Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Chemical Constituents of Luculia pinceana in Vietnam and Evaluation of their Biological Activity

Author(s): Phan Minh Giang*, Le Thi Huyen, Nguyen Van Dau*, Duong Hong Anh and Pham Hung Viet*

Volume 10, Issue 2, 2020

Page: [163 - 167] Pages: 5

DOI: 10.2174/2210315509666190211124544

Price: $65

Abstract

Background: In the flora of China and Vietnam, Luculia pinceana Hook of the family Rubiaceae is described as a medicinal plant. Prior chemical studies of L. pinceana in China isolated iridois, glycosides of cincholic acid, and kaempferol glycosides from the stem, however, have not been conducted with L. pinceana in Vietnam.

Methods: The stem of L. pinceana was extracted with a mixture of 90%EtOH–H2O at room temperature and the extract was further fractionated by using liquid-liquid extraction and repeated column- chromatographic techniques. Spectroscopic data (IR, MS, 1D- and 2D-NMR) were used to determine structures of isolated compounds.

Results: Thirteen compounds were isolated and structurally determined. Oleanolic acid (2), scopoletin (3), cleomiscosin A (4), (E)-mappianine E (5a), (Z)-mappianine E (5b), vanillic acid (6), 2-hydroxyacetophenone-4-O-β-D-glucopyranoside (7), sweroside (10), and 4-methoxyacetophenone- 2-O-β-D-glucopyranoside (11) were isolated for the first time from L. pinceana. Compounds 6, 10, 11, loganin (8), 7-ketologanin (9) were not active (IC50 > 300 µg/ml), whereas 7 showed a weak activity (IC50 268.35 µg/ml) in the DPPH (1,1-diphenylpicrazyl) radical scavenging assay. A mixture of 5a/5b was cytotoxic against the human cancer cell line HepG2 (IC50 100.57 µg/ml) in the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

Conclusion: L. pinceana in Vietnam was investigated for the first time. We isolated compounds of varied biosynthetic origins including monoterpene indole, iridoid, coumarin, coumaro-lignoid, phytosterol, oleanane triterpenoid, phenolic acid, and acetophenone. Nine of the thirteen compounds are newly isolated from L. pinceana. The study determined weak scavenging activity of acetophenone (7) in the DPPH-scavenging assay and weak cytotoxicity of a mixture of two monoterpene indoles (5a and 5b) against HepG2 cell.

Keywords: Luculia pinceana, Rubiaceae, iridoid, acetophenone, monoterpene indole, column-chromatographic, spectrometry.

Graphical Abstract

[1]
http://ydvn.net (Accessed July 23, 2018).
[2]
Kang, W.Y.; Hao, X.J. Terpenoid glycosides from stem of Luculia pinceana. China J. Chin. Mater. Medic., 2007, 32, 2606-2609.
[3]
Kang, W.J.; Wang, J.S.; Yang, X.S.; Hao, X.J.; Wang, J.S. Triterpenoid saponins from Luculia pinceana Hook. Chin. J. Chem., 2003, 21, 1501-1505.
[4]
Kang, W.; Wang, J.M.; Ji, Z.Q. Flavonoids in Luculia pinceana. Chem. Nat. Compd., 2008, 44, 644.
[5]
Dr. Tran Van On (Hanoi College of Pharmacy), Personal communication, 2017.
[6]
Goad, L.J.; Akihisa, T. Mass spectrometry of sterols.Analysis of Sterols; Springer: Dordrecht, 1997, pp. 152-196.
[7]
Martins, D.; Carrion, L.L.; Ramos, D.F.; Salomé, K.S.; Almeida da Silva, P.E.; Barison, A.; Nunez, C.V. Triterpenes and the antimycobacterial activity of Duroia macrophylla Huber (Rubiaceae). BioMed Res. Int., 2013.
[8]
El-Demerdash, A.; Dawidar, A.M.; Keshk, E.M.; Abdel-Mogib, M. Coumarins from Cynanchum acutum. Rev. LatinoAmer. Quim., 2009, 37, 65-69.
[9]
Ranjan, R.; Sahai, M. Coumarinolignans from the seeds of Annona squamosa Linn. E-J. Chem., 2009, 6, 518-522.
[10]
Zhang, G-J.; Hu, F.; Jiang, H.; Dai, L-M.; Liao, H-B.; Li, N.; Wang, H-S.; Pan, Y-M.; Liang, D. Mappianines A-E, structurally diverse monoterpenoid indole alkaloids from Mappianthus iodoides. Phytochemistry, 2018, 145, 68-76.
[11]
Chang, S.W.; Kim, K.H.; Lee, I.K.; Choi, S.U.; Ryu, S.Y.; Lee, K.R. Phytochemical constituents of Bistorta manshuriensis. Nat. Prod. Sci., 2009, 15, 234-240.
[12]
Wang, A.; Gao, X.; Huo, X.; Huang, S.; Feng, L.; Sun, C.; Zhang, B.; Ma, X.; Jia, J.; Wang, C. Antioxidant acetophenone glycosides from the roots of Euphorbia ebracteolata. Nat. Prod. Res., 2018, 32, 2187-2192.
[13]
Uvenalp, Z.; Kiliç, N.; Kazaz, C.; Kaya, Y.; Omür, L.; Irezer, D. Chemical constituents of Galium tortumense. Turk. J. Chem., 2006, 30, 515-523.
[14]
Ferrari, F.; Messana, I.; Botta, B.; de Mello, J.F. Constituents of Guettarda platypoda. J. Nat. Prod., 1986, 49, 1150-1151.
[15]
Li, W.; Koike, K.; Asada, Y.; Yoshikawa, T.; Nikaido, T. Biotransformation of paeonol by Panax ginseng root and cell cultures. J. Mol. Catal., B Enzym., 2005, 35, 117-121.
[16]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT, 1995, 28, 25-30.
[17]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83, 757-766.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy