Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

临床决策支持工具对记忆诊所痴呆诊断的影响:PredictND验证研究

卷 16, 期 2, 2019

页: [91 - 101] 页: 11

弟呕挨: 10.2174/1567205016666190103152425

摘要

背景:确定痴呆的潜在病因可能具有挑战性。基于计算机的临床决策支持系统(CDSS)有可能提供客观的数据比较并协助临床医生。 目的:评估CDSS(PredictND工具)对记忆诊所痴呆的鉴别诊断的诊断影响。 方法:在这项前瞻性多中心研究中,我们招募了779名患者,其主观认知能力下降(n = 252),轻度认知障碍(n = 219)或任何类型的痴呆(n = 274),并且随访至少12个月。基于所有可用的患者基线数据(人口统计学,神经心理学测试,脑脊髓液生物标志物和MRI视觉和计算评级),PredictND工具提供数据的全面概述和分析,具有五个诊断组的似然指数;阿尔茨海默病,血管性痴呆,路易体痴呆,额颞叶痴呆和主观认知能力下降。在基线时,临床医生定义了病因诊断和诊断信心,首先是没有,然后使用PredictND工具。后续诊断用作参考诊断。 结果:总共有747名患者完成了随访(53%为女性,69±10岁)。使用PredictND工具时,病例诊断在所有病例中有13%发生变化,但诊断准确性没有显着变化。通过视觉模拟评分(VAS,0-100%)测量的诊断信心增加(ΔVAS= 3.0%,p <0.0001),特别是在正确改变的诊断中(ΔVAS= 7.2%,p = 0.0011)。 结论:将PredictND工具添加到诊断评估中会影响诊断并提高临床医生对诊断的信心,表明CDSS可以帮助临床医生对痴呆进行鉴别诊断。

关键词: 计算机辅助诊断,神经退行性疾病,CDSS,鉴别诊断,阿尔茨海默病,额颞部疾病,路易体痴呆,血管性痴呆。

[1]
Schoonenboom NSM, Reesink FE, Verwey NA, Kester MI, Teunissen CE, van de Ven PM, et al. Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78(1): 47-54. (2012).
[2]
Kapasi A, Decarli C, Schneider JA. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol 134: 171-86. (2017).
[3]
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 270-9. (2011).
[4]
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 263-9. (2011).
[5]
Román G, Tatemichi T, Erkinjuntti T, Cummings J, Masdeu J, Garcia J, et al. Vascular dementia:diagnostic criteria for research studies: report of the NINDS‐AIREN International Workshop. Neurology 43(2): 250-60. (1993).
[6]
Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(9): 2456-77. (2011).
[7]
McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89(1): 88-100. (2017).
[8]
Sachdev P, Kalaria R. O ’brien J, Skoog I, Alladi S, Black SE, Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord 28(3): 206-18. (2014).
[9]
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14(4): 535-62. (2018).
[10]
Simonsen AH, Herukka S-K, Andreasen N, Baldeiras I, Bjerke M, Blennow K, et al. Perspective recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimers Dement 13: 274-84. (2017).
[11]
Oxtoby NP, Alexander DC. Imaging plus X: multimodal models of neurodegenerative disease. Curr Opin Neurol 30(4): 371-9. (2017).
[12]
Sørensen L, Igel C, Pai A, Balas I, Anker C, Lillholm M, et al. Differential diagnosis of mild cognitive impairment and Alzheimer’s disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry for the Alzheimer’s Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle flagship study of ageing. Neuroimage Clin 13: 470-82. (2016).
[13]
Raamana PR, Rosen H, Miller B, Weiner MW, Wang L, Beg MF. Three-class differential diagnosis among Alzheimer disease, frontotemporal dementia, and controls. Front Neurol 5: 1-15. (2014).
[14]
Bron EE, Smits M, Van Der Flier WM, Vrenken H, Barkhof F, Scheltens P, et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge, for the Alzheimer’s Disease Neuroimaging Initiative 1. Neuroimage 111: 562-79. (2015).
[15]
Cure S, Abrams K, Belger M, Dell’angnello G, Happich M. Systematic literature review and meta-analysis of diagnostic test accuracy in alzheimer’s disease and other dementia using autopsy as standard of truth. J Allergy Clin Immunol 42(1): 169-82. (2014).
[16]
Simonsen A, Mattila J, Hejl A, Frederiksen K, Herukka S, Hallikainen M, et al. Application of the Predictad software tool to predict progression in patients with mild cognitive impairment. Dement Geriatr Cogn Disord 34(5-6): 344-50. (2012).
[17]
Koikkalainen J, Rhodius-Meester H, Tolonen A, Barkhof F, Tijms B, Lemstra AW, et al. Differential diagnosis of neurodegenerative diseases using structural MRI data. Neuroimage Clin 11: 435-49. (2016).
[18]
Tolonen A, Rhodius-meester HFM, Bruun M, Koikkalainen J, Barkhof F, Lemstra AW, et al. Data-driven differential diagnosis of dementia using multiclass disease state index classifier. Front Aging Neurosci 10: 1-11. (2018).
[19]
Van Der Flier WM, Pijnenburg YAL, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, et al. Optimizing patient care and research: the amsterdam dementia cohort. J Alzheimers Dis 41: 313-27. (2014).
[20]
Van Der Flier WM, Scheltens P. Amsterdam dementia cohort: performing research to optimize care. J Alzheimers Dis 62(3): 1091-1. (2018).
[21]
McKhann GM. Clinical and pathological diagnosis of frontotemporal dementia. Arch Neurol 58(11): 1803-9. (2001).
[22]
Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51(6): 1546-54. (1998).
[23]
Gorno-Tempini M, Hillis A, Weintraub S, Kertesz A, Mendez M, Cappa S, et al. Classification of primary progressive aphasia and its variants. Neurology 76(11): 1006-14. (2011).
[24]
Mckeith I, Dickson D, Lowe J, Emre M, O’Brien J, Feldman H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12): 1863-72. (2005).
[25]
Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13(6): 614-29. (2014).
[26]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3): 189-98. (1975).
[27]
Lindeboom J, Matto D. Digit series and Knox cubes as concentration tests for elderly subjects. Tijdschr Gerontol Geriatr 25: 63-8. (1994).
[28]
Reitan RM. Validity of the Trail Making Test as an indicator of organic brian damage. Percept Mot Skills 8: 271-6. (1958).
[29]
Van Der Elst W, Van Boxtel MPJ, Van Breukelen GJP, Jolles J. Normative data for the Animal, Profession and Letter M Naming verbal fluency tests for Dutch speaking participants and the effects of age, education, and sex. J Int Neuropsychol Soc 12(1): 80-9. (2006).
[30]
Mathuranath PS, Nestor PJ, Berrios GE, Rakowicz W, Hodges JR. A brief cognitive test battery to differentiate Alzheimer ’ s disease and frontotemporal dementia. Neurology 55(11): 1613-20. (2000).
[31]
Schmidt M. Rey auditory verbal learning test: a handbook Western Psychological Services: Los Angeles, CA. (1996).
[32]
Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39(9): 1159-65. (1989).
[33]
Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17(1): 37-49. (1982).
[34]
Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 44(12): 2308-14. (1994).
[35]
Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry 140: 566-72. (1982).
[36]
Gelinas I, Gauthier L, McIntyre M, Gauthier S. Development of a functional measure for persons with Alzheimer’s disease: the disability assessment for dementia. Am J Occup Ther 53(5): 471-81. (1999).
[37]
Morris JC, Weintraub S, Chui HC, Cummings J, Decarli C, Ferris S, et al. The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Dis Assoc Disord 20(4): 210-6. (2006).
[38]
Pasquier F, Leys D, Weerts JGE, Mounier-Vehier F, Barkhof F, Scheltens P. Inter-and intraobserver reproducibility of cerebral atrophy assessment on mri scans with hemispheric infarcts. Eur Neurol 36(5): 268-72. (1996).
[39]
Scheltens P, Van De Pol L. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 83(11): 1038-40. (2012).
[40]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. Mr Signal abnormalities at 1.5-t in alzheimer dementia and normal aging. Am J Roentgenol 149(2): 351-6. (1987).
[41]
Mattila J, Koikkalainen J, Virkki A, Simonsen A, Van Gils M, Waldemar G, et al. A Disease state fingerprint for evaluation of Alzheimer’s disease. J Alzheimers Dis 27: 163-76. (2014).
[42]
Mattila J, Koikkalainen J, Virkki A, van Gils M, Lötjönen J. Design and application of a generic clinical decision support system for multiscale data. IEEE Trans Biomed Eng 59(1): 234-40. (2012).
[43]
Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11(10): 1305-19. (1992).
[44]
Rhodius-meester HFM, Koikkalainen J, Mattila J, Teunissen CE, Barkhof F, Lemstra AW, et al. Integrating biomarkers for underlying alzheimer’s disease in mild cognitive impairment in daily practice: comparison of a clinical decision support system with individual biomarkers. J Alzheimers Dis 50: 261-70. (2016).
[45]
Hall A, Muñoz-Ruiz M, Mattila J, Koikkalainen J, Tsolaki M, Mecocci P, et al. Generalizability of the disease state index prediction model for identifying patients progressing from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis 44(1): 79-92. (2015).
[46]
Bruun M, Rhodius-meester HFM, Koikkalainen J, Baroni M, Gjerum L, Lemstra AW, et al. Evaluating combinations of diagnostic tests to discriminate different dementia types. Alzheimers Dement (Amst) Diagnosis, Assess Dis Monit 10(August): 509-18. (2018).
[47]
Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69(24): 2197-04. (2007).
[48]
White LR, Edland SD, Hemmy LS, Montine KS, Zarow C, Sonnen JA, et al. Neuropathologic comorbidity and cognitive impairment in the Nun and Honolulu-Asia Aging Studies. Neurology 86(11): 1000-8. (2016).
[49]
Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 66(2): 200-8. (2009).
[50]
Duits FH, Prins ND, Lemstra AW, Pijnenburg YAL, Bouwman FH, Teunissen CE, et al. Diagnostic impact of CSF biomarkers for Alzheimer’s disease in a tertiary memory clinic. Alzheimers Dement 11(5): 523-32. (2015).
[51]
Ossenkoppele R, Prins ND, Pijnenburg YAL, Lemstra AW, Van Der Flier WM, Adriaanse SF, et al. Impact of molecular imaging on the diagnostic process in a memory clinic. Alzheimers Dement 9: 414-21. (2013).
[52]
Zwan MD, Bouwman FH, Konijnenberg E, Van Der Flier WM, Lammertsma AA, Verhey FRJ, et al. Diagnostic impact of [ 18 F]flutemetamol PET in early-onset dementia. Alzheimers Res Ther 9(2): 1-8. (2017).
[53]
Brunnström H, Englund E. Clinicopathological concordance in dementia diagnostics. Am J Geriatr Psychiatry 17(8): 664-70. (2009).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy