Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

天然分子作为潜在的乙酰胆碱酯酶抑制剂和神经保护剂的计算和体外验证

卷 16, 期 2, 2019

页: [116 - 127] 页: 12

弟呕挨: 10.2174/1567205016666181212155147

价格: $65

摘要

背景:胆碱酯酶抑制剂是治疗阿尔茨海默病(AD)的第一线治疗方法,然而,现在已确定它们仅提供暂时和症状缓解,此外还具有几种遗传性副作用。因此,替代药物发现方法被用于识别新的和更安全的“疾病调节药物”。 方法:在此,我们筛选了646个天然来源的小分子,通过计算机对接研究报告了药理学和功能价值,以预测具有调节乙酰胆碱代谢潜力的更安全的神经调节分子。此外,通过体外测定确定预测分子抑制乙酰胆碱酯酶(AChE)活性的潜力和保护神经元免于变性的能力。 结果:基于in-silico AChE相互作用研究,我们预测槲皮素,咖啡因,抗坏血酸和没食子酸是潜在的AChE抑制剂。我们通过体外AChE抑制试验证实了这些分子的AChE抑制潜力,并与多奈哌齐和begacestat比较了结果。草药分子显着抑制酶活性,并且对槲皮素和咖啡因的抑制与多奈哌齐没有显示出任何显着差异。此外,测试的分子对原代(E18)海马神经元没有任何神经毒性。我们观察到槲皮素和咖啡因显着改善神经元存活并有效保护海马神经元免受HgCl2诱导的神经变性,其他分子,包括多奈哌齐和begacestat,都没有做到。 结论:槲皮素和咖啡因具有作为“疾病调节药物”的潜力,可能适用于AD等神经系统疾病的治疗。

关键词: 阿尔茨海默病,分子对接,分子动力学模拟,神经毒性,蛋白质 - 配体相互作用,原代神经元培养。

[1]
Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement 12: 459-509. (2016).
[2]
Bernabei M, Chiavarini S, Cremisini C, Palleschi G. Anticholinesterase activity measurement by a choline biosensor: application in water analysis. Biosens Bioelectron 8: 265-71. (1993).
[3]
Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol 6: 782-92. (2007).
[4]
Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 15: 3517-55. (2010).
[5]
Galimberti D, Scarpini E. Disease-modifying treatments for Alzheimer’s disease. Ther Adv Neurol Disorder 4: 203-16. (2011).
[6]
Longbrake EE, Parks BJ, Cross AH. Monoclonal antibodies as disease modifying therapy in multiple sclerosis. Curr Neurol Neurosci Rep 13: 390. (2013).
[7]
Tong J, Wang Y, Lu Y. In vitro evaluation of inorganic and methyl mercury mediated cytotoxic effect on neural cells derived from different animal species. J Environ Sci (China) 41: 138-45. (2016).
[8]
van Vliet E, Morath S, Eskes C, Linge J, Rappsilber J, Honegger P, et al. A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology 29: 1-12. (2008).
[9]
Xing XJ, Rui Q, Du M, Wang DY. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. Arch Environ Contam Toxicol 56: 732-41. (2009).
[10]
Xu F, Farkas S, Kortbeek S, Zhang FX, Chen L, Zamponi GW, et al. Mercury-induced toxicity of rat cortical neurons is mediated through N-Methyl-D-Aspartate receptors. Mol Brain 5: 30. (2012).
[11]
Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J, et al. Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s Disease. Mediators Inflamm 2015: 105828. (2015).
[12]
Kalra J, Khan A. Reducing Abeta load and tau phosphorylation: Emerging perspective for treating Alzheimer’s disease. Eur J Pharmacol 764: 571-81. (2015).
[13]
Fang J, Pang X, Yan R, Lian W, Li C, Wang Q, et al. Discovery of neuroprotective compounds by machine learning approaches. RSC Advances 6(12): 9857-71. (2016).
[14]
Fang J, Wu P, Yang R, Gao L, Li C, Wang D, et al. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation. Acta Pharm Sin B 4(6): 430-7. (2014).
[15]
Cui L, Wang Y, Liu Z, Chen H, Wang H, Zhou X, et al. Discovering New Acetylcholinesterase inhibitors by mining the Buzhongyiqi decoction recipe data. J Chem Inf Model 55(11): 2455-63. (2015).
[16]
Petersson SD, Philippou E. Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence. Adv Nutr 7: 889-904. (2016).
[17]
Klimova B, Kuca K. Multi-nutrient dietary intervention approach to the management of alzheimer’s disease - a mini-review. Curr Alzheimer Res 13: 1312-8. (2016).
[18]
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s Disease. BioMed Res Int 2016: 2589276. (2016).
[19]
Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59: 912-21. (2006).
[20]
Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev CD005593. (2006).
[21]
Wang J, Yu JT, Wang HF, Meng XF, Wang C, Tan CC, et al. Pharmacological treatment of neuropsychiatric symptoms in Alzheimer’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 86: 101-9. (2015).
[22]
Tan CC, Yu JT, Wang HF, Tan MS, Meng XF, Wang C, et al. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 41: 615-31. (2014).
[23]
Russ TC, Morling JR. Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst Rev CD009132. (2012).
[24]
Li Y, Hai S, Zhou Y, Dong BR. Cholinesterase inhibitors for rarer dementias associated with neurological conditions. Cochrane Database Syst Rev CD009444. (2015).
[25]
O’Regan J, Lanctot KL, Mazereeuw G, Herrmann N. Cholinesterase inhibitor discontinuation in patients with Alzheimer’s disease: a meta-analysis of randomized controlled trials. J Clin Psychiatry 76: e1424-31. (2015).
[26]
Endesfelder S, Weichelt U, Strauss E, Schlor A, Sifringer M, Scheuer T, et al. Neuroprotection by caffeine in hyperoxia-induced neonatal brain injury. Int J Mol Sci 18: 187. (2017).
[27]
Mehta V, Parashar A, Sharma A, Singh TR, Udayabanu M. Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression. Horm Behav 89: 13-22. (2016).
[28]
Mehta V, Parashar A, Udayabanu M. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress. Physiol Behav 171: 69-78. (2017).
[29]
Du G, Zhao Z, Chen Y, Li Z, Tian Y, Liu Z, et al. Quercetin attenuates neuronal autophagy and apoptosis in rat traumatic brain injury model via activation of PI3K/Akt signaling pathway. Neurol Res 1-8. (2016).
[30]
Costa LG, Garrick JM, Roque PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid Med Cell Longev 2016: 2986796. (2016).
[31]
Ahmad A, Shah SA, Badshah H, Kim MJ, Ali T, Yoon GH, et al. Neuroprotection by vitamin C against ethanol-induced neuroinflammation associated neurodegeneration in the developing rat brain. CNS Neurol Disord Drug Targets 15: 360-70. (2016).
[32]
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19: 1639-62. (1998).
[33]
Kryger G, Silman I, Sussman JL. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure 7: 297-307. (1999).
[34]
Porter CT, Bartlett GJ, Thornton JM. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32: D129-33. (2004).
[35]
Bowers KJ. Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing (p. 84). ACM (2006).
[36]
Borhani DW, Shaw DE. The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des 26: 15-26. (2012).
[37]
Robertson MJ, Tirado-Rives J, Jorgensen WL. Improved peptide and protein torsional energetics with the OPLSAA force field. J Chem Theory Comput 11: 3499-509. (2015).
[38]
Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118: 11225-36. (1996).
[39]
Ademosun AO, Oboh G, Bello F, Ayeni PO. Antioxidative properties and effect of quercetin and its glycosylated form (rutin) on acetylcholinesterase and butyrylcholinesterase activities. J Evid Based Complementary Altern Med 21: NP11-7. (2016).
[40]
Alcolea-Palafoxa Posada-Morenob P, Ortuño-Sorianob I, Pacheco-del-Cerroc JL, Martínez-Rincónc C, Rodríguez-Martínezc D, et al. Research strategies developed for the treatment of Alzheimer’s disease. Reversible and pseudo-irreversible inhibitors of acetylcholinesterase: Structure-activity relationships and drug design. Drug Design Discov Alzheimer’s Dis 426-77 (2015).
[41]
Sivaraman D. Insilico identification of potential acetylcholinesterase inhibitors from Ipomoea aquatica Forsk for the treatment of Alzheimers disease. Int J Res Pharm Biomed Sci 4: 1002-10. (2013).
[42]
Barril X, Orozco M, Luque FJ. Towards improved acetylcholinesterase inhibitors: a structural and computational approach. Mini Rev Med Chem 1: 255-66. (2001).
[43]
Kryger G, Silman I, Sussman JL. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure 7: 297-307. (1999).
[44]
Seniya C, Khan GJ, Uchadia K. Identification of potential herbal inhibitor of acetylcholinesterase associated Alzheimer’s disorders using molecular docking and molecular dynamics simulation. Biochem Res Int 2014: 705451. (2014).
[45]
Molino I, Colucci L, Fasanaro AM, Traini E, Amenta F. Efficacy of memantine, donepezil, or their association in moderate-severe Alzheimer’s disease: a review of clinical trials. Sci World J 2013: 925702. (2013).
[46]
Bajda M, Wieckowska A, Hebda M, Guzior N, Sotriffer CA, Malawska B. Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 14: 5608-32. (2013).
[47]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11): 935. (2004).
[48]
Atkovska K, Samsonov SA, Paszkowski-Rogacz M, Pisabarro MT. Multipose binding in molecular docking. Int J Mol Sci 15: 2622-45. (2014).
[49]
Release S. 1: Desmond Molecular Dynamics System, version 3.7. DE Shaw Research, New York, NY, Maestro-Desmond Interoperability Tools, version 3 (2014).
[50]
Pandey B, Grover A, Sharma P. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics 19(1): 132. (2018).
[51]
Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol 235(2): 625-34. (1994).
[52]
Smith GR, Sternberg MJ, Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein–protein complexes with an application to protein–protein docking. J Mol Biol 347(5): 1077-101. (2005).
[53]
Lee PU, Churchill HR, Daniels M, Jameson SC, Kranz DM. Role of 2CT cell receptor residues in the binding of self- and allo-major histocompatibility complexes. J Exp Med 191: 1355-64. (2000).
[54]
Jaenicke R. Stability and stabilization of globular proteins in solution. J Biotechnol 79: 193-203. (2000).
[55]
Yadava U, Gupta H, Roychoudhury M. Stabilization of microtubules by taxane diterpenoids: insight from docking and MD simulations. J Biol Phys 41: 117-33. (2015).
[56]
Komersova A, Komers K, Cegan A. New findings about Ellman’s method to determine cholinesterase activity. Z Naturforsch C 62: 150-4. (2007).
[57]
Mohamed T, Osman W, Tin G, Rao PP. Selective inhibition of human acetylcholinesterase by xanthine derivatives: in vitro inhibition and molecular modeling investigations. Bioorg Med Chem Lett 23: 4336-41. (2013).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy