[1]
Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334, 928-935.
[2]
Vineetha, C.P.; Babu, C.A. Economie analysis of off grid and on grid hybrid power system.2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014]; IEEE: Nagercoil, India, 2014, pp. 473-478.
[3]
Jiang, H.; Lee, P.S.; Li, C. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci., 2013, 6, 41-53.
[4]
Di Noto, V.; Lavina, S.; Giffin, G.A.; Negro, E.; Scrosati, B. Polymer electrolytes: Present, past and future. Electrochim. Acta, 2011, 57, 4-13.
[5]
Walsh, A.; Padure, N.P.; Seok, S. Physical chemistry of hybrid perovskite solar cells. Phys. Chem. Chem. Phys., 2016, 18, 27024-27025.
[6]
Miller, J.R.; Outlaw, R.A.; Holloway, B.C. Graphene double-layer capacitor with ac line-filtering performance. Science, 2010, 329, 1637-1369.
[7]
Shukla, A.K.; Banerjee, A.; Ravikumar, M.K.; Jalajakshi, A. Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochim. Acta, 2012, 84, 165-173.
[8]
Brezesinski, T.; Wang, J.; Tolbert, S.H.; Dunn, B. Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater., 2010, 9, 146-151.
[9]
Mai, L.Q.; Yang, F.; Zhao, Y.L.; Xu, X.; Xu, L.; Luo, Y.Z. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun., 2011, 2, 381-385.
[10]
Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale, 2013, 5, 72-88.
[11]
Chandra, A. Supercapacitors: An alternate technology for energy storage. Proc. Natl. Acad. Sci. Sect. A Phys. Sci., 2012, 82, 79-90.
[12]
Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41, 797-828.
[13]
Pandolfo, A.; Hollenkamp, A. Carbon properties and their role in supercapacitors. J. Power Sources, 2006, 157, 11-27.
[14]
Snook, G.A.; Kao, P.; Best, A.S. Conducting polymer based supercapacitor devices and electrodes. J. Power Sources, 2011, 196, 1-12.
[15]
Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Belanger, D. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys., A., 2006, 82, 599-606.
[16]
Pumera, M. Graphene based nanomaterials and their electrochemistry. Chem. Soc. Rev., 2010, 39, 41-46.
[17]
Zheng, M.; Xiao, X.; Li, L.; Gu, P.; Dai, X.; Tang, H.; Hu, Q.; Xue, H.; Pang, H. Hierarchically nanostructured transition metal oxides for supercapacitors. Sci. China Mater., 2018, 61, 185-209.
[18]
Anandhi, P.; Jawahar Senthil Kumar, V.; Harikrishnan, S. Enhanced capacitive characteristics of TiO2 nanoflakes based electrode material for supercapacitor. J. Electr. Eng., 2017, 17, 252-258.
[19]
Raut, S.S.; Patil, G.P.; Chavan, P.G.; Sankapa, B.R. Vertically aligned TiO2 nanotubes: Highly stable electrochemical supercapacitor. J. Electroanal. Chem., 2016, 780, 197-200.
[20]
Li, S.; Wen, J.; Mo, X.; Long, H.; Wang, H.; Wang, J.; Fang, G. Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources, 2014, 256, 206-211.
[21]
Pang, H.; Ma, Y.; Li, G.; Chen, J.; Zhang, J.; Zheng, H.; Du, W. Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Trans., 2012, 41(43), 13284-13291.
[22]
Xing, Z.; Chu, Q.; Ren, X.; Ge, C.; Qusti, A.H.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources, 2014, 245, 463-467.
[23]
Tang, C.; Pu, Z.; Liu, Q.; Asiri, A.M.; Sun, X.; Luo, Y.; He, Y. In situ growth of NiSe nanowire film on nickel foam as an electrode for high‐performance supercapacitors. ChemElectroChem, 2015, 2, 1903-1907.
[24]
Pazhamalai, P.; Krishnamoorthy, K.; Sudhakaran, M.S.P.; Kim, S.J. Fabrication of high-performance aqueous Li-ion hybrid capacitor with LiMn2O4 and graphene. ChemElectroChem, 2017, 4, 396-403.
[25]
Tian, Y.; Yang, C.; Que, W.; He, Y.; Liu, X.; Luo, Y.; Yin, X.; Kong, L.B. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. J. Power Sources, 2017, 369, 78-86.
[26]
Conway, B.E. Electrochemical supercapacitors: Scientific fundamentals and technological applications; Springer Science & Business Media: New York, 2013.