Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

MiR-597 Targeting 14-3-3σ Enhances Cellular Invasion and EMT in Nasopharyngeal Carcinoma Cells

Author(s): Lisha Xie, Tao Jiang, Ailan Cheng, Ting Zhang, Pin Huang, Pei Li, Gebo Wen, Fanghong Lei, Yun Huang, Xia Tang, Jie Gong, Yunpeng Lin, Jianke Kuai* and Weiguo Huang*

Volume 12, Issue 2, 2019

Page: [105 - 114] Pages: 10

DOI: 10.2174/1874467212666181218113930

Price: $65

Abstract

Background: Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear.

Methods: Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay.

Results: miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC.

Conclusion: Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.

Keywords: NPC, miR-597, 14-3-3σ, EMT, migration, invasion.

Graphical Abstract

[1]
Abdullah, B.; Alias, A.; Hassan, S. Challenges in the management of nasopharyngeal carcinoma: a review. Malays. J. Med. Sci., 2009, 16(4), 50-54.
[2]
Zhang, L.; Chen, Q.Y.; Liu, H.; Tang, L.Q.; Mai, H.Q. Emerging treatment options for nasopharyngeal carcinoma. Drug Des. Devel. Ther., 2013, 7, 37-52.
[3]
P.B. The effect of migration on the risk of nasopharyngeal cancer among Chinese. Cancer Res., 1974, 34(5), 1189-1191.
[4]
Hui, E.P.; Leung, S.F.; Au, J.S.; Zee, B.; Tung, S.; Chua, D.; Sze, W.M.; Law, C.K.; Leung, T.W.; Chan, A.T. Lung metastasis alone in nasopharyngeal carcinoma: A relatively favorable prognostic group. A study by the Hong Kong Nasopharyngeal Carcinoma Study Group. Cancer, 2004, 101(2), 300-306.
[5]
Su, S.F.; Han, F.; Zhao, C.; Huang, Y.; Chen, C.Y.; Xiao, W.W.; Li, J.X.; Lu, T.X. Treatment outcomes for different subgroups of nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy. Chin. J. Cancer, 2011, 30(8), 565-573.
[6]
Chang, J.T.; See, L.C.; Liao, C.T.; Ng, S.H.; Wang, C.H.; Chen, I.H.; Tsang, N.M.; Tseng, C.K.; Tang, S.G.; Hong, J.H. Locally recurrent nasopharyngeal carcinoma. Radiother. Oncol., 2000, 54(2), 135-142.
[7]
Lo, K.W.; Huang, D.P. Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin. Cancer Biol., 2002, 12(6), 451-462.
[8]
Tao, Q.; Chan, A.T. Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev. Mol. Med., 2007, 9(12), 1-24.
[9]
Chou, J.; Lin, Y.C.; Kim, J.; You, L.; Xu, Z.; He, B.; Jablons, D.M. Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis. Head Neck, 2008, 30(7), 946-963.
[10]
Li, L.L.; Shu, X.S.; Wang, Z.H.; Cao, Y.; Tao, Q. Epigenetic disruption of cell signaling in nasopharyngeal carcinoma. Chin. J. Cancer, 2011, 30(4), 231-239.
[11]
Lo, K.W.; To, K.F.; Huang, D.P. Focus on nasopharyngeal carcinoma. Cancer Cell, 2004, 5(5), 423-428.
[12]
Abdel Khalek Abdel Razek, A.; King, A. MRI and CT of nasopharyngeal carcinoma. AJR Am. J. Roentgenol., 2012, 198(1), 11-18.
[13]
Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol., 2014, 9, 287-314.
[14]
Iorio, M.V.; Ferracin, M.; Liu, C.G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; Menard, S.; Palazzo, J.P.; Rosenberg, A.; Musiani, P.; Volinia, S.; Nenci, I.; Calin, G.A.; Querzoli, P.; Negrini, M.; Croce, C.M. MicroRNA gene expression deregulation in human breast cancer. Cancer Res., 2005, 65(16), 7065-7070.
[15]
Hiyoshi, Y.; Kamohara, H.; Karashima, R.; Sato, N.; Imamura, Y.; Nagai, Y.; Yoshida, N.; Toyama, E.; Hayashi, N.; Watanabe, M.; Baba, H. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin. Cancer Res., 2009, 15(6), 1915-1922.
[16]
Ma, L.; Teruya-Feldstein, J.; Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007, 449(7163), 682-688.
[17]
Ma, J.; Dong, C.; Ji, C. MicroRNA and drug resistance. Cancer Gene Ther., 2010, 17(8), 523-531.
[18]
Nicoloso, M.S.; Spizzo, R.; Shimizu, M.; Rossi, S.; Calin, G.A. MicroRNAs--the micro steering wheel of tumour metastases. Nat. Rev. Cancer, 2009, 9(4), 293-302.
[19]
Hurst, D.R.; Edmonds, M.D.; Welch, D.R. Metastamir: The Field of Metastasis-Regulatory microRNA Is Spreading. Cancer Res., 2009, 69(19), 7495-7498.
[20]
Lu, J.A.; He, M.L.; Wang, L.; Chen, Y.; Liu, X.O.; Dong, Q.; Chen, Y.C.; Peng, Y.; Yao, K.T.; Kung, H.F.; Li, X.P. MiR-26a Inhibits Cell Growth and Tumorigenesis of Nasopharyngeal Carcinoma through Repression of EZH2. Cancer Res., 2011, 71(1), 225-233.
[21]
Deng, M.; Tang, H.L.; Zhou, Y.H.; Zhou, M.; Xiong, W.; Zheng, Y.; Ye, Q.R.; Zeng, X.; Liao, Q.J.; Guo, X.F.; Li, X.L.; Ma, J.; Li, G.Y. miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. J. Cell Sci., 2011, 124(17), 2997-3005.
[22]
Zhang, L.Y.; Lee, V.H.F.; Wong, A.M.G.; Kwong, D.L.W.; Zhu, Y.H.; Dong, S.S.; Kong, K.L.; Chen, J.; Tsao, S.W.; Guan, X.Y.; Fu, L. MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. Carcinogenesis, 2013, 34(2), 454-463.
[23]
Luo, Z.; Dai, Y.; Zhang, L.; Jiang, C.; Li, Z.; Yang, J.; McCarthy, J.B.; She, X.; Zhang, W.; Ma, J.; Xiong, W.; Wu, M.; Lu, J.; Li, X.; Li, X.; Xiang, J.; Li, G. miR-18a promotes malignant progression by impairing microRNA biogenesis in nasopharyngeal carcinoma. Carcinogenesis, 2013, 34(2), 415-425.
[24]
Okumura, H.; Kita, Y.; Yokomakura, N.; Uchikado, Y.; Setoyama, T.; Sakurai, H.; Omoto, I.; Matsumoto, M.; Owaki, T.; Ishigami, S.; Natsugoe, S. Nuclear expression of 14-3-3 sigma is related to prognosis in patients with esophageal squamous cell carcinoma. Anticancer Res., 2010, 30(12), 5175-5179.
[25]
Wang, Z.H.; Trope, C.G.; Suo, Z.H.; Troen, G.; Yang, G.R.; Nesland, J.M.; Holm, R. The clinicopathological and prognostic impact of 14-3-3 sigma expression on vulvar squamous cell carcinomas. BMC Cancer, 2008, 8, 308.
[26]
Chen, L.W.; Yang, B. 14-3-3 Sigma is a useful immunohistochemical marker for diagnosing ovarian granulosa cell tumors and steroid cell tumors. Int. J. Gynecol. Pathol., 2013, 32(2), 156-162.
[27]
Ravi, D.; Chen, Y.; Karia, B.; Brown, A.; Gu, T.T.; Li, J.; Carey, M.S.; Hennessy, B.T.; Bishop, A.J. 14-3-3 sigma expression effects G2/M response to oxygen and correlates with ovarian cancer metastasis. PLoS One, 2011, 6(1), e15864.
[28]
Huang, W-G.; Cheng, A.L.; Chen, Z.C.; Peng, F. Targeted proteomic analysis of 14-3-3σ in nasopharyngeal carcinom. Int. J. Biochem. Cell Biol., 2010, 42(1), 137-147.
[29]
Cheng, A.L.; Huang, W.G.; Chen, Z.C.; Peng, F.; Zhang, P.F.; Li, M.Y.; Li, F.; Li, J.L.; Li, C.; Yi, H.; Yi, B.; Xiao, Z.Q. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin. Cancer Res., 2008, 14(2), 435-445.
[30]
Yi, B.; Tan, S.X.; Tang, C.E.; Huang, W.G.; Cheng, A.L.; Li, C.; Zhang, P.F.; Li, M.Y.; Li, J.L.; Yi, H.; Peng, F.; Chen, Z.C.; Xiao, Z.Q. Inactivation of 14-3-3 sigma by promoter methylation correlates with metastasis in nasopharyngeal carcinoma. J. Cell. Biochem., 2009, 106(5), 858-866.
[31]
Hermeking, H.; Lengauer, C.; Polyak, K.; He, T.C.; Zhang, L. Thiagalingam S, Kinzler KW, Vogelstein B. 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell, 1997, 1, 3-11.
[32]
Yang, H.Y.; Wen, Y.Y.; Lin, Y.I.; Pham, L.; Su, C.H.; Yang, H.; Chen, J.; Lee, M.H. Roles for negative cell regulator 14-3-3sigma in control of MDM2 activities. Oncogene, 2007, 26(52), 7355-7362.
[33]
Mackintosh, C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J., 2004, 381(Pt 2), 329-342.
[34]
Morrison, D.K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol., 2009, 19(1), 16-23.
[35]
Moreira, J.M.; Ohlsson, G.; Rank, F.E.; Celis, J.E. Down-regulation of the tumor suppressor protein 14-3-3sigma is a sporadic event in cancer of the breast. Mol. Cell. Proteomics, 2005, 4(4), 555-569.
[36]
Yang, H.; Zhao, R.; Lee, M.H. 14-3-3sigma, a p53 regulator, suppresses tumor growth of nasopharyngeal carcinoma. Mol. Cancer Ther., 2006, 5(2), 253-260.
[37]
Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N. miRWalk--database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform., 2011, 44(5), 839-847.
[38]
Kumar, A.; Wong, A.K.L.; Lizard, M.L.; Moore, R.J.; Lefevre, C. miRNA_Targets: A database for miRNA target predictions in coding and non-coding regions of mRNAs. Genomics, 2012, 100(6), 352-356.
[39]
Chiang, H.R.; Schoenfeld, L.W.; Ruby, J.G.; Auyeung, V.C.; Spies, N.; Baek, D.; Johnston, W.K.; Russ, C.; Luo, S.J.; Babiarz, J.E.; Blelloch, R.; Schroth, G.P.; Nusbaum, C.; Bartel, D.P. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev., 2010, 24(10), 992-1009.
[40]
Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol., 2010, 11(8)
[41]
Cammarata, G.; Augugliaro, L.; Salemi, D.; Agueli, C.; La Rosa, M.; Dagnino, L.; Civiletto, G.; Messana, F.; Marfia, A.; Bica, M.G.; Cascio, L.; Floridia, P.M.; Mineo, A.M.; Russo, M.; Fabbiano, F.; Santoro, A. Differential expression of specific microRNA and their targets in acute myeloid leukemia. Am. J. Hematol., 2010, 85(5), 331-339.
[42]
Han, Z.B.; Zhong, L.; Teng, M.J.; Fan, J.W.; Tang, H.M.; Wu, J.Y.; Chen, H.Y.; Wang, Z.W.; Qiu, G.Q.; Peng, Z.H. Identification of recurrence-related microRNAs in hepatocellular carcinoma following liver transplantation. Mol. Oncol., 2012, 6(4), 445-457.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy