[1]
Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 1996; 46(4): 907-11.
[2]
Antel J, Antel S, Caramanos Z, Arnold DL, Kuhlmann T. Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? Acta Neuropathol 2012; 123(5): 627-38.
[3]
Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014; 83(3): 278-86.
[4]
Fernández O, Agüera E, Izquierdo G, et al. Adherence to interferon β-1b treatment in patients with multiple sclerosis in Spain. PLoS One 2012; 7(5): e35600.
[5]
McQueen RB, Livingston T, Vollmer T, et al. Increased relapse activity for multiple sclerosis natalizumab users who become nonpersistent: A retrospective study. J Manag Care Spec Pharm 2015; 21(3): 210-8b.
[6]
Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med 2017; 376(3): 209-20.
[7]
Hoepner R, Faissner S, Salmen A, Gold R, Chan A. Efficacy and side effects of natalizumab therapy in patients with multiple sclerosis. J Cent Nerv Syst Dis 2014; 6: 41-9.
[8]
Ferenczy MW, Marshall LJ, Nelson CD, et al. Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25(3): 471-506.
[9]
Brinkmann V. FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 2009; 158(5): 1173-82.
[10]
Mandal P, Gupta A, Fusi-Rubiano W, Keane PA, Yang Y. Fingolimod: Therapeutic mechanisms and ocular adverse effects. Eye 2017; 31(2): 232-40.
[11]
Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet 2012; 380(9856): 1819-28.
[12]
Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet 2012; 380(9856): 1829-39.
[13]
Muraro PA, Scolding NJ, Fox RJ. Rare side effects of alemtuzumab remind us of the need for postmarketing surveillance. Neurology 2018; 90(18): 819-20.
[14]
Sedal L, Winkel A, Laing J, Law LY, McDonald E. Current concepts in multiple sclerosis therapy. Degener Neurol Neuromuscul Dis 2017; 7: 109-25.
[15]
Mangas A, Coveñas R, Bodet D, de León M, Duleu S, Geffard M. Evaluation of the effects of a new drug candidate (GEMSP) in a chronic EAE model. Int J Biol Sci 2008; 4(3): 150-60.
[16]
Geffard M, Mangas A, Coveñas R. Follow-up of multiple sclerosis patients treated with Endotherapia (GEMSP). Biomed Rep 2017; 6(3): 307-13.
[17]
Mangas A, Coveñas R, Bodet D, Duleu S, Geffard M. A new drug candidate (GEMSP) for multiple sclerosis. Curr Med Chem 2009; 16(25): 3203-14.
[18]
Esparza ML, Sasaki S, Kesteloot H. Nutrition, latitude, and multiple sclerosis mortality: An ecologic study. Am J Epidemiol 1995; 142(7): 733-7.
[19]
Ghadirian P, Jain M, Ducic S, Shatenstein B, Morisset R. Nutritional factors in the aetiology of multiple sclerosis: A case-control study in Montreal, Canada. Int J Epidemiol 1998; 27(5): 845-52.
[21]
Trépanier MO, Hildebrand KD, Nyamoya SD, Amor S, Bazinet RP, Kipp M. Phosphatidylcholine 36:1 concentration decreases along with demyelination in the cuprizone animal model and in post-mortem multiple sclerosis brain tissue. J Neurochem 2018; 145(6): 504-15.
[22]
Tabernero A, Lavado EM, Granda B, Velasco A, Medina JM. Neuronal differentiation is triggered by oleic acid synthesized and released by astrocytes. J Neurochem 2001; 79(3): 606-16.
[23]
Medina JM, Tabernero A. Astrocyte-synthesized oleic acid behaves as a neurotrophic factor for neurons. J Physiol Paris 2002; 96(3-4): 265-71.
[24]
Tabernero A, Velasco A, Granda B, Lavado EM, Medina JM. Transcytosis of albumin in astrocytes activates the sterol regulatory element-binding protein-1, which promotes the synthesis of the neurotrophic factor oleic acid. J Biol Chem 2002; 277(6): 4240-6.
[25]
Song SY, Kato C, Adachi E, et al. Expression of an acyl-CoA synthetase, lipidosin, in astrocytes of the murine brain and its up-regulation during remyelination following cuprizone-induced demyelination. J Neurosci Res 2007; 85(16): 3586-97.
[26]
Garbay B, Boiron-Sargueil F, Shy M, et al. Regulation of oleoyl-CoA synthesis in the peripheral nervous system: Demonstration of a link with myelin synthesis. J Neurochem 1998; 71(4): 1719-26.
[27]
Edmond J, Higa TA, Korsak RA, Bergner EA, Lee WN. Fatty acid transport and utilization for the developing brain. J Neurochem 1998; 70(3): 1227-34.
[28]
Chen CT, Green JT, Orr SK, Bazinet RP. Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot Essent Fatty Acids 2008; 79(3-5): 85-91.
[29]
von Geldern G, Mowry EM. The influence of nutritional factors on the prognosis of multiple sclerosis. Nat Rev Neurol 2012; 8(12): 678-89.
[30]
Mehta LR, Dworkin RH, Schwid SR. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat Clin Pract Neurol 2009; 5(2): 82-92.
[31]
Stachowska E, Dolegowska B, Dziedziejko V, et al. Prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) synthesis is regulated by conjugated linoleic acids (CLA) in human macrophages. J Physiol Pharmacol 2009; 60(1): 77-85.
[32]
Callegari PE, Zurier RB. Botanical lipids: potential role in modulation of immunologic responses and inflammatory reactions. Rheum Dis Clin North Am 1991; 17(2): 415-25.
[33]
Gil A. Polyunsaturated fatty acids and inflammatory diseases. Biomed Pharmacother 2002; 56(8): 388-96.
[34]
Namazi MR. The beneficial and detrimental effects of linoleic acid on autoimmune disorders. Autoimmunity 2004; 37(1): 73-5.
[35]
Mertin J, Stackpoole A, Shumway SJ. Prostaglandins and cell-mediated immunity. The role of prostaglandin E1 in the induction of host-versus-graft and graft-versus-host reactions in mice. Transplantation 1984; 37(4): 396-402.
[36]
Mertin J, Stackpoole A, Shumway S. Nutrition and immunity: the immunoregulatory effect of n-6 essential fatty acids is mediated through prostaglandin E. Int Arch Allergy Appl Immunol 1985; 77(4): 390-5.
[37]
Santoli D, Zurier RB. Prostaglandin E precursor fatty acids inhibit human IL-2 production by a prostaglandin E-independent mechanism. J Immunol 1989; 143(4): 1303-9.
[38]
Rossetti RG, Seiler CM, DeLuca P, Laposata M, Zurier RB. Oral administration of unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation. J Leukoc Biol 1997; 62(4): 438-43.
[39]
Gallai V, Sarchielli P, Trequattrini A, et al. Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J Neuroimmunol 1995; 56(2): 143-53.
[40]
Endres S, Ghorbani R, Kelley VE, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989; 320(5): 265-71.
[41]
Dworkin RH, Bates D, Millar JH, Paty DW. Linoleic acid and multiple sclerosis: A reanalysis of three double-blind trials. Neurology 1984; 34(11): 1441-5.
[42]
Millar JH, Zilkha KJ, Langman MJ, et al. Double-blind trial of linoleate supplementation of the diet in multiple sclerosis. BMJ 1973; 1(5856): 765-8.
[43]
Bates D, Fawcett PR, Shaw DA, Weightman D. Trial of polyunsaturated fatty acids in non-relapsing multiple sclerosis. BMJ 1977; 2(6092): 932-3.
[44]
Leeming JP, Holland KT, Bojar RA. The in vitro antimicrobial effect of azelaic acid. Br J Dermatol 1986; 115(5): 551-6.
[45]
Sieber MA, Hegel JK. Azelaic acid: Properties and mode of action. Skin Pharmacol Physiol 2014; 27(Suppl. 1): 9-17.
[46]
Daverat P, Geffard M, Orgogozo JM. Identification and characterization of anti-conjugated azelaic acid antibodies in multiple sclerosis. J Neuroimmunol 1989; 22(2): 129-34.
[47]
LeVine SM, Chakrabarty A. The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann N Y Acad Sci 2004; 1012: 252-66.
[48]
Bizzozero OA, DeJesus G, Callahan K, Pastuszyn A. Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res 2005; 81(5): 687-95.
[49]
Ljubisavljevic S, Stojanovic I, Cvetkovic T, et al. Erythrocytes’ antioxidative capacity as a potential marker of oxidative stress intensity in neuroinflammation. J Neurol Sci 2014; 337(1-2): 8-13.
[50]
van Horssen J, Schreibelt G, Drexhage J, et al. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med 2008; 45(12): 1729-37.
[51]
van Horssen J, Schreibelt G, Bö L, et al. NAD(P)H:quinone oxidoreductase 1 expression in multiple sclerosis lesions. Free Radic Biol Med 2006; 41(2): 311-7.
[52]
Witherick J, et al. Mechanisms of Oxidative Damage in Multiple Sclerosis and a Cell Therapy Approach to Treatment. Autoimmune Dis 2011; 2011: 164608.
[53]
Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 2004; 251(3): 261-8.
[54]
Besler HT, Comoğlu S, Okçu Z. Serum levels of antioxidant vitamins and lipid peroxidation in multiple sclerosis. Nutr Neurosci 2002; 5(3): 215-20.
[55]
Syburra C, Passi S. 1999. Oxidative stress in patients with multiple sclerosis. Ukr Biokhim Zh (1999) 1999; 71(3): 112-5
[56]
Ghazavi A, Mosayebi G, Salehi H, Abtahi H. Effect of ethanol extract of saffron (Crocus sativus L.) on the inhibition of experimental autoimmune encephalomyelitis in C57bl/6 mice. Pak J Biol Sci 2009; 12(9): 690-5.
[57]
Akhondzadeh S, Sabet MS, Harirchian MH, et al. Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: A 16-week, randomized and placebo-controlled trial. J Clin Pharm Ther 2010; 35(5): 581-8.