[1]
McCullough, K.J. Rodd’s Chemistry of Carbon Compounds; Ansell, M.F., Ed.; Elsevier: Amsterdam, 1989.
[2]
Urleb, U. Methods of Organic Chemistry (Houben-Weyl), 4th ed; Schaumann, E., Ed.; Thieme: Stuttgart, 1998.
[3]
Bolton, R. Rodd’s Chemistry of Carbon Compounds; Sainsbury, M., Ed.; Elsevier: Amsterdam, 2000.
[4]
Laursen, J.B. Nielsen, phenazine natural products: Biosynthesis, synthetic analogues, and biological activity. J. Chem. Rev., 2004, 104, 1663-1685.
[5]
Beifuss, U.; Tietze, M. Methanophenazine and other natural biologically active phenazines. Top. Curr. Chem., 2005, 244, 77-113.
[6]
(a) Makgatho, M.; Anderson, R.; O’Sullivan, J.; Egan, T.; Freese, J.; Cornelius, N.; Van Rensburg, C. Tetramethylpiperidine-substituted phenazines as novel anti-plasmodial agents. Drug Dev. Res., 2000, 50, 195-202.
(b) Andrade-Nieto, V.F.de ; Goulart, M.O.; Da, S.F.J.; Da, S.; Pinto, M.C.; Pinto, A.; Zalis, M.; Carvalho, L.; Krettli, A. Antimalarial activity of phenazines from lapachol, beta-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2004, 14, 1145-1149.
[7]
Neves-Pinto, C.; Malta, V.R.S.; Pinto, M.D.C.S.R.; Santos, R.H.A.; Castro, S.L.D.; Pinto, A. A trypanocidal phenazine derived from β-lapachone. J. Med. Chem., 2002, 45, 2112-2115.
[8]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses and Applications, 2nd ed; Wiley-VCH: Weinheim, 2003.
[9]
Muller, M.; Sorrell, T.C. Inhibition of the human platelet cyclooxygenase response by the naturally occurring phenazine derivative, 1-hydroxy-phenazine. Prostaglandins, 1995, 50, 301-311.
[10]
Cartwright, D.K.; Chilton, W.S.; Benson, D.M. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl. Microbiol. Biotechnol., 1995, 43, 211-216.
[11]
Lokhov, S.G.; Podyminogin, M.A.; Sergeev, D.S.; Silnikov, V.N.; Kutyavin, I.V.; Shishkin, G.V.; Zarytova, V.F. Synthesis and high stability of complementary complexes of N-(2-hydroxyethyl) phenazinium derivatives of oligonucleotides. Bioconjug. Chem., 1992, 3, 414-419.
[12]
Bahnmüller, U.; Keller-Schierlein, W.; Brandl, M.; Zähner, H.; Diddens, H. Metabolites of microorganisms. 248. Synthetic analogs of saphenamycin. J. Antibiot., 1988, 41, 1552-1560.
[13]
Spicer, J.A.; Gamage, S.A.; Atwell, G.J.; Finlay, G.J.; Baguley, B.C.; Denny, W.A. Bis(phenazine-1-carboxamides): Structure− activity relationships for a new class of dual topoisomerase I/II- directed anticancer drugs. J. Med. Chem., 2000, 43, 1350-1358.
[14]
Challand, S.R.; Herbert, R.B.; Holliman, F.G. A new phenazine synthesis. The synthesis of griseoluteic acid, griseolutein A, and methyl diacetyl-griseolutein B. J. Chem. Soc. Chem. Commun., 1970, 21, 1423-1425.
[15]
(a) Old, D.W.; Wolfe, J.P.; Buchwald, S.L. A highly active catalyst for palladium-catalyzed cross-coupling reactions: Room-temperature Suzuki Couplings and amination of unactivated aryl chlorides. J. Am. Chem. Soc., 1998, 120, 9722-9723.
(b) Hartwig, J.F.; Kawatsura, M.; Hauck, S.I.; Shaughnessy, K.H.; Alcazar-Roman, L.M. Room-temperature palladium-catalyzed amination of aryl bromides and chlorides and extended scope of aromatic C—N bond formation with a commercial ligand. J. Org. Chem., 1999, 64, 5575-5580.
(c) Hartwig, J.F. Carbon-heteroatom bond-forming reductive eliminations of amines, ethers, and sulfides. Acc. Chem. Res., 1998, 31, 852-860.
(d) Frost, C.G.; Mendonca, P. Recent developments in aromatic heteroatom coupling reactions. J. Chem. Soc., Perkin Trans. 1, 1998, 2615-2624.
(e) Iwaki, T.; Yasuhara, A.; Sakamoto, T. Novel synthetic strategy of carbolines via palladium-catalyzed amination and arylation reaction. J. Chem. Soc., Perkin Trans. 1, 1999, 1505-1510.
[16]
Jayatilake, G.S.; Thornton, M.P.; Leonard, A.C.; Grimwade, J.E.; Baker, B.J. Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J. Nat. Prod., 1996, 59, 293-296.
[17]
Brisbane, P.G.; Janik, L.J.; Tate, M.E.; Warren, R.F. Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79 (NRRL B-15132). Antimicrob. Agents Chemother., 1987, 31, 1967-1971.
[18]
Budzikiewicz, H. Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol. Rev., 1993, 104, 209-228.
[19]
Mavrodi, D.V.; Ksenzenko, V.N.; Bonsall, R.F.; Cook, R.J.; Boronin, A.M.; Thomashow, L.S. A Seven-gene locus for synthesis of phenazine-1-carboxylic acid by pseudomonas fluorescens 2-79. J. Bacteriol., 1998, 180, 2541-2548.
[20]
Pierson, L.S.I.; Thomashow, L.S. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol. Plant Microbe Interact., 1992, 5, 330-339.
[21]
Chin-A-Woeng, T.F.C.; Thomas-Oates, J.E.; Lugtenberg, B.J.J.; Bloemberg, G.V. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol. Plant Microbe Interact., 2001, 14, 1006-1015.
[22]
Laursen, J.B.; Jørgensen, C.G.; Nielsen, J. First synthesis of racemic saphenamycin and its enantiomers. investigation of biological activity. Bioorg. Med. Chem., 2003, 11, 723-731.
[23]
Land, C.W.V.; Mocek, U.; Floss, H.G. Biosynthesis of the phenazine antibiotics, the saphenamycins and esmeraldins, in Streptomyces antibioticus. J. Org. Chem., 1993, 58, 6576-6582.
[24]
Lian, Y.; Hummel, J.R.; Bergman, R.G.; Ellman, J.A. Facile synthesis of unsymmetrical acridines and phenazines by a Rh(III)- catalyzed amination/cyclization/aromatization cascade. ChemInform, 2014, 45(8), 12548-12551.
[25]
Liu, Y.; Jin, L.; Liu, J.F. A new route for synthesis of 2-substituted-3-amino-5-phenyl-7-N,Ndimethylamino phenazinium chloride salts. J. Heterocycl. Chem., 2017, 54(3), 1931-1936.