Mini-Review Article

纳米技术治疗糖尿病的先进策略

卷 20, 期 10, 2019

页: [995 - 1007] 页: 13

弟呕挨: 10.2174/1389450120666190307101642

价格: $65

摘要

背景:目前可用于治疗糖尿病的药物不方便且有一些局限性。因此,需要对新方法进行研究,以便安全地将抗糖尿病药物安全地转移到作用部位。 目的:本综述强调常规抗糖尿病药物的局限性,并提供纳米技术在糖尿病治疗中的最新进展,特别强调了用作抗糖尿病药物递送系统的新型纳米载体方法。 方法:用于治疗糖尿病的潜在纳米载体包括脂质体,niosomes,自纳米乳化药物递送系统,聚合物纳米颗粒,金纳米颗粒,树枝状大分子和胶束。草药纳米医学也已成为一种有前途的草药化合物交付方式。其他纳米技术方法涉及口服胰岛素,可吸入胰岛素,人工胰腺和纳米泵的使用。 结果:纳米载体已经证明可以成功地提供抗糖尿病药物,目的是针对药物靶向以提高疗效和安全性。 结论:这些创新的药物输送系统与传统药物输送系统相比具有重要的优势。纳米技术在糖尿病管理方面的未来仍有几个前景,具有重要意义。

关键词: 糖尿病,纳米技术,纳米载体,抗糖尿病,胰岛素,草药纳米医学。

图形摘要

[1]
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57.
[2]
Arya AK, Kumar L, Pokharia D, Tripathi K. Applications of nano- technology in diabetes. Dig J Nanomater Biostruct 2008; 3(4): 221-5.
[3]
Li W, Yuan G, Pan Y, Wang C, Chen H. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: A review. Front Pharmacol 2017; 8: 74.
[4]
Sowers JR, Lester MA. Diabetes and cardiovascular disease. Diabetes Care 1999; 22: C14.
[5]
Tierney L. Current medical diagnosis and treatment. New York: Lange Medical Books/McGraw-Hill 2002.
[6]
Alberti KGMM, Zimmet Pf. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 1998; 15(7): 539-53.
[7]
Group NDD. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979; 28(12): 1039-57.
[8]
Ross SA, Gulve EA, Wang M. Chemistry and biochemistry of type 2 diabetes. Chem Rev 2004; 104(3): 1255-82.
[9]
Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro-and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 2014; 43(10): 3595-629.
[10]
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv 2016; 23(7): 2371-90.
[11]
Rotenstein LS, Kozak BM, Shivers JP, et al. The ideal diabetes therapy: what will it look like? How close are we? Clin Diabetes 2012; 30(2): 44-53.
[12]
Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS. Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev 2015; 115(11): 4719-43.
[13]
Sutradhar KB, Sumi CD. Implantable microchip: the futuristic controlled drug delivery system. Drug Deliv 2016; 23(1): 1-11.
[14]
Pradhan SK. Microsponges as the versatile tool for drug delivery system. Int J Res Pharm Chem 2011; 1(2): 243-58.
[15]
Schmid M-H, Korting H. Therapeutic progress with topical liposome drugs for skin disease. Adv Drug Deliv Rev 1996; 18(3): 335-42.
[16]
Kesharwani P, Gorain B, Low SY, et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 2017; 136: 52-77.
[17]
Kralj M, Pavelic K. Medicine on a small scale. EMBO Rep 2003; 4(11): 1008-12.
[18]
Logothetidis S. Nanotechnology in medicine: the medicine of tomorrow and nanomedicine. Hippokratia 2006; 10(1): 7-21.
[19]
Pickup JC, Zhi ZL, Khan F, Saxl T, Birch DJ. Nanomedicine and its potential in diabetes research and practice. Diabetes Metab Res Rev 2008; 24(8): 604-10.
[20]
Bratlie KM, York RL, Invernale MA, Langer R, Anderson DG. Materials for diabetes therapeutics. Adv Healthc Mater 2012; 1(3): 267-84.
[21]
Yetisen AK, Montelongo Y, da Cruz Vasconcellos F, et al. Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett 2014; 14(6): 3587-93.
[22]
Veetil JV, Jin S, Ye K. A glucose sensor protein for continuous glucose monitoring. Biosens Bioelectron 2010; 26(4): 1650-5.
[23]
Ravaine V, Ancla C, Catargi B. Chemically controlled closed-loop insulin delivery. J Control Release 2008; 132(1): 2-11.
[24]
Harsoliya M. Recent advances & applications of nanotechnology in diabetes. Int J Pharm Biol Arch 2012; 3(2)
[25]
Rajalakshmi A. Impact of nanotechnology in diabetes. Bull Env Pharmacol Life Sci 2014; 3: 1-4.
[26]
Gupta R. Diabetes treatment by nanotechnology. J Biotechnol Biomater 2017; 7(268): 2.
[27]
Desai TA, Chu WH, Tu JK, et al. Microfabricated immunoisolating biocapsules. Biotechnol Bioeng 1998; 57(1): 118-20.
[28]
Freitas RA. The future of nanofabrication and molecular scale devices in nanomedicine. Stud Health Technol Inform 2002; 80: 45-60.
[29]
Wu Z-H, Ping Q-N, Wei Y, Lai J. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharmacol Sin 2004; 25(7): 966-72.
[30]
Shalaby TI, El-Refaie WM. Bioadhesive chitosan-coated cationic nanoliposomes with improved insulin encapsulation and prolonged oral hypoglycemic effect in diabetic mice. J Pharm Sci 2018; 107(8): 2136-43.
[31]
Niu M, Lu Y, Hovgaard L, Wu W. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int J Nanomedicine 2011; 6: 1155-66.
[32]
Niu M, Lu Y, Hovgaard L, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm 2012; 81(2): 265-72.
[33]
Hu S, Niu M, Hu F, et al. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int J Pharm 2013; 441(1): 693-700.
[34]
Zhang X, Qi J, Lu Y, et al. Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity. Nanoscale Res Lett 2014; 9(1): 185.
[35]
Zhang X, Qi J, Lu Y, et al. Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomed Nanotechnol 2014; 10(1): 167-76.
[36]
Moghassemi S, Parnian E, Hakamivala A, et al. Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. Mater Sci Eng C 2015; 46: 333-40.
[37]
Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxy- ethylene alkyl ether niosomes for delivery of insulin. Int J Pharm 2007; 328(2): 130-41.
[38]
Ning M, Guo Y, Pan H, Yu H, Gu Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: studies in rats. Drug Deliv 2005; 12(6): 399-407.
[39]
Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine 2007; 2(4): 743-9.
[40]
Fonte P, Nogueira T, Gehm C, Ferreira D, Sarmento B. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res 2011; 1(4): 299-308.
[41]
Gu Z, Aimetti AA, Wang Q, et al. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 2013; 7(5): 4194-201.
[42]
Sheng J, He H, Han L, et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release 2016; 233: 181-90.
[43]
Malathi S, Nandhakumar P, Pandiyan V, Webster TJ, Balasubramanian S. Novel PLGA-based nanoparticles for the oral delivery of insulin. Int J Nanomedicine 2015; 10: 2207-18.
[44]
Li X, Wu W, Li J. Glucose-responsive micelles for insulin release. J Control Release 2015; 213: e122-3.
[45]
Dong Z, Hamid KA, Gao Y, et al. Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats. J Pharm Sci 2011; 100(5): 1866-78.
[46]
Nowacka O, Milowska K, Belica-Pacha S, et al. Generation-dependent effect of PAMAM dendrimers on human insulin fibrillation and thermal stability. Int J Biol Macromol 2016; 82: 54-60.
[47]
Nowacka O, Shcharbin D, Klajnert-Maculewicz B, Bryszewska M. Stabilizing effect of small concentrations of PAMAM dendrimers at the insulin aggregation. Colloids Surf B 2014; 116: 757-60.
[48]
Fang X, Yang T, Wang L, et al. Nano-cage-mediated refolding of insulin by PEG-PE micelle. Biomaterials 2016; 77: 139-48.
[49]
Subash Chandran M, Pandey V. In-vitro and in-vivo evaluation of glimepiride loaded liposomes. Der Pharma Chem 2016; 8(24): 22-6.
[50]
Mohsen AM, AbouSamra MM, ElShebiney SA. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: in-vitro characterization and in-vivo evaluation. Drug Dev Ind Pharm 2017; 1-11.
[51]
Mohd AB, Sanka K, Bandi S, Diwan PV, Shastri N. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of glimepiride: development and antidiabetic activity in albino rabbits. Drug Deliv 2015; 22(4): 499-508.
[52]
Tamizharasi S, Dubey A, Rathi V, Rathi J. Development and characterization of niosomal drug delivery of gliclazide. J Young Pharm 2009; 1(3): 205.
[53]
Dash RN, Mohammed H, Humaira T, Ramesh D. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution. Saudi Pharm J 2015; 23(5): 528-40.
[54]
Karthick V, Kumar VG, Dhas TS, et al. Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats-an in vivo approach. Colloids Surf B 2014; 122: 505-11.
[55]
Shaheen TI, El-Naggar ME, Hussein JS, et al. Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed Pharmacother 2016; 83: 865-75.
[56]
Pandita D, Kumari N, Lather V. A Self-nanoemulsifying Drug delivery system for poorly water soluble tolbutamide: development, optimization and pharmacodynamic studies. Pharm Nanotechnol 2017; 5(4): 285-300.
[57]
Namdev S, Gujar K, Mandlik S, Jamkar P. Preparation and in vivo characterization of niosomal carriers of the antidiabetic drug repaglinide. IJPSN 2015; 8(1): 2756-67.
[58]
Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. DARU J Pharm Sci 2015; 23(1): 46.
[59]
Kassem A. SH AE-A, Basha M, Salama A. Phospholipid complex enriched micelles: A novel drug delivery approach for promoting the antidiabetic effect of repaglinide. Eur J Pharm Sci 2017; 99: 75-84.
[60]
Haider M, Kanoujia J, Tripathi CB, et al. Pioglitazone loaded vesicular carriers for anti-diabetic activity: development and optimization as per central composite design. J Pharm Sci Pharmacol 2015; 2(1): 11-20.
[61]
Manconi M, Nácher A, Merino V, et al. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate–chitosan microcomplexation. AAPS PharmSciTech 2013; 14(2): 485-96.
[62]
Sankhyan A, Pawar PK. Metformin loaded non-ionic surfactant vesicles: optimization of formulation, effect of process variables and characterization. DARU J Pharm Sci 2013; 21(1): 7.
[63]
Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv 2013; 20(3-4): 120-6.
[64]
Xu Q, Zhu T, Yi C, Shen Q. Characterization and evaluation of metformin-loaded solid lipid nanoparticles for celluar and mitochondrial uptake. Drug Dev Ind Pharm 2016; 42(5): 701-6.
[65]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[66]
Goyal P, Goyal K, Kumar SGV, et al. Liposomal drug delivery systems-clinical applications. Acta Pharm 2005; 55(1): 1-25.
[67]
Mohsen AM, Asfour MH, Salama AA. Improved hepatoprotective activity of silymarin via encapsulation in the novel vesicular nanosystem bilosomes. Drug Dev Ind Pharm 2017; 43(12): 2043-54.
[68]
Thurston G, McLean JW, Rizen M, et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 1998; 101(7): 1401-13.
[69]
Lim HJ, Cho EC, Shim J, et al. Polymer-associated liposomes as a novel delivery system for cyclodextrin-bound drugs. J Colloid Interface Sci 2008; 320(2): 460-8.
[70]
Agrawal AK, Harde H, Thanki K, Jain S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromol 2013; 15(1): 350-60.
[71]
Khan R, Irchhaiya R. Niosomes: a potential tool for novel drug delivery. J Pharm Investig 2016; 46(3): 195-204.
[72]
Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci 1995; 58(1): 1-55.
[73]
El-Ridy MS, Yehia SA, Mohsen AM, El-Awdan SA, Darwish AB. Formulation of Niosomal Gel for Enhanced Transdermal Lornoxicam Delivery: In-Vitro and In-Vivo Evaluation. Curr Drug Deliv 2018; 15(1): 122-33.
[74]
El-Ridy MS, Badawi AA, Safar MM, Mohsen AM. Niosomes as a novel pharmaceutical formulation encapsulating the hepatoprotective drug silymarin. Int J Pharm Pharm Sci 2012; 4(1): 549-59.
[75]
Lohumi A. A novel drug delivery system: niosomes review. J Drug Deliv Ther 2012; 2(5)
[76]
NVS M, Saini A. Niosomes: a novel drug delivery system. Int J Res Pharm Chem 2011; 1: 498-511.
[77]
Kazi KM, Mandal AS, Biswas N, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 2010; 1(4): 374.
[78]
Shirsand S, Para M, Nagendrakumar D, Kanani K, Keerthy D. Formulation and evaluation of Ketoconazole niosomal gel drug delivery system. Int J Pharm Investig 2012; 2(4): 201.
[79]
Chandra S, Venu V, Jaganathan K, Perumal P. Formulation and in vitro evaluation of sustained release matrix tablets of glimepiride by using natural gums as release modifiers. J Glob Trends Pharm Sci 2011; 2(4): 394-403.
[80]
Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: some recent advances. J Drug Target 2009; 17(9): 671-89.
[81]
ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv 2016; 23(7): 2115-23.
[82]
Alam MS, Ahad A, Abidin L, et al. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in Wistar rats. Biomed Pharmacother 2018; 97: 1514-20.
[83]
Sultan AA, El-Gizawy SA, Osman MA, El Maghraby GM. Niosomes for oral delivery of nateglinide: in situ-in vivo correlation. J Liposome Res 2018; 28(3): 209-17.
[84]
Singh B, Singh R, Bandyopadhyay S, Kapil R, Garg B. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol. Colloids Surf B 2013; 101: 465-74.
[85]
Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 2008; 60(6): 673-91.
[86]
Hu X, Lin C, Chen D, et al. Sirolimus solid self-microemulsifying pellets: formulation development, characterization and bioavailability evaluation. Int J Pharm 2012; 438(1-2): 123-33.
[87]
Setthacheewakul S, Mahattanadul S, Phadoongsombut N, Pichayakorn W, Wiwattanapatapee R. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm 2010; 76(3): 475-85.
[88]
Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res 1995; 12(11): 1561-72.
[89]
Balakumar K, Raghavan CV, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B 2013; 112: 337-43.
[90]
Kassem AA, Mohsen AM, Ahmed RS, Essam TM. Self-nanoemulsi- fying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: Design, optimization, in vitro and in vivo evaluation. J Mol Liq 2016; 218: 219-32.
[91]
Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 1997; 25(1): 47-58.
[92]
Date AA, Nagarsenker M. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm 2007; 329(1-2): 166-72.
[93]
Rashid M, Wani TU, Mishra N, et al. Development and characterization of drug-loaded self-solid nano-emulsified drug delivery system for treatment of diabetes Mat Sci Res India 2018; 15(1): 01- 11.
[94]
Wu D-Y, Ma Y, Hou X-S, et al. Co-delivery of antineoplastic and protein drugs by chitosan nanocapsules for a collaborative tumor treatment. Carbohydr Polym 2017; 157: 1470-8.
[95]
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nano- particles as drug delivery systems. Pharmacol Rep 2012; 64(5): 1020-37.
[96]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[97]
Abousamra Mm, Mohsen Am. Solid lipid nanoparticles and nanostructured lipid carriers of tolnaftate: design, optimization and in-vitro evaluation. Int J Pharm Pharm Sci 2016; 8(1): 380-5.
[98]
Asfour MH, Mohsen AM. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J Adv Res 2018; 9: 17-26.
[99]
De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008; 3(2): 133.
[100]
Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Cancer Nanotechnol 2010; 163-75.
[101]
Sona P. Nanoparticulate drug delivery systems for the treatment of diabetes. Dig J Nanomater Biostruct 2010; 5(2)
[102]
Sgorla D, Lechanteur A, Almeida A, et al. Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opin Drug Deliv 2018; 15(3): 213-22.
[103]
Brown SD, Nativo P, Smith J-A, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010; 132(13): 4678-84.
[104]
Shanmugasundaram KR, Panneerselvam C, Samudram P, Shanmugasundaram E. The insulinotropic activity of Gymnema sylvestre, R. Br. An Indian medical herb used in controlling diabetes mellitus. Pharmacol Res Commun 1981; 13(5): 475-86.
[105]
Edrees HM, Elbehiry A, Elmosaad YM. Hypoglycemic and anti-inflammatory effect of gold nanoparticles in streptozotocin-induced type 1 diabetes in experimental rats. Int J Diabetes Res 2017; 6(1): 16-23.
[106]
Sengani M. Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats. ‎. Environ Toxicol Pharmacol 2017; 50: 11-9.
[107]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[108]
Baig T, Nayak J, Dwivedi V, et al. A review about dendrimers: Synthesis, types, characterization and applications. Int J Adv Pharm Biol Chem 2015; 2015: 44-59.
[109]
Chaudhari HS, Popat RR, Adhao VS, Shrikhande VN. Dendrimers: Novel carriers for drug delivery. JAPTRonline 2016; 4(1): 01-19.
[110]
Dwivedi N, Shah J, Mishra V, et al. Dendrimer-mediated approaches for the treatment of brain tumor. J Biomater Sci Polym Ed 2016; 27(7): 557-80.
[111]
Gorain B, Tekade M, Kesharwani P, et al. The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov Today 2017; 22(4): 652-64.
[112]
Gupta U, Agashe HB, Asthana A, Jain NK. A review of in vitro-in vivo investigations on dendrimers: the novel nanoscopic drug carriers. Nanomed Nanotechnol 2006; 2(2): 66-73.
[113]
Fangueiro JF, Silva AM, Garcia ML, Souto EB. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm 2015; 95: 307-22.
[114]
Cloninger MJ. Biological applications of dendrimers. Curr Opin Chem Biol 2002; 6(6): 742-8.
[115]
Jones M-C, Leroux J-C. Polymeric micelles-a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999; 48(2): 101-11.
[116]
Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. Rsc Adv 2014; 4(33): 17028-38.
[117]
Liao C, Chen Y, Yao Y, et al. Cross-linked small-molecule micelle-based drug delivery system: concept, synthesis, and biological evaluation. Chem Mater 2016; 28(21): 7757-64.
[118]
Seow WY, Xue JM, Yang Y-Y. Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Biomaterials 2007; 28(9): 1730-40.
[119]
Andrade F, Fonte P, Costa A, et al. Pharmacological and toxicological assessment of innovative self-assembled polymeric micelles as powders for insulin pulmonary delivery. Nanomedicine 2016; 11(17): 2305-17.
[120]
Gopi S, Amalraj A, Haponiuk J, Thomas S. Introduction of nanotechnology in herbal drugs and nutraceutical: A Review. J Nanomedine Biotherapeutic Discov 2016; 6: 2.
[121]
Van Lerberghe W. The world health report 2008: primary health care: now more than ever: World Health Organization; 2008.
[122]
Rani R, Dahiya S, Dhingra D, et al. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem Biol Interact 2018; 295: 119-32.
[123]
Bitencourt PE, Ferreira LM, Cargnelutti LO, et al. A new biodegradable polymeric nanoparticle formulation containing Syzygium cumini: Phytochemical profile, antioxidant and antifungal activity and in vivo toxicity. Ind Crops Prod 2016; 83: 400-7.
[124]
Venkatachalam M, Govindaraju K, Sadiq AM, et al. Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim Acta A Mol Biomol Spectrosc 2013; 116: 331-8.
[125]
Shanker K, Mohan GK, Hussain MA, Jayarambabu N, Pravallika PL. Green biosynthesis, characterization, in vitro antidiabetic activity, and investigational acute toxicity studies of some herbal-mediated silver nanoparticles on animal models. Pharmacogn Mag 2017; 13(49): 188.
[126]
Shanker K, Naradala J, Mohan GK, Kumar G, Pravallika P. A sub-acute oral toxicity analysis and comparative in vivo anti-diabetic activity of zinc oxide, cerium oxide, silver nanoparticles, and Momordica charantia in streptozotocin-induced diabetic Wistar rats. Rsc Adv 2017; 7(59): 37158-67.
[127]
Prabhu S, Vinodhini S, Elanchezhiyan C, Rajeswari D. Evaluation of antidiabetic activity of biologically synthesized silver nanoparticles using Pouteria sapota in streptozotocin induced diabetic rats. J Diabetes 2018; 10(1): 28-42.
[128]
Malapermal V, Botha I, Krishna SBN, Mbatha JN. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J Biol Sci 2017; 24(6): 1294-305.
[129]
Swarnalatha L, Rachela C, Ranjan P, Baradwaj P. Evaluation of in vitro antidiabetic activity of Sphaeranthus amaranthoides silver nanoparticles. Int J Nanomater Biostruct 2012; 2(3): 25-9.
[130]
Langle A, González-Coronel MA, Carmona-Gutiérrez G, et al. Stevia rebaudiana loaded titanium oxide nanomaterials as an antidiabetic agent in rats. Rev Bras Farmacogn 2015; 25(2): 145-51.
[131]
Bindu RH, Lakshmi SM, Himaja N, Nirosha K, Pooja M. Formulation, characterisation and anti diabetic evaluation of talinum portulacifolium (forssk.) loaded solid lipid nanoparticles in streptozotocin & high fat diet induced diabetic rats. J Glob Trends Pharm Sci 2014; 5: 2108-14.
[132]
Kavitha K, Sujatha K, Manoharan S. Development, characterization and antidiabetic potentials of nilgirianthus ciliatus nees derived nanoparticles. J Nanomedine Biotherapeutic Discov 2017; 7(2)
[133]
Krauland AH, Guggi D, Bernkop-Schnürch A. Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. J Control Release 2004; 95(3): 547-55.
[134]
Borchard G, Lueßen HL, de Boer AG, et al. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release 1996; 39(2-3): 131-8.
[135]
Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technol Today 2000; 3(10): 346-58.
[136]
Patel HM, Ryman BE. Orally Administered liposomally entrapped insulin. Biochem Soc Trans 1977; 5(6): 1739-41.
[137]
Damgé C, Michel C, Aprahamian M, Couvreur P. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 1988; 37(2): 246-51.
[138]
Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 2007; 117(2): 163-70.
[139]
Lin Y-H, Chen C-T, Liang H-F, et al. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnology 2007; 18(10)105102
[140]
Jindal SK, Singh M, Goswami M. Formulation and evaluation of insulin enteric microspheres for oral drug delivery. Acta Pharm Sci 2009; 51: 121-7.
[141]
Woldu MA, Lenjisa JL. Nanoparticles and the new era in diabetes management. Int J Basic Clin Pharmacol 2014; 3(2): 277-84.
[142]
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005; 19(3): 311-30.
[143]
Hanazaki K, Nosé Y, Brunicardi FC. Artificial endocrine pancreas. J Am Coll Surg 2001; 193(3): 310-22.
[144]
Subramani K, Pathak S, Hosseinkhani H. Recent trends in diabetes treatment using nanotechnology. Dig J Nanomater Biostruct 2012; 7(1): 85-95.
[145]
Rahiman S, Tantry BA. Nanomedicine current trends in diabetes management. J Nanomed Nanotechnol 2012; 3(5)

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy