diversonol and blennolide derivatives from the endophytic fungus Microdiplodia sp.: absolute configuration of diversonol. J. Nat. Prod., 2011, 74(3), 365-373.
[http://dx.doi.org/10.1021/np100730b] [PMID: 21244021]
[181]
Krohn, K.; Kouam, S.F.; Kuigoua, G.M.; Hussain, H.; Cludius-Brandt, S.; Flörke, U.; Kurtán, T.; Pescitelli, G.; Di Bari, L.; Draeger, S.; Schulz, B. Xanthones and oxepino[2, 3-b]chromones from three endophytic fungi. Chemistry, 2009, 15(44), 12121-12132.
[http://dx.doi.org/10.1002/chem.200900749] [PMID: 19777508]
[182]
Xu, M.; Sheng, J.; Chen, L.; Men, Y.; Gan, L.; Guo, S.; Shen, L. Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J. Microbiol. Biotechnol., 2014, 30(3), 835-845.
[http://dx.doi.org/10.1007/s11274-013-1486-y] [PMID: 24114316]
[183]
Kim, S.; Shin, D-S.; Lee, T.; Oh, K-B. Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J. Nat. Prod., 2004, 67(3), 448-450.
[http://dx.doi.org/10.1021/np030384h] [PMID: 15043428]
[184]
Chen, X.; Shi, Q.; Lin, G.; Guo, S.; Yang, J. Spirobisnaphthalene analogues from the endophytic fungus Preussia sp. J. Nat. Prod., 2009, 72(9), 1712-1715.
[http://dx.doi.org/10.1021/np900302w] [PMID: 19708679]
[185]
Brady, S.F.; Bondi, S.M.; Clardy, J. The guanacastepenes: a highly diverse family of secondary metabolites produced by an endophytic fungus. J. Am. Chem. Soc., 2001, 123(40), 9900-9901.
[http://dx.doi.org/10.1021/ja016176y] [PMID: 11583556]
[186]
Singh, M.P.; Janso, J.E.; Luckman, S.W.; Brady, S.F.; Clardy, J.; Greenstein, M.; Maiese, W.M. Biological activity of guanacastepene, a novel diterpenoid antibiotic produced by an unidentified fungus CR115. J. Antibiot. (Tokyo), 2000, 53(3), 256-261.
[http://dx.doi.org/10.7164/antibiotics.53.256] [PMID: 10819296]
[187]
Compant, S.; Mitter, B.; Colli-Mull, J.G.; Gangl, H.; Sessitsch, A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb. Ecol., 2011, 62(1), 188-197.
[http://dx.doi.org/10.1007/s00248-011-9883-y] [PMID: 21625971]
[188]
Bian, G-K.; Qin, S.; Yuan, B.; Zhang, Y-J.; Xing, K.; Ju, X-Y.; Li, W-J.; Jiang, J-H. Streptomyces phytohabitans sp. nov., a novel endophytic actinomycete isolated from medicinal plant Curcuma phaeocaulis. Antonie van Leeuwenhoek, 2012, 102(2), 289-296.
[http://dx.doi.org/10.1007/s10482-012-9737-8] [PMID: 22527624]
[189]
Taechowisan, T.; Lu, C.; Shen, Y.; Lumyong, S. Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. J. Cancer Res. Ther., 2007, 3(2), 86-91.
[http://dx.doi.org/10.4103/0973-1482.34685] [PMID: 17998729]
[190]
Taechowisan, T.; Lu, C.; Shen, Y.; Lumyong, S. Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology, 2005, 151(Pt 5), 1691-1695.
[http://dx.doi.org/10.1099/mic.0.27758-0] [PMID: 15870476]
[191]
Zhang, W.; Krohn, K.; Draeger, S.; Schulz, B. Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. J. Nat. Prod., 2008, 71(6), 1078-1081.
[http://dx.doi.org/10.1021/np800095g] [PMID: 18510362]
[192]
Diah, S.K.; Smitherman, P.K.; Aldridge, J.; Volk, E.L.; Schneider, E.; Townsend, A.J.; Morrow, C.S. Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins. Cancer Res., 2001, 61(14), 5461-5467.
[PMID: 11454692]
[193]
Lovitt, C.J.; Shelper, T.B.; Avery, V.M. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer, 2018, 18(1), 41.
[http://dx.doi.org/10.1186/s12885-017-3953-6] [PMID: 29304770]
[194]
Teles, H.L.; Sordi, R.; Silva, G.H.; Castro-Gamboa, I. Bolzani, Vda.S.; Pfenning, L.H.; de Abreu, L.M.; Costa-Neto, C.M.; Young, M.C.; Araújo, A.R. Aromatic compounds produced by Periconia atropurpurea, an endophytic fungus associated with Xylopia aromatica. Phytochemistry, 2006, 67(24), 2686-2690.
[http://dx.doi.org/10.1016/j.phytochem.2006.09.005] [PMID: 17055010]
[195]
Ge, H.M.; Yu, Z.G.; Zhang, J.; Wu, J.H.; Tan, R.X. Bioactive alkaloids from endophytic Aspergillus fumigatus. J. Nat. Prod., 2009, 72(4), 753-755.
[http://dx.doi.org/10.1021/np800700e] [PMID: 19256529]
[196]
Gangadevi, V.; Muthumary, J. Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol. Appl. Biochem., 2009, 52(Pt 1), 9-15.
[http://dx.doi.org/10.1042/BA20070243] [PMID: 18254723]
[197]
Pandi, M.; Manikandan, R.; Muthumary, J. Anticancer activity of fungal taxol derived from Botryodiplodia theobromae Pat., an endophytic fungus, against 7, 12 dimethyl benz(a)anthracene (DMBA)-induced mammary gland carcinogenesis in Sprague Dawley rats. Biomed. Pharmacother., 2010, 64(1), 48-53.
[http://dx.doi.org/10.1016/j.biopha.2009.03.001] [PMID: 19762199]
[198]
Cui, J.L.; Guo, S.X.; Xiao, P.G. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J. Zhejiang Univ. Sci. B, 2011, 12(5), 385-392.
[http://dx.doi.org/10.1631/jzus.B1000330] [PMID: 21528493]
[199]
Wang, F-W. Bioactive metabolites from Guignardia sp., an endophytic fungus residing in Undaria pinnatifida. Chin. J. Nat. Med., 2012, 10(1), 72-76.
[http://dx.doi.org/10.1016/S1875-5364(12)60016-8] [PMID: 23302536]
[200]
Xu, Y-M.; Espinosa-Artiles, P.; Liu, M.X.; Arnold, A.E.; Gunatilaka, A.A.L. Secoemestrin D, a cytotoxic epitetrathiodioxopiperizine, and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus1. J. Nat. Prod., 2013, 76(12), 2330-2336.
[http://dx.doi.org/10.1021/np400762k] [PMID: 24251417]
[201]
Wu, L-S.; Jia, M.; Chen, L.; Zhu, B.; Dong, H-X.; Si, J-P.; Peng, W.; Han, T. Cytotoxic and antifungal constituents isolated from the metabolites of endophytic fungus DO14 from Dendrobium officinale. Molecules, 2015, 21(1), E14.
[http://dx.doi.org/10.3390/molecules21010014] [PMID: 26703552]
[202]
Mohana Kumara, P.; Zuehlke, S.; Priti, V.; Ramesha, B.T.; Shweta, S.; Ravikanth, G.; Vasudeva, R.; Santhoshkumar, T.R.; Spiteller, M.; Uma Shaanker, R. Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie van Leeuwenhoek, 2012, 101(2), 323-329.
[http://dx.doi.org/10.1007/s10482-011-9638-2] [PMID: 21898150]
[203]
Lin, T.; Wang, G.; Shan, W.; Zeng, D.; Ding, R.; Jiang, X.; Zhu, D.; Liu, X.; Yang, S.; Chen, H. Myrotheciumones: Bicyclic cytotoxic lactones isolated from an endophytic fungus of Ajuga decumbens. Bioorg. Med. Chem. Lett., 2014, 24(11), 2504-2507.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.016] [PMID: 24775302]
[204]
Taware, R.; Abnave, P.; Patil, D.; Rajamohananan, P.; Raja, R.; Soundararajan, G.; Kundu, G.; Ahmad, A. Isolation, purification and characterization of trichothecinol-a produced by endophytic fungus trichothecium sp. and its antifungal, anticancer and antimetastatic activities. Sustainable Chemical Processes, 2014, 2, 8.
[http://dx.doi.org/10.1186/2043-7129-2-8]
[205]
Palem, P.P.C.; Kuriakose, G.C.; Jayabaskaran, C. An endophytic fungus, talaromyces radicus, isolated from catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One, 2015, 10(12), e0144476.
[http://dx.doi.org/10.1371/journal.pone.0144476] [PMID: 26697875]
[206]
Wang, M.; Sun, Z-H.; Chen, Y-C.; Liu, H-X.; Li, H-H.; Tan, G-H.; Li, S-N.; Guo, X-L.; Zhang, W-M. Cytotoxic cochlioquinone derivatives from the endophytic fungus Bipolaris sorokiniana derived from Pogostemon cablin. Fitoterapia, 2016, 110, 77-82.
[http://dx.doi.org/10.1016/j.fitote.2016.02.005] [PMID: 26877100]
[207]
Eid, S.Y.; El-Readi, M.Z.; Eldin, E.E.M.N.; Fatani, S.H.; Wink, M. Influence of combinations of digitonin with selected phenolics, terpenoids, and alkaloids on the expression and activity of P-glycoprotein in leukaemia and colon cancer cells. Phytomedicine, 2013, 21(1), 47-61.
[http://dx.doi.org/10.1016/j.phymed.2013.07.019] [PMID: 23999162]
[208]
Kennedy, M.J.; Armstrong, D.K.; Huelskamp, A.M.; Ohly, K.; Clarke, B.V.; Colvin, O.M.; Grochow, L.B.; Chen, T.L.; Davidson, N.E. Phase I and pharmacologic study of the alkylating agent modulator novobiocin in combination with high-dose chemotherapy for the treatment of metastatic breast cancer. J. Clin. Oncol., 1995, 13(5), 1136-1143.
[http://dx.doi.org/10.1200/JCO.1995.13.5.1136] [PMID: 7738619]
[209]
Hahm, H.A.; Armstrong, D.K.; Chen, T.L.; Grochow, L.; Passos-Coelho, J.; Goodman, S.N.; Davidson, N.E.; Kennedy, M.J. Novobiocin in combination with high-dose chemotherapy for the treatment of advanced breast cancer: a phase 2 study. Biol. Blood Marrow Transplant., 2000, 6(3A), 335-343.
[http://dx.doi.org/10.1016/S1083-8791(00)70059-0] [PMID: 10905771]
[210]
Shiozawa, K.; Oka, M.; Soda, H.; Yoshikawa, M.; Ikegami, Y.; Tsurutani, J.; Nakatomi, K.; Nakamura, Y.; Doi, S.; Kitazaki, T.; Mizuta, Y.; Murase, K.; Yoshida, H.; Ross, D.D.; Kohno, S. Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int. J. Cancer, 2004, 108(1), 146-151.
[http://dx.doi.org/10.1002/ijc.11528] [PMID: 14618629]
[211]
Lee, S-Y.; Rhee, Y-H.; Jeong, S-J.; Lee, H-J.; Lee, H-J.; Jung, M-H.; Kim, S-H.; Lee, E-O.; Ahn, K.S.; Ahn, K.S.; Kim, S-H. Hydrocinchonine, cinchonine, and quinidine potentiate paclitaxel-induced cytotoxicity and apoptosis via multidrug resistance reversal in MES-SA/DX5 uterine sarcoma cells. Environ. Toxicol., 2011, 26(4), 424-431.
[http://dx.doi.org/10.1002/tox.20568] [PMID: 20196146]
[212]
Huo, Q.; Zhu, J.; Niu, Y.; Shi, H.; Gong, Y.; Li, Y.; Song, H.; Liu, Y. pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int. J. Nanomedicine, 2017, 12, 8631-8647.
[http://dx.doi.org/10.2147/IJN.S144452] [PMID: 29270012]
[213]
Xu, W.; Bae, E.J.; Lee, M-K. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. Int. J. Nanomedicine, 2018, 13, 7549-7563.
[http://dx.doi.org/10.2147/IJN.S182621] [PMID: 30532538]
[214]
Jabri, T.; Imran, M.; Aziz, A.; Rao, K.; Kawish, M.; Irfan, M.; Malik, M.I.; Simjee, S.U.; Arfan, M.; Shah, M.R. Design and synthesis of mixed micellar system for enhanced anticancer efficacy of Paclitaxel through its co-delivery with Naringin. Drug Dev. Ind. Pharm., 2018, 45(5), 703-714.
[PMID: 30557053]
[215]
Solary, E.; Witz, B.; Caillot, D.; Moreau, P.; Desablens, B.; Cahn, J.Y.; Sadoun, A.; Pignon, B.; Berthou, C.; Maloisel, F.; Guyotat, D.; Casassus, P.; Ifrah, N.; Lamy, Y.; Audhuy, B.; Colombat, P.; Harousseau, J.L. Combination of quinine as a potential reversing agent with mitoxantrone and cytarabine for the treatment of acute leukemias: A randomized multicenter study. Blood, 1996, 88(4), 1198-1205.
[PMID: 8695837]
[216]
Zhang, L.; Chen, F.; Zhang, Z.; Chen, Y.; Lin, Y.; Wang, J. Design, synthesis and evaluation of the multidrug resistance-reversing activity of pyridine acid esters of podophyllotoxin in human leukemia cells. Bioorg. Med. Chem. Lett., 2016, 26(18), 4466-4471.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.072] [PMID: 27503681]
[217]
Katiyar, S.S.; Muntimadugu, E.; Rafeeqi, T.A.; Domb, A.J.; Khan, W. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv., 2016, 23(7), 2608-2616.
[PMID: 26036652]
[218]
Li, S.; Lei, Y.; Jia, Y.; Li, N.; Wink, M.; Ma, Y. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine, 2011, 19(1), 83-87.
[http://dx.doi.org/10.1016/j.phymed.2011.06.031] [PMID: 21802927]
[219]
Xu, Y.; Qiu, L. Nonspecifically enhanced therapeutic effects of vincristine on multidrug-resistant cancers when coencapsulated with quinine in liposomes. Int. J. Nanomedicine, 2015, 10, 4225-4237.
[PMID: 26170660]
[220]
Ahmad, B.; Rizwan, M.; Rauf, A.; Raza, M.; Bashir, S.; Molnar, J.; Csonka, A.; Szabo, D.; Mubarak, M.S.; Noor, M.; Siddiqui, B.S. Isolation of chlorogenic acid from soil borne fungi Screlotium rolfsii, their reversal of multidrug resistance and anti-proliferative in mouse lymphoma cells. Med. Chem., 2017, 13(8), 721-726.
[http://dx.doi.org/10.2174/1573406413666170612110443] [PMID: 28606042]
[221]
Dwivedi, G.R.; Gupta, S.; Roy, S.; Kalani, K.; Pal, A.; Thakur, J.P.; Saikia, D.; Sharma, A.; Darmwal, N.S.; Darokar, M.P.; Srivastava, S.K. Tricyclic sesquiterpenes from Vetiveria zizanoides (L.) Nash as antimycobacterial agents. Chem. Biol. Drug Des., 2013, 82(5), 587-594.
[http://dx.doi.org/10.1111/cbdd.12188] [PMID: 23841574]
[222]
Dwivedi, G.R.; Upadhyay, H.C.; Yadav, D.K.; Singh, V.; Srivastava, S.K.; Khan, F.; Darmwal, N.S.; Darokar, M.P. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli. Chem. Biol. Drug Des., 2014, 83(4), 482-492.
[http://dx.doi.org/10.1111/cbdd.12263] [PMID: 24267788]
[223]
Dwivedi, G.R.; Gupta, S.; Maurya, A.; Tripathi, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Synergy potential of indole alkaloids and its derivative against drug-resistant Escherichia coli. Chem. Biol. Drug Des., 2015, 86(6), 1471-1481.
[http://dx.doi.org/10.1111/cbdd.12613] [PMID: 26132412]
[224]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Darokar, M.P.; Srivastava, S.K. Drug resistance reversal potential of ursolic acid derivatives against Nalidixic Acid and multidrug-resistant Escherichia coli. Chem. Biol. Drug Des., 2015, 86(3), 272-283.
[http://dx.doi.org/10.1111/cbdd.12491] [PMID: 25476148]
[225]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 2019, 37(5), 1307-1325.
[http://dx.doi.org/10.1080/07391102.2018.1458654] [PMID: 29595093]
[226]
Dwivedi, G.R.; Tyagi, R. Sanchita; Tripathi, S.; Pati, S.; Srivastava, S.K.; Darokar, M.P.; Sharma, A. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas Aeruginosa. J. Biomol. Struct. Dyn., 2018, 36(16), 4270-4284.
[227]
Luqman, S.; Dwivedi, G.R.; Darokar, M.P.; Kalra, A.; Khanuja, S.P.S. Potential of rosemary oil to be used in drug-resistant infections. Altern. Ther. Health Med., 2007, 13(5), 54-59.
[PMID: 17900043]
[228]
Maurya, A.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem. Biol. Drug Des., 2013, 81(4), 484-490.
[http://dx.doi.org/10.1111/cbdd.12103] [PMID: 23290001]
[229]
Rajesh, P.S.; Ravishankar Rai, V. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1. Microbiol. Res., 2014, 169(7-8), 561-569.
[http://dx.doi.org/10.1016/j.micres.2013.10.005] [PMID: 24268182]
[230]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027] [PMID: 24891085]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy