Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Folate Tethered Gd2O3 Nanoparticles Exhibit Photoactive Antimicrobial Effects and pH Responsive Delivery of 5-fluorouracil into MCF-7 Cells

Author(s): Sambhaji R. Bamane and Vijay J. Sawant*

Volume 9, Issue 1, 2019

Page: [58 - 68] Pages: 11

DOI: 10.2174/2210303109666181224114546

Price: $65

Abstract

Background: Destroying hydrophobicity and increasing bioavailability of anticancer drugs is emerging field in biomedical nanotherapy.

Methods: The porous and oval shaped Gd2O3 gadolinite nanoparticles were synthesized and surface functionalized with folate groups using wet coprecipitation method. The presence of spinal nanophase with Gd2O3 lattice inside nanoparticles was confirmed by the use of XRD pattern and supportive FTIR spectrum. XRD data of nanocomposites proved the spinal core of gadolinite phase even after surface tailoring. These porous nanoparticles were loaded with anticancer drug 5-flurouracil for enhancement of anticancer activity on breast cancer MCF-7 cells. The elemental, optical, morphological and phase physicochemical characterization of the nanomaterials were performed using techniques such as PL, FTIR, XRD spectrometry, TGA thermal analysis, SEM and TEM microscopic analysis. The photoactive biocompatibility of nanohybrids was elaborated on gram positive S. aureus bacteria by agar well antibacterial screening in dark and light.

Results: The nanocomposites not only exhibited photoactive biocompatibility but also pH responsive in vitro delivery applied for anticancer therapy on the basis of spectrometric assay following sustained release with zero order Peppas release kinetics.

Conclusion: The nanocomposites exhibited higher anticancer activity on MCF-7 cells than free drug and nanohybrids after in vitro MTT assay. These 5-FU loaded folate targeted luminescent and photoactive nanocomposites with gadolinite core find applications in the future biomedical cell-particle interface.

Keywords: Anticancer, Gd2O3 nanoparticles, biomedical, photoactive biocompatibility, 5-fluorouracil, MCF-7 cells.

Graphical Abstract

[1]
Saliba, S. Valverde, Serrano C.; Keilitz, J.; Kahn, M.L.; Mingotaud, C.; Haag, R.; Marty, J.D. Hyperbranched polymers for the formation and stabilization of ZnO nanoparticles. Chem. Mater., 2010, 22, 6301-6309.
[2]
Tang, X.S.; Choo, E.S.G.; Li, L.; Ding, J.; Xue, J.M. Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications. Chem. Mater., 2010, 22, 3383-3388.
[3]
Urban, B.E.; Neogi, P.; Senthilkumar, K.; Rajpurohit, S.K.; Jagadeeshwaran, P.; Seongcheol, K.; Fujita, Y.; Neogi, A. Bioimaging using the optimized nonlinear optical properties of ZnO nanoparticles. IEEE J. Sel. Top. Quantum Electron., 2012, 18, 1451-1456.
[4]
Zhang, H.J.; Xiong, H.M. Biological applications of ZnO nanoparticles. Curr. Mol. Imaging, 2013, 2, 177-192.
[5]
Yuan, Q.; Hein, S.; Misra, R.D.K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater., 2010, 6, 2732-2739.
[6]
Babayevska, N.; Wozniak, A.; Grzeskowiak, B.F.; Wiveger, M.; Stomski, R.; Zalewski, T.; Drobna, M. Woznaik, Bunych M.; Jurga, S. ZnO@Gd2O3 core/ shell nanoparticles for biomedical applications: Physicichemical, in vitro and in vivo characterization. Mater. Sci. Eng. C. Mater. Biol. Appl., 2017, 80, 603-615.
[7]
Babayevska, N.; Florczak, P.; Woznaik-Bunych, M.; Jarek, M.; Mwaczyk, G.; Zalewski, T.; Jurga, S. Functionalized multimodal ZnO@Gd2O3 nanosystems to use as perspective contrast agent for MRI. Appl. Surf. Sci., 2017, 404, 129-137.
[8]
Aruguete, D.M.; Kim, B.; Hochella, M.F., Jr; Ma, Y.; Cheng, Y.; Hoegh, A.; Liu, J.; Pruden, A. Antimicrobial nanotechnology: Its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ. Sci. Process. Impacts, 2013, 15, 93-102.
[9]
Zhu, X.; Radovik-Moreno, A.F.; Wu, J.; Langer, R.; Shi, J. Nanomedicine in the management of microbial infection-overview and perspectives. Nano Today, 2014, 9, 478-498.
[10]
Zhang, L.; Pornpattananangkul, D.; Hu, C.M.; Huang, C.M. Development of nanoparticles for anti microbial drug delivery. Curr. Med. Chem., 2010, 17, 585-594.
[11]
Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomedicine, 2012, 7, 2767.
[12]
Raghupati, K.R.; Koodali, R.T.; Manna, A.C. Size dependant bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27, 4020-4028.
[13]
Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; de Aberasturi, D.J.; deLarramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, J.W. Mahmoudi. M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30, 499-511.
[14]
Tran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S.; Webster, T.J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomedicine, 2010, 5, 277.
[15]
Jin, T.; He, Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res., 2011, 13, 6877-6885.
[16]
Arekha, M.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep., 2015, 5, 14813.
[17]
Alpaslan, E.; Geilich, B.M.; Yazici, H.; Webster, T.J. pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacterial growth. Sci. Rep., 2017, 7, 45859.
[18]
Sawant, V.J.; Bamane, S.R. PEG-beta-cyclodextrin functionalized zinc oxide nanoparticles show cell imaging with high drug payload and sustained pH responsive delivery of curcumin in to MCF-7 cells. J. Drug Deliv. Sci. Technol., 2017, 43, 397-408.
[19]
Sawant, V.J.; Bamane, S.R.; Patil, S.B.; Shejwal, R.V. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells. J. Magn. Magn. Mater., 2016, 417, 222-229.
[20]
Sawant, V.J.; Bamane, S.R.; Kanase, D.G.; Patil, S.B.; Ghosh, J. Encapsulation of curcumin over carbon dot coated TiO2 nanoparticles for pH sensitive enhancement of anticancer and anti-psoriatic potential. RSC Advances, 2016, 6, 66745-66755.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy