Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Optical Absorption Enhancement in Polymer BHJ thin Film Using Ag Nanostructures: A Simulation Study

Author(s): Asma Khalil*, Zubair Ahmad*, Farid Touati and Mohamed Masmoudi

Volume 16, Issue 4, 2020

Page: [556 - 567] Pages: 12

DOI: 10.2174/1573413715666190125163438

Price: $65

Abstract

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum.

Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films.

Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed.

Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value.

Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.

Keywords: Thin film, organic solar cell, bulk heterojunction, nanostructures, active materials, energy levels, absorbance spectrum, optical simulation.

Graphical Abstract

[1]
Yin, H.; Chiu, K.L.; Ho, C.H.Y.; Lee, H.K.H.; Li, H.W.; Cheng, Y.; Tsang, S.W.; So, S.K. Bulk-heterojunction solar cells with enriched polymer contents. Org. Electron., 2017, 40, 1-7.
[http://dx.doi.org/10.1016/j.orgel.2016.10.030]
[2]
Maruhashi, H.; Oku, T.; Suzuki, A.; Akiyama, T.; Yamasaki, Y. Fabrication and characterization of PCBM: P3HT-based thin-film organic solar cells with zinc phthalocyanine and 1, 8-diiodooctane. Chem. Mater. Eng., 2017, 5(1), 1-7.
[3]
Joe, S.Y.; Ryu, S.; Nguyen, D.C.; Yim, J.H.; Jeong, H.; Ha, N.Y.; Ahn, Y.H.; Park, J.Y. Lee, S. Contributions of poly (3-hexylthiophene) nanowires to alteration of vertical inhomogeneity of bulk-heterojunction active layers and improvements of light harvesting and power-conversion efficiency of organic solar cells. Org. Electron., 2017, 42, 372-378.
[http://dx.doi.org/10.1016/j.orgel.2016.12.063]
[4]
Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci., 2013, 38(12), 1929-1940.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.05.001 PMID: 24302787]
[5]
Chen, C.C.; Chang, W.H.; Yoshimura, K.; Ohya, K.; You, J.; Gao, J.; Hong, Z.; Yang, Y. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater., 2014, 26(32), 5670-5677.
[http://dx.doi.org/10.1002/adma.201402072 PMID: 25043698]
[6]
Rafique, S.; Abdullah, S.M.; Shahid, M.M.; Ansari, M.O.; Sulaiman, K. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT:PSS double decked hole transport layer. Sci. Rep., 2017, 7, 39555.
[http://dx.doi.org/10.1038/srep39555 PMID: 28084304]
[7]
Luan, W.; Zhang, C.; Luo, L.; Yuan, B.; Jin, L.; Kim, Y.S. Enhancement of the photoelectric performance in inverted bulk heterojunction solid solar cell with inorganic nanocrystals. Appl. Energy, 2017, 185, 2217-2223.
[http://dx.doi.org/10.1016/j.apenergy.2016.04.042]
[8]
Girtan, M. Study of charge carriers’ transport in organic solar cells by illumination area shifting. Sol. Energy Mater. Sol. Cells, 2017, 160, 430-434.
[http://dx.doi.org/10.1016/j.solmat.2016.11.011]
[9]
D’Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van Der Auweraer, M.; Van Tendeloo, G.; Ethirajan, A. Tuning of PCDTBT: PC 71 BM blend nanoparticles for eco-friendly processing of polymer solar cells. Sol. Energy Mater. Sol. Cells, 2017, 159, 179-188.
[http://dx.doi.org/10.1016/j.solmat.2016.09.008]
[10]
Nardes, A.M.; Kemerink, M.; De Kok, M.M.; Vinken, E.; Maturova, K.; Janssen, R.A.J. Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Org. Electron., 2008, 9(5), 727-734.
[http://dx.doi.org/10.1016/j.orgel.2008.05.006]
[11]
Li, Z.; Liang, Y.; Zhong, Z.; Qian, J.; Liang, G.; Zhao, K.; Tian, W. A low-work-function, high-conductivity PEDOT:PSS electrode for organic solar cells with a simple structure. Synth. Met., 2015, 210, 363-366.
[http://dx.doi.org/10.1016/j.synthmet.2015.11.006]
[12]
Wei, Q.; Mukaida, M.; Kirihara, K.; Naitoh, Y.; Ishida, T. Recent progress on PEDOT-based thermoelectric materials. Materials (Basel), 2015, 8(2), 732-750.
[http://dx.doi.org/10.3390/ma8020732 PMID: 28787968]
[13]
Ahipa, T.N.; Anoop, K.M.; Ranjith, K.P. Hexagonal columnar liquid crystals as a processing additive to a P3HT:PCBM photoactive layer. New J. Chem., 2015, 39(11), 8439-8445.
[http://dx.doi.org/10.1039/C5NJ01350J]
[14]
Kadem, B.; Aseel, H.; Wayne, C. Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J. Mater. Sci. Mater. Electron., 2016, 27(7), 7038-7048.
[http://dx.doi.org/10.1007/s10854-016-4661-8]
[15]
Synooka, O.; Eberhardt, K.R.; Singh, C.R.; Hermann, F.; Ecke, G.; Ecker, B.; Hoppe, H. Influence of thermal annealing on PCDTBT:PCBM composition profiles. Adv. Energy Mater., 2014, 4(5) 1300981
[http://dx.doi.org/10.1002/aenm.201300981]
[16]
Ochiai, S.; Uchiyama, M.; Kannappan, S.; Jayaraman, R.; Shin, P.K. Evaluation of the performance of an organic thin film solar cell prepared using the active layer of poly [[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-diyl-2.5-thiophenediyl]/[6,6]-phenyl C71 butyric acid methyl ester composite thin film. Trans. Electr. Electron. Mater., 2012, 13(1), 43-46.
[http://dx.doi.org/10.4313/TEEM.2012.13.1.43]
[17]
Xin-Ping, W.; Zhi-Qun, H.; Chun-Jun, L.; Hai-An, Q.; Xi-Ping, J. Exploring photocurrent output from donor/acceptor bulk-heterojunctions by monitoring exciton quenching. Chin. Phys. B, 2015, 24(6) 063301
[http://dx.doi.org/10.1088/1674-1056/24/6/063301]
[18]
Grancini, G.; Maiuri, M.; Fazzi, D.; Petrozza, A.; Egelhaaf, H.J.; Brida, D.; Cerullo, G.; Lanzani, G. Hot exciton dissociation in polymer solar cells. Nat. Mater., 2013, 12(1), 29-33.
[http://dx.doi.org/10.1038/nmat3502] [PMID: 23223127]
[19]
Kim, J.Y.; Lee, K.; Coates, N.E.; Moses, D.; Nguyen, T.Q.; Dante, M.; Heeger, A.J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007, 317(5835), 222-225.
[http://dx.doi.org/10.1126/science.1141711] [PMID: 17626879]
[20]
Klump, E.; Constantinou, I.; Lai, T.H.; So, F. Utilizing forster resonance energy transfer to extend spectral response of PCDTBT:PCBM solar cells. Org. Electron., 2017, 42, 87-92.
[http://dx.doi.org/10.1016/j.orgel.2016.12.010]
[21]
Chi, D.; Qu, S.; Wang, Z.; Wang, J. High efficiency P3HT:PCBM solar cells with an inserted PCBM layer. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(22), 4383-4387.
[http://dx.doi.org/10.1039/c4tc00003j]
[22]
Synooka, O.; Kretschmer, F.; Hager, M.D.; Himmerlich, M.; Krischok, S.; Gehrig, D.; Laquai, F.; Schubert, U.S.; Gobsch, G.; Hoppe, H. Modification of the active layer/PEDOT:PSS interface by solvent additives resulting in improvement of the performance of organic solar cells. ACS Appl. Mater. Interfaces, 2014, 6(14), 11068-11081.
[http://dx.doi.org/10.1021/am503284b] [PMID: 24979240]
[23]
Liu, X.; Huajie, C.; Songting, T. Overview of high-efficiency organic photovoltaic materials and devices. Renew. Sustain. Energy Rev., 2015, 52, 1527-1538.
[http://dx.doi.org/10.1016/j.rser.2015.08.032]
[24]
Kim, R.S.; Zhu, J.; Park, J.H.; Li, L.; Yu, Z.; Shen, H.; Xue, M.; Wang, K.L.; Park, G.; Anderson, T.J.; Pei, Q. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model. Opt. Express, 2012, 20(12), 12649-12657.
[http://dx.doi.org/10.1364/OE.20.012649] [PMID: 22714293]
[25]
Jheng, J.Y.; Sah, P.T.; Chang, W.C.; Chen, J.H.; Chan, L.H. Decahedral gold nanoparticles for enhancing performance of polymer solar cells. Dyes Pigm., 2017, 138, 83-89.
[http://dx.doi.org/10.1016/j.dyepig.2016.11.027]
[26]
Fung, D.D.; Qiao, L.; Choy, W.C.; Wang, C.; Wei, E.I.; Xie, F.; He, S. Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. J. Mater. Chem., 2011, 21(41), 16349-16356.
[http://dx.doi.org/10.1039/c1jm12820e]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy