Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Serum Endocan, Neuron-Specific Enolase and Ischemia-Modified Albumin Levels in Newborns with Partial Blood Exchange Transfusion

Author(s): Erbu Yarci*, Cuneyt Tayman, Ufuk Cakir and Utku Serkant

Volume 24, Issue 6, 2021

Published on: 20 August, 2020

Page: [825 - 830] Pages: 6

DOI: 10.2174/1386207323999200820163525

Price: $65

Abstract

Background: Hyperviscosity of blood secondary to polycythemia results in increased resistance to blood flow and decrease in delivery of oxygen.

Objective: To evaluate whether serum endocan, NSE and IMA levels can be compared in terms of endothelial injury/ dysfunction and neuronal damage in term neonates with polycythemia who underwent PET.

Methods: 38 symptomatic polycythemic newborns having PET and 38 healthy newborns were included in the study. Blood samples for endocan, NSE and IMA were taken at only postnatal 24 hours of age in the control group and in polycytemia group just before PET, at 24 and 72 hours after PET.

Results: The polycythemia group had higher serum endocan(1073,4 ± 644,8 vs. 378,8 ± 95,9ng/ml; p<0.05), IMA(1,32 ± 0,34 vs.0,601 ± 0,095absorbance unit; p<0.05) and NSE(44,7 ± 4,3 vs. 26,91 ± 7,12μg/l; p<0.05) levels than control group before the PET procedure. At 24 hours after PET, IMA(0,656 ± 0,07 vs. 0,601 ± 0,095absorbance unit; p<0.05) and endocan(510,9 ± 228,6 vs. 378,8 ± 95,9ng/ml; p<0.05) levels were closer to the control group, being still statistically significant higher. NSE levels decreased to control group levels having no difference between the PET and control groups at 24 hours after PET (28,98 ± 6,5 vs. 26,91 ± 7,12μg/l; p>0.05). At 72 hours after PET the polycythemia and control groups did not differ statistically for IMA, endocan and NSE levels (p>0.05).

Conclusion: Serum endocan and IMA levels can be used as a biomarker for endothelial damage/ dysfunction and tissue hypoxia in infants with symptomatic polycytemia.

Keywords: Polycythemia, partial exchange transfusion, ischemia, endothelial injury, hyper viscosity erythrocyte, capillary circulation.

[1]
Wirth, F.H.; Goldberg, K.E.; Lubchenco, L.O. Neonatal hyperviscosity: I. Incidence. Pediatrics, 1979, 63(6), 833-836.
[PMID: 450517]
[2]
Vlug, R.D.; Lopriore, E.; Janssen, M.; Middeldorp, J.M.; Rath, M.E.; Smits-Wintjens, V.E. Thrombocytopenia in neonates with polycythemia: incidence, risk factors and clinical outcome. Expert Rev. Hematol., 2015, 8(1), 123-129.
[http://dx.doi.org/10.1586/17474086.2015.997705] [PMID: 25547250]
[3]
Delaney-Black, V.; Camp, B.W.; Lubchenco, L.O.; Swanson, C.; Roberts, L.; Gaherty, P.; Swanson, B. Neonatal hyperviscosity association with lower achievement and IQ scores at school age. Pediatrics, 1989, 83(5), 662-667.
[PMID: 2717281]
[4]
Drew, J.H.; Guaran, R.L.; Cichello, M.; Hobbs, J.B. Neonatal whole blood hyperviscosity: the important factor influencing later neurologic function is the viscosity and not the polycythemia. Clin. Hemorheol. Microcirc., 1997, 17(1), 67-72.
[PMID: 9181760]
[5]
Gross, G.P.; Hathaway, W.E.; McGaughey, H.R. Hyperviscosity in the neonate. J. Pediatr., 1973, 82(6), 1004-1012.
[http://dx.doi.org/10.1016/S0022-3476(73)80433-0] [PMID: 4702893]
[6]
Nelson, N.M. Respiration and circulation before birth.s). Physiology of the Newborn Infant, 4th ed; Smith, C.A.; Nelson, N.M., Eds.; Charles C Thomas: Springfield, 1976, p. 17.
[7]
Morag, I.; Strauss, T.; Lubin, D.; Schushan-Eisen, I.; Kenet, G.; Kuint, J. Restrictive management of neonatal polycythemia. Am. J. Perinatol., 2011, 28(9), 677-682.
[http://dx.doi.org/10.1055/s-0031-1280595] [PMID: 21667428]
[8]
Linderkamp, O.; Nelle, M.; Kraus, M.; Zilow, E.P. The effect of early and late cord-clamping on blood viscosity and other hemorheological parameters in full-term neonates. Acta Paediatr., 1992, 81(10), 745-750.
[http://dx.doi.org/10.1111/j.1651-2227.1992.tb12095.x] [PMID: 1421876]
[9]
Linderkamp, O. Placental transfusion: determinants and effects. Clin. Perinatol., 1982, 9(3), 559-592.
[http://dx.doi.org/10.1016/S0095-5108(18)31013-3] [PMID: 6761038]
[10]
Schimmel, M.S.; Bromiker, R.; Soll, R.F. Neonatal polycythemia: is partial exchange transfusion justified? Clin. Perinatol., 2004, 31(3), 545-553, ix-x.
[http://dx.doi.org/10.1016/j.clp.2004.04.020] [PMID: 15325537]
[11]
Rosenkrantz, T.S. Polycythemia and hyperviscosity in the newborn. Semin. Thromb. Hemost., 2003, 29(5), 515-527.
[http://dx.doi.org/10.1055/s-2003-44558] [PMID: 14631551]
[12]
Al Za’abi, M.; Ali, B.H.; ALOthman, Z.A.; Ali, I. Analyses of acute kidney injury biomarkers by ultra-high performance liquid chromatography with mass spectrometry. J. Sep. Sci., 2016, 39(1), 69-82.
[http://dx.doi.org/10.1002/jssc.201500982] [PMID: 26420427]
[13]
Al Za’abi, M.; Badreldin, B.A.; Ali, I. Advances in the methodologies for the analysis of acute kidney injury biomarkers. Recent Pat. Biomark., 2015, 5, 81-92.
[http://dx.doi.org/10.2174/2210309006666151123190057]
[14]
Ali, I.; Al-Othman, Z.A.; Kishwar Saleem, K.; Hussain, A.; Hussain, I. Role of chromatography for Monitoring of Breast Cancer Biomarkers. Recent Pat. Biomark., 2011, 1, 89-97.
[15]
Leite, A.R.; Borges-Canha, M.; Cardoso, R.; Neves, J.S.; Castro-Ferreira, R.; Leite-Moreira, A. Novel biomarkers for evaluation of endothelial dysfunction. Angiology, 2020, 71(5), 397-410.
[http://dx.doi.org/10.1177/0003319720903586] [PMID: 32077315]
[16]
Zhang, S.M.; Zuo, L.; Zhou, Q.; Gui, S.Y.; Shi, R.; Wu, Q.; Wei, W.; Wang, Y. Expression and distribution of endocan in human tissues. Biotech. Histochem., 2012, 87(3), 172-178.
[http://dx.doi.org/10.3109/10520295.2011.577754] [PMID: 21526908]
[17]
Lippi, G.; Montagnana, M.; Guidi, G.C. Albumin cobalt binding and ischemia modified albumin generation: an endogenous response to ischemia? Int. J. Cardiol., 2006, 108(3), 410-411.
[http://dx.doi.org/10.1016/j.ijcard.2005.03.040] [PMID: 16520132]
[18]
Haque, A.; Polcyn, R.; Matzelle, D.; Banik, N.L. New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci., 2018, 8(2), 33.
[http://dx.doi.org/10.3390/brainsci8020033] [PMID: 29463007]
[19]
Andıç, E.; Karaman, E.; Kolusarı, A.; Çokluk, E. Association of cord blood ischemia-modified albumin level with abnormal foetal Doppler parameters in intrauterine growth-restricted foetuses. J. Matern. Fetal Neonatal Med., 2019, 34(1), 1-6.
[http://dx.doi.org/10.1080/14767058.2019.1569623] [PMID: 30691329]
[20]
Balta, S.; Mikhailidis, D.P.; Demirkol, S.; Ozturk, C.; Celik, T.; Iyisoy, A. Endocan: A novel inflammatory indicator in cardiovascular disease? Atherosclerosis, 2015, 243(1), 339-343.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.030] [PMID: 26448266]
[21]
Bar-Or, D.; Lau, E.; Winkler, J.V. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J. Emerg. Med., 2000, 19(4), 311-315.
[http://dx.doi.org/10.1016/S0736-4679(00)00255-9] [PMID: 11074321]
[22]
Paulus, P.; Jennewein, C.; Zacharowski, K. Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers, 2011, 16(Suppl. 1), S11-S21.
[http://dx.doi.org/10.3109/1354750X.2011.587893] [PMID: 21707440]
[23]
Aird, W.C. Endothelium in health and disease. Pharmacol. Rep., 2008, 60(1), 139-143.
[PMID: 18276995]
[24]
Garcia-Alix, A.; Cabañas, F.; Pellicer, A.; Hernanz, A.; Stiris, T.A.; Quero, J. Neuron-specific enolase and myelin basic protein: relationship of cerebrospinal fluid concentrations to the neurologic condition of asphyxiated full-term infants. Pediatrics, 1994, 93(2), 234-240.
[PMID: 7510064]
[25]
Blennow, M.; Sävman, K.; Ilves, P.; Thoresen, M.; Rosengren, L. Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr., 2001, 90(10), 1171-1175.
[http://dx.doi.org/10.1111/j.1651-2227.2001.tb03249.x] [PMID: 11697430]
[26]
Bar-Or, D.; Curtis, G.; Rao, N.; Bampos, N.; Lau, E. Characterization of the Co(2+) and Ni(2+) binding amino-acid residues of the N-terminus of human albumin. An insight into the mechanism of a new assay for myocardial ischemia. Eur. J. Biochem., 2001, 268(1), 42-47.
[http://dx.doi.org/10.1046/j.1432-1327.2001.01846.x] [PMID: 11121100]
[27]
Roy, D.; Quiles, J.; Gaze, D.C.; Collinson, P.; Kaski, J.C.; Baxter, G.F. Role of reactive oxygen species on the formation of the novel diagnostic marker ischaemia modified albumin. Heart, 2006, 92(1), 113-114.
[http://dx.doi.org/10.1136/hrt.2004.049643] [PMID: 16365361]
[28]
Halil, H.; Tayman, C.; Cakır, U.; Buyuktiryaki, M.; Serkant, U.; Oğuz, S.S. Serum endocan level as a predictive marker for hemodynamically significant patent ductus arteriosus in very low birth weight infants. Am. J. Perinatol., 2017, 34(13), 1312-1317.
[http://dx.doi.org/10.1055/s-0037-1603509] [PMID: 28561144]
[29]
Vítková, V.; Pánek, M.; Janec, P.; Šibíková, M.; Vobruba, V.; Haluzík, M.; Živný, J.; Janota, J. Endothelial microvesicles and soluble markers of endothelial injury in critically ill newborns. Mediators Inflamm., 2018, 2018, 1975056.
[http://dx.doi.org/10.1155/2018/1975056] [PMID: 30116143]
[30]
Arroyo, J.A.; Winn, V.D. Vasculogenesis and angiogenesis in the IUGR placenta. Semin. Perinatol., 2008, 32(3), 172-177.
[http://dx.doi.org/10.1053/j.semperi.2008.02.006] [PMID: 18482617]
[31]
Kucukbas, G.N.; Kara, O.; Yüce, D.; Uygur, D. Maternal plasma endocan levels in intrauterine growth restriction. J. Matern. Fetal Neonatal Med., 2020, 1-6.
[http://dx.doi.org/10.1080/14767058.2020.1749591] [PMID: 32290736]
[32]
Szpera-Gozdziewicz, A.; Kosicka, K.; Gozdziewicz, T.; Krzyscin, M.; Wirstlein, P.; Siemiatkowska, A.; Glowka, F.; Wender-Ozegowska, E.; Breborowicz, G.H. Maternal serum endocan concentration in pregnancies complicated by intrauterine growth restriction. Reprod. Sci., 2019, 26(3), 370-376.
[http://dx.doi.org/10.1177/1933719118773480] [PMID: 29742984]
[33]
Berger, M.M.; Hesse, C.; Dehnert, C.; Siedler, H.; Kleinbongard, P.; Bardenheuer, H.J.; Kelm, M.; Bärtsch, P.; Haefeli, W.E. Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema. Am. J. Respir. Crit. Care Med., 2005, 172(6), 763-767.
[http://dx.doi.org/10.1164/rccm.200504-654OC] [PMID: 15947284]
[34]
Turedi, S.; Gunduz, A.; Menteşe, A.; Karahan, S.C.; Yilmaz, S.E.; Eroglu, O.; Nuhoglu, I.; Turan, I.; Topbas, M. Value of ischemia-modified albumin in the diagnosis of pulmonary embolism. Am. J. Emerg. Med., 2007, 25(7), 770-773.
[http://dx.doi.org/10.1016/j.ajem.2006.12.013] [PMID: 17870479]
[35]
Gunduz, A.; Turedi, S.; Mentese, A.; Karahan, S.C.; Hos, G.; Tatli, O.; Turan, I.; Ucar, U.; Russell, R.M.; Topbas, M. Ischemia-modified albumin in the diagnosis of acute mesenteric ischemia: a preliminary study. Am. J. Emerg. Med., 2008, 26(2), 202-205.
[http://dx.doi.org/10.1016/j.ajem.2007.04.030] [PMID: 18272103]
[36]
Talwalkar, S.S.; Bon Homme, M.; Miller, J.J.; Elin, R.J. Ischemia modified albumin, a marker of acute ischemic events: a pilot study. Ann. Clin. Lab. Sci., 2008, 38(2), 132-137.
[PMID: 18469358]
[37]
Yarcı Gursoy, A.; Caglar, G.S.; Demirtas, S. Ischemia modified albumin in perinatology. Eur. J. Obstet. Gynecol. Reprod. Biol., 2017, 210, 182-188.
[http://dx.doi.org/10.1016/j.ejogrb.2016.12.022] [PMID: 28056434]
[38]
Nagdyman, N.; Kömen, W.; Ko, H.K.; Müller, C.; Obladen, M. Early biochemical indicators of hypoxic-ischemic encephalopathy after birth asphyxia. Pediatr. Res., 2001, 49(4), 502-506.
[http://dx.doi.org/10.1203/00006450-200104000-00011] [PMID: 11264433]
[39]
León-Lozano, M.Z.; Arnaez, J.; Valls, A.; Arca, G.; Agut, T.; Alarcón, A.; Garcia-Alix, A. Cerebrospinal fluid levels of neuron-specific enolase predict the severity of brain damage in newborns with neonatal hypoxic-ischemic encephalopathy treated with hypothermia. PLoS One, 2020, 15(6), e0234082.
[http://dx.doi.org/10.1371/journal.pone.0234082] [PMID: 32479533]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy