Review Article

TRP通道在过敏性炎症中的作用及其临床意义

卷 27, 期 9, 2020

页: [1446 - 1468] 页: 23

弟呕挨: 10.2174/0929867326666181126113015

价格: $65

摘要

过敏是指对非传染性环境物质(过敏原)的异常适应性免疫反应,可诱发多种疾病,例如哮喘,特应性皮炎和过敏性鼻炎。在这种变态反应性炎症中,涉及各种免疫细胞,例如B细胞,T细胞和肥大细胞,并经历复杂的相互作用,从而导致各种病理生理状况。在免疫细胞中,钙离子在控制细胞内Ca2 +信号通路中起着至关重要的作用。阳离子(例如Na +)通过调节细胞膜电位来间接调节钙信号的产生。这种细胞内Ca2 +信号传导是通过各种阳离子通道介导的。其中,几乎所有的免疫细胞类型都存在瞬时受体电位(TRP)家族,每个通道在调节Ca2 +信号方面具有独特的功能。在这篇综述中,我们关注TRP离子通道在T细胞和肥大细胞过敏性炎症反应中的作用。另外,讨论了在变应性疾病的临床实践中引起关注的TRP离子通道,以及靶向TRP通道的治疗剂的开发现状。

关键词: 细胞,TRP通道,过敏性鼻炎,哮喘,特应性皮炎,钙信号,肥大细胞..

[1]
A current view on inflammation. Nat. Immunol., 2017, 18(8), 825.
[http://dx.doi.org/10.1038/ni.3798] [PMID: 28722714]
[2]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[3]
Locksley, R.M. Asthma and allergic inflammation. Cell, 2010, 140(6), 777-783.
[http://dx.doi.org/10.1016/j.cell.2010.03.004] [PMID: 20303868]
[4]
Galli, S.J.; Tsai, M.; Piliponsky, A.M. The development of allergic inflammation. Nature, 2008, 454(7203), 445-454.
[http://dx.doi.org/10.1038/nature07204] [PMID: 18650915]
[5]
Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; Hotchkiss, R.; Joosten, L.A.B.; Kastner, D.L.; Korte, M.; Latz, E.; Libby, P.; Mandrup-Poulsen, T.; Mantovani, A.; Mills, K.H.G.; Nowak, K.L.; O’Neill, L.A.; Pickkers, P.; van der Poll, T.; Ridker, P.M.; Schalkwijk, J.; Schwartz, D.A.; Siegmund, B.; Steer, C.J.; Tilg, H.; van der Meer, J.W.M.; van de Veerdonk, F.L.; Dinarello, C.A. A guiding map for inflammation. Nat. Immunol., 2017, 18(8), 826-831.
[http://dx.doi.org/10.1038/ni.3790] [PMID: 28722720]
[6]
Barnes, P.J. Pathophysiology of allergic inflammation. Immunol. Rev., 2011, 242(1), 31-50.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01020.x] [PMID: 21682737]
[7]
Abboud, D.; Hanson, J. Chemokine neutralization as an innovative therapeutic strategy for atopic dermatitis. Drug Discov. Today, 2017, 22(4), 702-711.
[http://dx.doi.org/10.1016/j.drudis.2016.11.023] [PMID: 27956056]
[8]
Berair, R.; Brightling, C.E. Asthma therapy and its effect on airway remodelling. Drugs, 2014, 74(12), 1345-1369.
[http://dx.doi.org/10.1007/s40265-014-0250-4] [PMID: 25056652]
[9]
Clare, J.J. Targeting ion channels for drug discovery. Discov. Med., 2010, 9(46), 253-260.
[PMID: 20350493]
[10]
Furue, M.; Chiba, T.; Tsuji, G.; Ulzii, D.; Kido-Nakahara, M.; Nakahara, T.; Kadono, T. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol. Int., 2017, 66(3), 398-403.
[http://dx.doi.org/10.1016/j.alit.2016.12.002] [PMID: 28057434]
[11]
Geppetti, P.; Patacchini, R.; Nassini, R. Transient receptor potential channels and occupational exposure. Curr. Opin. Allergy Clin. Immunol., 2014, 14(2), 77-83.
[http://dx.doi.org/10.1097/ACI.0000000000000040] [PMID: 24451914]
[12]
Hetherington, K.J.; Heaney, L.G. Drug therapies in severe asthma - the era of stratified medicine. Clin. Med. (Lond.), 2015, 15(5), 452-456.
[http://dx.doi.org/10.7861/clinmedicine.15-5-452] [PMID: 26430184]
[13]
Klimek, L.; Schmidt-Weber, C.B.; Kramer, M.F.; Skinner, M.A.; Heath, M.D. Clinical use of adjuvants in allergen-immunotherapy. Expert Rev. Clin. Immunol., 2017, 13(6), 599-610.
[http://dx.doi.org/10.1080/1744666X.2017.1292133] [PMID: 28162007]
[14]
Barnes, P.J. Molecular mechanisms of corticosteroids in allergic diseases. Allergy, 2001, 56(10), 928-936.
[http://dx.doi.org/10.1034/j.1398-9995.2001.00001.x] [PMID: 11576070]
[15]
Adcock, I.M.; Caramori, G.; Chung, K.F. New targets for drug development in asthma. Lancet, 2008, 372(9643), 1073-1087.
[http://dx.doi.org/10.1016/S0140-6736(08)61449-X] [PMID: 18805336]
[16]
Barnes, P.J. New therapies for asthma: is there any progress? Trends Pharmacol. Sci., 2010, 31(7), 335-343.
[http://dx.doi.org/10.1016/j.tips.2010.04.009] [PMID: 20554041]
[17]
Cosens, D.J.; Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature, 1969, 224(5216), 285-287.
[http://dx.doi.org/10.1038/224285a0] [PMID: 5344615]
[18]
Montell, C.; Rubin, G.M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron, 1989, 2(4), 1313-1323.
[http://dx.doi.org/10.1016/0896-6273(89)90069-X] [PMID: 2516726]
[19]
Hardie, R.C.; Minke, B. The TRP gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron, 1992, 8(4), 643-651.
[http://dx.doi.org/10.1016/0896-6273(92)90086-S] [PMID: 1314617]
[20]
Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol., 2011, 12(3), 218.
[http://dx.doi.org/10.1186/gb-2011-12-3-218] [PMID: 21401968]
[21]
Wu, L.J.; Sweet, T.B.; Clapham, D.E. International union of basic and clinical pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev., 2010, 62(3), 381-404.
[http://dx.doi.org/10.1124/pr.110.002725] [PMID: 20716668]
[22]
Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol., 2013, 29, 355-384.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155833] [PMID: 24099085]
[23]
Zheng, J. Molecular mechanism of TRP channels. Compr. Physiol., 2013, 3(1), 221-242.
[PMID: 23720286]
[24]
Nowycky, M.C.; Thomas, A.P. Intracellular calcium signaling. J. Cell Sci., 2002, 115(Pt 19), 3715-3716.
[http://dx.doi.org/10.1242/jcs.00078] [PMID: 12235281]
[25]
Feske, S.; Wulff, H.; Skolnik, E.Y. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol., 2015, 33, 291-353.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112212] [PMID: 25861976]
[26]
Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol., 2007, 7(9), 690-702.
[http://dx.doi.org/10.1038/nri2152] [PMID: 17703229]
[27]
Gees, M.; Colsoul, B.; Nilius, B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb. Perspect. Biol., 2010, 2(10)a003962
[http://dx.doi.org/10.1101/cshperspect.a003962] [PMID: 20861159]
[28]
Cho, H.; Kehrl, J.H. Regulation of immune function by G protein-coupled receptors, trimeric G proteins, and RGS proteins. Prog. Mol. Biol. Transl. Sci., 2009, 86, 249-298.
[http://dx.doi.org/10.1016/S1877-1173(09)86009-2] [PMID: 20374719]
[29]
Vig, M.; Kinet, J.P. Calcium signaling in immune cells. Nat. Immunol., 2009, 10(1), 21-27.
[http://dx.doi.org/10.1038/ni.f.220] [PMID: 19088738]
[30]
Bertin, S.; Raz, E. Transient Receptor Potential (TRP) channels in T cells. Semin. Immunopathol., 2016, 38(3), 309-319.
[http://dx.doi.org/10.1007/s00281-015-0535-z] [PMID: 26468011]
[31]
Harteneck, C.; Gollasch, M. Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr. Pharm. Biotechnol., 2011, 12(1), 35-41.
[http://dx.doi.org/10.2174/138920111793937943] [PMID: 20932261]
[32]
Pillai, A.K.A.A.H.L.S. Cellular and Molecular Immunology; Elsevier Saunders, 2015.
[33]
Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of effector CD4 T cell populations(*). Annu. Rev. Immunol., 2010, 28, 445-489.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101212] [PMID: 20192806]
[34]
Luckheeram, R.V.; Zhou, R.; Verma, A.D.; Xia, B. CD4+T cells: differentiation and functions. Clin. Dev. Immunol., 2012, 2012, 925135
[http://dx.doi.org/10.1155/2012/925135] [PMID: 22474485]
[35]
Tao, X.; Constant, S.; Jorritsma, P.; Bottomly, K. Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J. Immunol., 1997, 159(12), 5956-5963.
[PMID: 9550393]
[36]
Liou, J.; Kim, M.L.; Heo, W.D.; Jones, J.T.; Myers, J.W.; Ferrell, J.E. Jr.; Meyer, T. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol., 2005, 15(13), 1235-1241.
[http://dx.doi.org/10.1016/j.cub.2005.05.055] [PMID: 16005298]
[37]
Roos, J.; DiGregorio, P.J.; Yeromin, A.V.; Ohlsen, K.; Lioudyno, M.; Zhang, S.; Safrina, O.; Kozak, J.A.; Wagner, S.L.; Cahalan, M.D.; Veliçelebi, G.; Stauderman, K.A. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol., 2005, 169(3), 435-445.
[http://dx.doi.org/10.1083/jcb.200502019] [PMID: 15866891]
[38]
Feske, S.; Gwack, Y.; Prakriya, M.; Srikanth, S.; Puppel, S.H.; Tanasa, B.; Hogan, P.G.; Lewis, R.S.; Daly, M.; Rao, A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 2006, 441(7090), 179-185.
[http://dx.doi.org/10.1038/nature04702] [PMID: 16582901]
[39]
Prakriya, M.; Feske, S.; Gwack, Y.; Srikanth, S.; Rao, A.; Hogan, P.G. Orai1 is an essential pore subunit of the CRAC channel. Nature, 2006, 443(7108), 230-233.
[http://dx.doi.org/10.1038/nature05122] [PMID: 16921383]
[40]
Vig, M.; Peinelt, C.; Beck, A.; Koomoa, D.L.; Rabah, D.; Koblan-Huberson, M.; Kraft, S.; Turner, H.; Fleig, A.; Penner, R.; Kinet, J.P. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science, 2006, 312(5777), 1220-1223.
[http://dx.doi.org/10.1126/science.1127883] [PMID: 16645049]
[41]
McCarl, C.A.; Picard, C.; Khalil, S.; Kawasaki, T.; Rother, J.; Papolos, A.; Kutok, J.; Hivroz, C.; Ledeist, F.; Plogmann, K.; Ehl, S.; Notheis, G.; Albert, M.H.; Belohradsky, B.H.; Kirschner, J.; Rao, A.; Fischer, A.; Feske, S. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J. Allergy. Clin. Immunol., 2009, 124(6), 1311-1318. e7.
[http://dx.doi.org/10.1016/j.jaci.2009.10.007] [PMID: 20004786]
[42]
Picard, C.; McCarl, C.A.; Papolos, A.; Khalil, S.; Lüthy, K.; Hivroz, C.; LeDeist, F.; Rieux-Laucat, F.; Rechavi, G.; Rao, A.; Fischer, A.; Feske, S. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med., 2009, 360(19), 1971-1980.
[http://dx.doi.org/10.1056/NEJMoa0900082] [PMID: 19420366]
[43]
Ogawa, N.; Kurokawa, T.; Mori, Y. Sensing of redox status by TRP channels. Cell Calcium, 2016, 60(2), 115-122.
[http://dx.doi.org/10.1016/j.ceca.2016.02.009] [PMID: 26969190]
[44]
Inada, H.; Iida, T.; Tominaga, M. Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem. Biophys. Res. Commun., 2006, 350(3), 762-767.
[http://dx.doi.org/10.1016/j.bbrc.2006.09.111] [PMID: 17027915]
[45]
Schwarz, E.C.; Wolfs, M.J.; Tonner, S.; Wenning, A.S.; Quintana, A.; Griesemer, D.; Hoth, M. TRP channels in lymphocytes. Handb. Exp. Pharmacol., 2007, (179), 445-456.
[http://dx.doi.org/10.1007/978-3-540-34891-7_26] [PMID: 17217072]
[46]
Bertin, S.; Aoki-Nonaka, Y.; Lee, J.; de Jong, P.R.; Kim, P.; Han, T.; Yu, T.; To, K.; Takahashi, N.; Boland, B.S.; Chang, J.T.; Ho, S.B.; Herdman, S.; Corr, M.; Franco, A.; Sharma, S.; Dong, H.; Akopian, A.N.; Raz, E. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1. Gut, 2017, 66(9), 1584-1596.
[http://dx.doi.org/10.1136/gutjnl-2015-310710] [PMID: 27325418]
[47]
Rao, G.K.; Kaminski, N.E. Induction of intracellular calcium elevation by Delta9-tetrahydrocannabinol in T cells involves TRPC1 channels. J. Leukoc. Biol., 2006, 79(1), 202-213.
[http://dx.doi.org/10.1189/jlb.0505274] [PMID: 16244107]
[48]
Wenning, A.S.; Neblung, K.; Strauss, B.; Wolfs, M.J.; Sappok, A.; Hoth, M.; Schwarz, E.C. TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. Biochim. Biophys. Acta, 2011, 1813(3), 412-423.
[http://dx.doi.org/10.1016/j.bbamcr.2010.12.022] [PMID: 21215279]
[49]
Philipp, S.; Strauss, B.; Hirnet, D.; Wissenbach, U.; Mery, L.; Flockerzi, V.; Hoth, M. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J. Biol. Chem., 2003, 278(29), 26629-26638.
[http://dx.doi.org/10.1074/jbc.M304044200] [PMID: 12736256]
[50]
Carrillo, C.; Hichami, A.; Andreoletti, P.; Cherkaoui-Malki, M.; del Mar Cavia, M.; Abdoul-Azize, S.; Alonso-Torre, S.R.; Khan, N.A. Diacylglycerol-containing oleic acid induces increases in [Ca(2+)](i) via TRPC3/6 channels in human T-cells. Biochim. Biophys. Acta, 2012, 1821(4), 618-626.
[http://dx.doi.org/10.1016/j.bbalip.2012.01.008] [PMID: 22306362]
[51]
Tseng, P.H.; Lin, H.P.; Hu, H.; Wang, C.; Zhu, M.X.; Chen, C.S. The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry, 2004, 43(37), 11701-11708.
[http://dx.doi.org/10.1021/bi049349f] [PMID: 15362854]
[52]
Bertin, S.; Aoki-Nonaka, Y.; de Jong, P.R.; Nohara, L.L.; Xu, H.; Stanwood, S.R.; Srikanth, S.; Lee, J.; To, K.; Abramson, L.; Yu, T.; Han, T.; Touma, R.; Li, X.; González-Navajas, J.M.; Herdman, S.; Corr, M.; Fu, G.; Dong, H.; Gwack, Y.; Franco, A.; Jefferies, W.A.; Raz, E. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nat. Immunol., 2014, 15(11), 1055-1063.
[http://dx.doi.org/10.1038/ni.3009] [PMID: 25282159]
[53]
Majhi, R.K.; Sahoo, S.S.; Yadav, M.; Pratheek, B.M.; Chattopadhyay, S.; Goswami, C. Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J., 2015, 282(14), 2661-2681.
[http://dx.doi.org/10.1111/febs.13306] [PMID: 25903376]
[54]
Samivel, R.; Kim, D.W.; Son, H.R.; Rhee, Y.H.; Kim, E.H.; Kim, J.H.; Bae, J.S.; Chung, Y.J.; Chung, P.S.; Raz, E.; Mo, J.H. The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis. Oncotarget, 2016, 7(1), 148-160.
[http://dx.doi.org/10.18632/oncotarget.6653] [PMID: 26700618]
[55]
Pottosin, I.; Delgado-Enciso, I.; Bonales-Alatorre, E.; Nieto-Pescador, M.G.; Moreno-Galindo, E.G.; Dobrovinskaya, O. Mechanosensitive Ca2+-permeable channels in human leukemic cells: pharmacological and molecular evidence for TRPV2. Biochim. Biophys. Acta, 2015, 1848(1 Pt A), 51-59.
[http://dx.doi.org/10.1016/j.bbamem.2014.09.008] [PMID: 25268680]
[56]
Santoni, G.; Farfariello, V.; Liberati, S.; Morelli, M.B.; Nabissi, M.; Santoni, M.; Amantini, C. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front. Immunol., 2013, 4, 34.
[http://dx.doi.org/10.3389/fimmu.2013.00034] [PMID: 23420671]
[57]
Vassilieva, I.O.; Tomilin, V.N.; Marakhova, I.I.; Shatrova, A.N.; Negulyaev, Y.A.; Semenova, S.B. Expression of transient receptor potential vanilloid channels TRPV5 and TRPV6 in human blood lymphocytes and Jurkat leukemia T cells. J. Membr. Biol., 2013, 246(2), 131-140.
[http://dx.doi.org/10.1007/s00232-012-9511-x] [PMID: 23111462]
[58]
Tomilin, V.N.; Cherezova, A.L.; Negulyaev, Y.A.; Semenova, S.B. TRPV5/V6 channels mediate Ca(2+) influx in jurkat T cells under the control of extracellular pH. J. Cell. Biochem., 2016, 117(1), 197-206.
[http://dx.doi.org/10.1002/jcb.25264] [PMID: 26096460]
[59]
Cui, J.; Bian, J.S.; Kagan, A.; McDonald, T.V. CaT1 contributes to the stores-operated calcium current in Jurkat T-lymphocytes. J. Biol. Chem., 2002, 277(49), 47175-47183.
[http://dx.doi.org/10.1074/jbc.M205870200] [PMID: 12361955]
[60]
Beck, A.; Kolisek, M.; Bagley, L.A.; Fleig, A.; Penner, R. Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J., 2006, 20(7), 962-964.
[http://dx.doi.org/10.1096/fj.05-5538fje] [PMID: 16585058]
[61]
Gasser, A.; Glassmeier, G.; Fliegert, R.; Langhorst, M.F.; Meinke, S.; Hein, D.; Krüger, S.; Weber, K.; Heiner, I.; Oppenheimer, N.; Schwarz, J.R.; Guse, A.H. Activation of T cell calcium influx by the second messenger ADP-ribose. J. Biol. Chem., 2006, 281(5), 2489-2496.
[http://dx.doi.org/10.1074/jbc.M506525200] [PMID: 16316998]
[62]
Magnone, M.; Bauer, I.; Poggi, A.; Mannino, E.; Sturla, L.; Brini, M.; Zocchi, E.; De Flora, A.; Nencioni, A.; Bruzzone, S. NAD+ levels control Ca2+ store replenishment and mitogen-induced increase of cytosolic Ca2+ by Cyclic ADP-ribose-dependent TRPM2 channel gating in human T lymphocytes. J. Biol. Chem., 2012, 287(25), 21067-21081.
[http://dx.doi.org/10.1074/jbc.M111.324269] [PMID: 22547068]
[63]
Melzer, N.; Hicking, G.; Göbel, K.; Wiendl, H. TRPM2 cation channels modulate T cell effector functions and contribute to autoimmune CNS inflammation. PLoS One, 2012, 7(10)e47617
[http://dx.doi.org/10.1371/journal.pone.0047617] [PMID: 23077651]
[64]
Pang, B.; Shin, D.H.; Park, K.S.; Huh, Y.J.; Woo, J.; Zhang, Y.H.; Kang, T.M.; Lee, K.Y.; Kim, S.J. Differential pathways for calcium influx activated by concanavalin A and CD3 stimulation in Jurkat T cells. Pflugers Arch., 2012, 463(2), 309-318.
[http://dx.doi.org/10.1007/s00424-011-1039-x] [PMID: 22020731]
[65]
Launay, P.; Cheng, H.; Srivatsan, S.; Penner, R.; Fleig, A.; Kinet, J.P. TRPM4 regulates calcium oscillations after T cell activation. Science, 2004, 306(5700), 1374-1377.
[http://dx.doi.org/10.1126/science.1098845] [PMID: 15550671]
[66]
Takezawa, R.; Cheng, H.; Beck, A.; Ishikawa, J.; Launay, P.; Kubota, H.; Kinet, J.P.; Fleig, A.; Yamada, T.; Penner, R. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol. Pharmacol., 2006, 69(4), 1413-1420.
[http://dx.doi.org/10.1124/mol.105.021154] [PMID: 16407466]
[67]
Weber, K.S.; Hildner, K.; Murphy, K.M.; Allen, P.M. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J. Immunol., 2010, 185(5), 2836-2846.
[http://dx.doi.org/10.4049/jimmunol.1000880] [PMID: 20656926]
[68]
Desai, B.N.; Krapivinsky, G.; Navarro, B.; Krapivinsky, L.; Carter, B.C.; Febvay, S.; Delling, M.; Penumaka, A.; Ramsey, I.S.; Manasian, Y.; Clapham, D.E. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev. Cell, 2012, 22(6), 1149-1162.
[http://dx.doi.org/10.1016/j.devcel.2012.04.006] [PMID: 22698280]
[69]
Kuras, Z.; Yun, Y.H.; Chimote, A.A.; Neumeier, L.; Conforti, L. KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One, 2012, 7(8)e43859
[http://dx.doi.org/10.1371/journal.pone.0043859] [PMID: 22952790]
[70]
Dietrich, A.; Fahlbusch, M.; Gudermann, T. Classical Transient Receptor Potential 1 (TRPC1): channel or channel regulator? Cells, 2014, 3(4), 939-962.
[http://dx.doi.org/10.3390/cells3040939] [PMID: 25268281]
[71]
Yildirim, E.; Carey, M.A.; Card, J.W.; Dietrich, A.; Flake, G.P.; Zhang, Y.; Bradbury, J.A.; Rebolloso, Y.; Germolec, D.R.; Morgan, D.L.; Zeldin, D.C.; Birnbaumer, L. Severely blunted allergen-induced pulmonary Th2 cell response and lung hyperresponsiveness in type 1 transient receptor potential channel-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 303(6), L539-L549.
[http://dx.doi.org/10.1152/ajplung.00389.2011] [PMID: 22797250]
[72]
Sel, S.; Rost, B.R.; Yildirim, A.O.; Sel, B.; Kalwa, H.; Fehrenbach, H.; Renz, H.; Gudermann, T.; Dietrich, A. Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin. Exp. Allergy, 2008, 38(9), 1548-1558.
[http://dx.doi.org/10.1111/j.1365-2222.2008.03043.x] [PMID: 18631347]
[73]
Strübing, C.; Krapivinsky, G.; Krapivinsky, L.; Clapham, D.E. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J. Biol. Chem., 2003, 278(40), 39014-39019.
[http://dx.doi.org/10.1074/jbc.M306705200] [PMID: 12857742]
[74]
Nazıroğlu, M.; Braidy, N. Thermo-sensitive TRP channels: novel targets for treating chemotherapy-induced peripheral pain. Front. Physiol., 2017, 8, 1040.
[http://dx.doi.org/10.3389/fphys.2017.01040] [PMID: 29326595]
[75]
Bíró, T.; Tóth, B.I.; Marincsák, R.; Dobrosi, N.; Géczy, T.; Paus, R. TRP channels as novel players in the pathogenesis and therapy of itch. Biochim. Biophys. Acta, 2007, 1772(8), 1004-1021.
[http://dx.doi.org/10.1016/j.bbadis.2007.03.002] [PMID: 17462867]
[76]
Vennekens, R.; Owsianik, G.; Nilius, B. Vanilloid transient receptor potential cation channels: an overview. Curr. Pharm. Des., 2008, 14(1), 18-31.
[http://dx.doi.org/10.2174/138161208783330763] [PMID: 18220815]
[77]
Wissenbach, U.; Niemeyer, B.A. Trpv6. Handb. Exp. Pharmacol., 2007, (179), 221-234.
[http://dx.doi.org/10.1007/978-3-540-34891-7_13] [PMID: 17217060]
[78]
de Groot, T.; Bindels, R.J.; Hoenderop, J.G. TRPV5: an ingeniously controlled calcium channel. Kidney Int., 2008, 74(10), 1241-1246.
[http://dx.doi.org/10.1038/ki.2008.320] [PMID: 18596722]
[79]
Na, T.; Peng, J.B. TRPV5: a Ca(2+) channel for the fine-tuning of Ca(2+) reabsorption. Handb. Exp. Pharmacol., 2014, 222, 321-357.
[http://dx.doi.org/10.1007/978-3-642-54215-2_13] [PMID: 24756712]
[80]
Omari, S.A.; Adams, M.J.; Geraghty, D.P. TRPV1 channels in immune cells and hematological malignancies. Adv. Pharmacol., 2017, 79, 173-198.
[http://dx.doi.org/10.1016/bs.apha.2017.01.002] [PMID: 28528668]
[81]
Perraud, A.L.; Fleig, A.; Dunn, C.A.; Bagley, L.A.; Launay, P.; Schmitz, C.; Stokes, A.J.; Zhu, Q.; Bessman, M.J.; Penner, R.; Kinet, J.P.; Scharenberg, A.M. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature, 2001, 411(6837), 595-599.
[http://dx.doi.org/10.1038/35079100] [PMID: 11385575]
[82]
Sumoza-Toledo, A.; Penner, R. TRPM2: a multifunctional ion channel for calcium signalling. J. Physiol., 2011, 589(Pt 7), 1515-1525.
[http://dx.doi.org/10.1113/jphysiol.2010.201855] [PMID: 21135052]
[83]
Lange, I.; Penner, R.; Fleig, A.; Beck, A. Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium, 2008, 44(6), 604-615.
[http://dx.doi.org/10.1016/j.ceca.2008.05.001] [PMID: 18572241]
[84]
Yamamoto, S.; Shimizu, S.; Kiyonaka, S.; Takahashi, N.; Wajima, T.; Hara, Y.; Negoro, T.; Hiroi, T.; Kiuchi, Y.; Okada, T.; Kaneko, S.; Lange, I.; Fleig, A.; Penner, R.; Nishi, M.; Takeshima, H.; Mori, Y. TRPM2-mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med., 2008, 14(7), 738-747.
[http://dx.doi.org/10.1038/nm1758] [PMID: 18542050]
[85]
Di, A.; Gao, X.P.; Qian, F.; Kawamura, T.; Han, J.; Hecquet, C.; Ye, R.D.; Vogel, S.M.; Malik, A.B. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat. Immunol., 2011, 13(1), 29-34.
[http://dx.doi.org/10.1038/ni.2171] [PMID: 22101731]
[86]
Yamamoto, S.; Shimizu, S. Targeting TRPM2 in ROS-coupled diseases. Pharmaceuticals (Basel), 2016, 9(3)E57
[http://dx.doi.org/10.3390/ph9030057] [PMID: 27618067]
[87]
Iles, K.E.; Forman, H.J. Macrophage signaling and respiratory burst. Immunol. Res., 2002, 26(1-3), 95-105.
[http://dx.doi.org/10.1385/IR:26:1-3:095] [PMID: 12403349]
[88]
Fialkow, L.; Wang, Y.; Downey, G.P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic. Biol. Med., 2007, 42(2), 153-164.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.09.030] [PMID: 17189821]
[89]
Ernst, I.M.; Fliegert, R.; Guse, A.H. Adenine dinucleotide second messengers and T-lymphocyte calcium signaling. Front. Immunol., 2013, 4, 259.
[http://dx.doi.org/10.3389/fimmu.2013.00259] [PMID: 24009611]
[90]
Sumoza-Toledo, A.; Fleig, A.; Penner, R. TRPM2 channels are not required for acute airway inflammation in OVA-induced severe allergic asthma in mice. J. Inflamm. (Lond.), 2013, 10(1), 19.
[http://dx.doi.org/10.1186/1476-9255-10-19] [PMID: 23631390]
[91]
Paravicini, T.M.; Chubanov, V.; Gudermann, T. TRPM7: a unique channel involved in magnesium homeostasis. Int. J. Biochem. Cell Biol., 2012, 44(8), 1381-1384.
[http://dx.doi.org/10.1016/j.biocel.2012.05.010] [PMID: 22634382]
[92]
Fleig, A.; Chubanov, V. Trpm7. Handb. Exp. Pharmacol., 2014, 222, 521-546.
[http://dx.doi.org/10.1007/978-3-642-54215-2_21] [PMID: 24756720]
[93]
Jin, J.; Desai, B.N.; Navarro, B.; Donovan, A.; Andrews, N.C.; Clapham, D.E. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science, 2008, 322(5902), 756-760.
[http://dx.doi.org/10.1126/science.1163493] [PMID: 18974357]
[94]
Beesetty, P.; Wieczerzak, K.B.; Gibson, J.N.; Kaitsuka, T.; Luu, C.T.; Matsushita, M.; Kozak, J.A. Inactivation of TRPM7 kinase in mice results in enlarged spleens, reduced T-cell proliferation and diminished store-operated calcium entry. Sci. Rep., 2018, 8(1), 3023.
[http://dx.doi.org/10.1038/s41598-018-21004-w] [PMID: 29445164]
[95]
Malpuech-Brugère, C.; Nowacki, W.; Daveau, M.; Gueux, E.; Linard, C.; Rock, E.; Lebreton, J.; Mazur, A.; Rayssiguier, Y. Inflammatory response following acute magnesium deficiency in the rat. Biochim. Biophys. Acta, 2000, 1501(2-3), 91-98.
[http://dx.doi.org/10.1016/S0925-4439(00)00018-1] [PMID: 10838183]
[96]
Ryazanova, L.V.; Hu, Z.; Suzuki, S.; Chubanov, V.; Fleig, A.; Ryazanov, A.G. Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice. Sci. Rep., 2014, 4, 7599.
[http://dx.doi.org/10.1038/srep07599] [PMID: 25534891]
[97]
Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med., 2012, 18(5), 693-704.
[http://dx.doi.org/10.1038/nm.2755] [PMID: 22561833]
[98]
Freichel, M.; Almering, J.; Tsvilovskyy, V. The role of TRP proteins in mast cells. Front. Immunol., 2012, 3, 150.
[http://dx.doi.org/10.3389/fimmu.2012.00150] [PMID: 22701456]
[99]
Baba, Y.; Nishida, K.; Fujii, Y.; Hirano, T.; Hikida, M.; Kurosaki, T. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat. Immunol., 2008, 9(1), 81-88.
[http://dx.doi.org/10.1038/ni1546] [PMID: 18059272]
[100]
Vig, M.; DeHaven, W.I.; Bird, G.S.; Billingsley, J.M.; Wang, H.; Rao, P.E.; Hutchings, A.B.; Jouvin, M.H.; Putney, J.W.; Kinet, J.P. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat. Immunol., 2008, 9(1), 89-96.
[http://dx.doi.org/10.1038/ni1550] [PMID: 18059270]
[101]
Ashmole, I.; Duffy, S.M.; Leyland, M.L.; Morrison, V.S.; Begg, M.; Bradding, P. CRACM/Orai ion channel expression and function in human lung mast cells. J. Allergy. Clin. Immunol.,, 2012, 129(6), 1628-1635.e1622
[102]
Bulanova, E.; Bulfone-Paus, S. P2 receptor-mediated signaling in mast cell biology. Purinergic Signal., 2010, 6(1), 3-17.
[http://dx.doi.org/10.1007/s11302-009-9173-z] [PMID: 19921464]
[103]
Halova, I.; Draberova, L.; Draber, P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front. Immunol., 2012, 3, 119.
[http://dx.doi.org/10.3389/fimmu.2012.00119] [PMID: 22654878]
[104]
Wajdner, H.E.; Farrington, J.; Barnard, C.; Peachell, P.T.; Schnackenberg, C.G.; Marino, J.P., Jr; Xu, X.; Affleck, K.; Begg, M.; Seward, E.P. Orai and TRPC channel characterization in FcεRI-mediated calcium signaling and mediator secretion in human mast cells. Physiol. Rep., 2017, 5(5)e13166
[http://dx.doi.org/10.14814/phy2.13166] [PMID: 28292887]
[105]
Kim, K.S.; Shin, D.H.; Nam, J.H.; Park, K.S.; Zhang, Y.H.; Kim, W.K.; Kim, S.J. Functional expression of TRPV4 cation channels in human mast cell line (HMC-1). Korean J. Physiol. Pharmacol., 2010, 14(6), 419-425.
[http://dx.doi.org/10.4196/kjpp.2010.14.6.419] [PMID: 21311684]
[106]
Bradding, P.; Okayama, Y.; Kambe, N.; Saito, H. Ion channel gene expression in human lung, skin, and cord blood-derived mast cells. J. Leukoc. Biol., 2003, 73(5), 614-620.
[http://dx.doi.org/10.1189/jlb.1202602] [PMID: 12714576]
[107]
Cohen, R.; Torres, A.; Ma, H.T.; Holowka, D.; Baird, B. Ca2+ waves initiate antigen-stimulated Ca2+ responses in mast cells. J. Immunol., 2009, 183(10), 6478-6488.
[http://dx.doi.org/10.4049/jimmunol.0901615] [PMID: 19864608]
[108]
Suzuki, R.; Liu, X.; Olivera, A.; Aguiniga, L.; Yamashita, Y.; Blank, U.; Ambudkar, I.; Rivera, J. Loss of TRPC1-mediated Ca2+ influx contributes to impaired degranulation in Fyn-deficient mouse bone marrow-derived mast cells. J. Leukoc. Biol., 2010, 88(5), 863-875.
[http://dx.doi.org/10.1189/jlb.0510253] [PMID: 20571036]
[109]
Medic, N.; Desai, A.; Olivera, A.; Abramowitz, J.; Birnbaumer, L.; Beaven, M.A.; Gilfillan, A.M.; Metcalfe, D.D. Knockout of the Trpc1 gene reveals that TRPC1 can promote recovery from anaphylaxis by negatively regulating mast cell TNF-α production. Cell Calcium, 2013, 53(5-6), 315-326.
[http://dx.doi.org/10.1016/j.ceca.2013.02.001] [PMID: 23489970]
[110]
Di Capite, J.; Nelson, C.; Bates, G.; Parekh, A.B. Targeting Ca2+ release-activated Ca2+ channel channels and leukotriene receptors provides a novel combination strategy for treating nasal polyposis. J. Allergy. Clin. Immunol, 2009, 124(5), 1014-1021..1-e3
[http://dx.doi.org/10.1016/j.jaci.2009.08.030] [PMID: 19895990]
[111]
Kojima, I.; Nagasawa, M. Trpv2. Handb. Exp. Pharmacol., 2014, 222, 247-272.
[http://dx.doi.org/10.1007/978-3-642-54215-2_10] [PMID: 24756709]
[112]
Shibasaki, K. Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor. J. Physiol. Sci., 2016, 66(5), 359-365.
[http://dx.doi.org/10.1007/s12576-016-0434-7] [PMID: 26841959]
[113]
Stokes, A.J.; Shimoda, L.M.; Koblan-Huberson, M.; Adra, C.N.; Turner, H.A. TRPV2-PKA signaling module for transduction of physical stimuli in mast cells. J. Exp. Med., 2004, 200(2), 137-147.
[http://dx.doi.org/10.1084/jem.20032082] [PMID: 15249591]
[114]
Zhang, D.; Spielmann, A.; Wang, L.; Ding, G.; Huang, F.; Gu, Q.; Schwarz, W. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol. Res., 2012, 61(1), 113-124.
[PMID: 21574765]
[115]
Solís-López, A.; Kriebs, U.; Marx, A.; Mannebach, S.; Liedtke, W.B.; Caterina, M.J.; Freichel, M.; Tsvilovskyy, V.V. Analysis of TRPV channel activation by stimulation of FCεRI and MRGPR receptors in mouse peritoneal mast cells. PLoS One, 2017, 12(2)e0171366
[http://dx.doi.org/10.1371/journal.pone.0171366] [PMID: 28158279]
[116]
Park, U.; Vastani, N.; Guan, Y.; Raja, S.N.; Koltzenburg, M.; Caterina, M.J. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J. Neurosci., 2011, 31(32), 11425-11436.
[http://dx.doi.org/10.1523/JNEUROSCI.1384-09.2011] [PMID: 21832173]
[117]
Oda, S.; Uchida, K.; Wang, X.; Lee, J.; Shimada, Y.; Tominaga, M.; Kadowaki, M. TRPM2 contributes to antigen-stimulated Ca2+ influx in mucosal mast cells. Pflugers Arch., 2013, 465(7), 1023-1030.
[http://dx.doi.org/10.1007/s00424-013-1219-y] [PMID: 23371039]
[118]
Vennekens, R.; Olausson, J.; Meissner, M.; Bloch, W.; Mathar, I.; Philipp, S.E.; Schmitz, F.; Weissgerber, P.; Nilius, B.; Flockerzi, V.; Freichel, M. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat. Immunol., 2007, 8(3), 312-320.
[http://dx.doi.org/10.1038/ni1441] [PMID: 17293867]
[119]
Zierler, S.; Sumoza-Toledo, A.; Suzuki, S.; Dúill, F.O.; Ryazanova, L.V.; Penner, R.; Ryazanov, A.G.; Fleig, A. TRPM7 kinase activity regulates murine mast cell degranulation. J. Physiol., 2016, 594(11), 2957-2970.
[http://dx.doi.org/10.1113/JP271564] [PMID: 26660477]
[120]
McKemy, D.D.; Neuhausser, W.M.; Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature, 2002, 416(6876), 52-58.
[http://dx.doi.org/10.1038/nature719] [PMID: 11882888]
[121]
Peier, A.M.; Moqrich, A.; Hergarden, A.C.; Reeve, A.J.; Andersson, D.A.; Story, G.M.; Earley, T.J.; Dragoni, I.; McIntyre, P.; Bevan, S.; Patapoutian, A. A TRP channel that senses cold stimuli and menthol. Cell, 2002, 108(5), 705-715.
[http://dx.doi.org/10.1016/S0092-8674(02)00652-9] [PMID: 11893340]
[122]
Cho, Y.; Jang, Y.; Yang, Y.D.; Lee, C.H.; Lee, Y.; Oh, U. TRPM8 mediates cold and menthol allergies associated with mast cell activation. Cell Calcium, 2010, 48(4), 202-208.
[http://dx.doi.org/10.1016/j.ceca.2010.09.001] [PMID: 20934218]
[123]
Medic, N.; Desai, A.; Komarow, H.; Burch, L.H.; Bandara, G.; Beaven, M.A.; Metcalfe, D.D.; Gilfillan, A.M. Examination of the role of TRPM8 in human mast cell activation and its relevance to the etiology of cold-induced urticaria. Cell Calcium, 2011, 50(5), 473-480.
[http://dx.doi.org/10.1016/j.ceca.2011.08.003] [PMID: 21906810]
[124]
Weidinger, S.; Novak, N. Atopic dermatitis. Lancet, 2016, 387(10023), 1109-1122.
[http://dx.doi.org/10.1016/S0140-6736(15)00149-X] [PMID: 26377142]
[125]
Bieber, T. Atopic dermatitis. N. Engl. J. Med., 2008, 358(14), 1483-1494.
[http://dx.doi.org/10.1056/NEJMra074081] [PMID: 18385500]
[126]
Thyssen, J.P.; Kezic, S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J. Allergy Clin. Immunol., 2014, 134(4), 792-799.
[http://dx.doi.org/10.1016/j.jaci.2014.06.014] [PMID: 25065719]
[127]
Palmer, C.N.; Irvine, A.D.; Terron-Kwiatkowski, A.; Zhao, Y.; Liao, H.; Lee, S.P.; Goudie, D.R.; Sandilands, A.; Campbell, L.E.; Smith, F.J.; O’Regan, G.M.; Watson, R.M.; Cecil, J.E.; Bale, S.J.; Compton, J.G.; DiGiovanna, J.J.; Fleckman, P.; Lewis-Jones, S.; Arseculeratne, G.; Sergeant, A.; Munro, C.S.; El Houate, B.; McElreavey, K.; Halkjaer, L.B.; Bisgaard, H.; Mukhopadhyay, S.; McLean, W.H. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet., 2006, 38(4), 441-446.
[http://dx.doi.org/10.1038/ng1767] [PMID: 16550169]
[128]
Jungersted, J.M.; Scheer, H.; Mempel, M.; Baurecht, H.; Cifuentes, L.; Høgh, J.K.; Hellgren, L.I.; Jemec, G.B.; Agner, T.; Weidinger, S. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy, 2010, 65(7), 911-918.
[http://dx.doi.org/10.1111/j.1398-9995.2010.02326.x] [PMID: 20132155]
[129]
Paller, A.S.; Kabashima, K.; Bieber, T. Therapeutic pipeline for atopic dermatitis: End of the drought? J. Allergy Clin. Immunol., 2017, 140(3), 633-643.
[http://dx.doi.org/10.1016/j.jaci.2017.07.006] [PMID: 28887947]
[130]
He, A.; Feldman, S.R.; Fleischer, A.B. Jr. An assessment of the use of antihistamines in the management of atopic dermatitis. J. Am. Acad. Dermatol., 2018, 79(1), 92-96.
[http://dx.doi.org/10.1016/j.jaad.2017.12.077] [PMID: 29317281]
[131]
Yoshino, T.; Ishikawa, J.; Ohga, K.; Morokata, T.; Takezawa, R.; Morio, H.; Okada, Y.; Honda, K.; Yamada, T. YM-58483, a selective CRAC channel inhibitor, prevents antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models. Eur. J. Pharmacol., 2007, 560(2-3), 225-233.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.012] [PMID: 17307161]
[132]
Chen, G.; Panicker, S.; Lau, K.Y.; Apparsundaram, S.; Patel, V.A.; Chen, S.L.; Soto, R.; Jung, J.K.; Ravindran, P.; Okuhara, D.; Bohnert, G.; Che, Q.; Rao, P.E.; Allard, J.D.; Badi, L.; Bitter, H.M.; Nunn, P.A.; Narula, S.K.; DeMartino, J.A. Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions. Mol. Immunol., 2013, 54(3-4), 355-367.
[http://dx.doi.org/10.1016/j.molimm.2012.12.011] [PMID: 23357789]
[133]
Grundy, S.; Kaur, M.; Plumb, J.; Reynolds, S.; Hall, S.; House, D.; Begg, M.; Ray, D.; Singh, D. CRAC channel inhibition produces greater anti-inflammatory effects than glucocorticoids in CD8 cells from COPD patients. Clin. Sci. (Lond.), 2014, 126(3), 223-232.
[http://dx.doi.org/10.1042/CS20130152] [PMID: 23905758]
[134]
Elsholz, F.; Harteneck, C.; Muller, W.; Friedland, K. Calcium--a central regulator of keratinocyte differentiation in health and disease. Eur. J. Dermatol., 2014, 24(6), 650-661.
[http://dx.doi.org/10.1684/ejd.2014.2452] [PMID: 25514792]
[135]
Tóth, B.I.; Oláh, A.; Szöllősi, A.G.; Bíró, T. TRP channels in the skin. Br. J. Pharmacol., 2014, 171(10), 2568-2581.
[http://dx.doi.org/10.1111/bph.12569] [PMID: 24372189]
[136]
Ho, J.C.; Lee, C.H. TRP channels in skin: from physiological implications to clinical significances. Biophysics( Nagoya-shi),, 2015, 11, 17-24.
[http://dx.doi.org/10.2142/biophysics.11.17] [PMID: 27493510]
[137]
Cheng, X.; Jin, J.; Hu, L.; Shen, D.; Dong, X.P.; Samie, M.A.; Knoff, J.; Eisinger, B.; Liu, M.L.; Huang, S.M.; Caterina, M.J.; Dempsey, P.; Michael, L.E.; Dlugosz, A.A.; Andrews, N.C.; Clapham, D.E.; Xu, H. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell, 2010, 141(2), 331-343.
[http://dx.doi.org/10.1016/j.cell.2010.03.013] [PMID: 20403327]
[138]
Aijima, R.; Wang, B.; Takao, T.; Mihara, H.; Kashio, M.; Ohsaki, Y.; Zhang, J.Q.; Mizuno, A.; Suzuki, M.; Yamashita, Y.; Masuko, S.; Goto, M.; Tominaga, M.; Kido, M.A. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia. FASEB J., 2015, 29(1), 182-192.
[http://dx.doi.org/10.1096/fj.14-251314] [PMID: 25351988]
[139]
Nam, Y.R.; Kim, H.J.; Kim, Y.M.; Chin, Y.W.; Bae, H.S.; Kim, W.K.; Nam, J.H. Agrimonia pilosa leaf extract accelerates skin barrier restoration by activation of transient receptor potential vanilloid 3. J. Dermatol. Sci., 2017, 86(3), 255-258.
[http://dx.doi.org/10.1016/j.jdermsci.2017.03.003] [PMID: 28404452]
[140]
Roberson, D.P.; Gudes, S.; Sprague, J.M.; Patoski, H.A.; Robson, V.K.; Blasl, F.; Duan, B.; Oh, S.B.; Bean, B.P.; Ma, Q.; Binshtok, A.M.; Woolf, C.J. Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat. Neurosci., 2013, 16(7), 910-918.
[http://dx.doi.org/10.1038/nn.3404] [PMID: 23685721]
[141]
Wilson, S.; Bautista, D. Itching for relief. Nat. Neurosci., 2013, 16(7), 775-777.
[http://dx.doi.org/10.1038/nn.3442] [PMID: 23799467]
[142]
Cevikbas, F.; Wang, X.; Akiyama, T.; Kempkes, C.; Savinko, T.; Antal, A.; Kukova, G.; Buhl, T.; Ikoma, A.; Buddenkotte, J.; Soumelis, V.; Feld, M.; Alenius, H.; Dillon, S.R.; Carstens, E.; Homey, B.; Basbaum, A.; Steinhoff, M. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol., 2014, 133(2), 448-460.
[http://dx.doi.org/10.1016/j.jaci.2013.10.048] [PMID: 24373353]
[143]
Yun, J.W.; Seo, J.A.; Jeong, Y.S.; Bae, I.H.; Jang, W.H.; Lee, J.; Kim, S.Y.; Shin, S.S.; Woo, B.Y.; Lee, K.W.; Lim, K.M.; Park, Y.H. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J. Dermatol. Sci., 2011, 62(1), 8-15.
[PMID: 21345654]
[144]
Bonchak, J.G.; Swerlick, R.A. Emerging therapies for atopic dermatitis: TRPV1 antagonists. J. Am. Acad. Dermatol.,, 2018, 78(3S1), S63-S66.
[http://dx.doi.org/10.1016/j.jaad.2017.12.023] [PMID: 29248524]
[145]
Tan, C.H.; Rasool, S.; Johnston, G.A. Contact dermatitis: allergic and irritant. Clin. Dermatol., 2014, 32(1), 116-124.
[http://dx.doi.org/10.1016/j.clindermatol.2013.05.033] [PMID: 24314385]
[146]
Feng, J.; Yang, P.; Mack, M.R.; Dryn, D.; Luo, J.; Gong, X.; Liu, S.; Oetjen, L.K.; Zholos, A.V.; Mei, Z.; Yin, S.; Kim, B.S.; Hu, H. Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nat. Commun., 2017, 8(1), 980.
[http://dx.doi.org/10.1038/s41467-017-01056-8] [PMID: 29081531]
[147]
Wheatley, L.M.; Togias, A. Clinical practice. Allergic rhinitis. N. Engl. J. Med., 2015, 372(5), 456-463.
[http://dx.doi.org/10.1056/NEJMcp1412282] [PMID: 25629743]
[148]
Kakli, H.A.; Riley, T.D. Allergic Rhinitis. Prim. Care, 2016, 43(3), 465-475.
[http://dx.doi.org/10.1016/j.pop.2016.04.009] [PMID: 27545735]
[149]
Alenmyr, L.; Högestätt, E.D.; Zygmunt, P.M.; Greiff, L. TRPV1-mediated itch in seasonal allergic rhinitis. Allergy, 2009, 64(5), 807-810.
[http://dx.doi.org/10.1111/j.1398-9995.2009.01937.x] [PMID: 19220220]
[150]
Taylor-Clark, T.E.; Kollarik, M.; MacGlashan, D.W. Jr.; Undem, B.J. Nasal sensory nerve populations responding to histamine and capsaicin. J. Allergy Clin. Immunol., 2005, 116(6), 1282-1288.
[http://dx.doi.org/10.1016/j.jaci.2005.08.043] [PMID: 16337460]
[151]
Van Gerven, L.; Alpizar, Y.A.; Wouters, M.M.; Hox, V.; Hauben, E.; Jorissen, M.; Boeckxstaens, G.; Talavera, K.; Hellings, P.W. Capsaicin treatment reduces nasal hyperreactivity and transi-ent receptor potential cation channel subfamily V, receptor 1 (TRPV1) overexpression in patients with idiopathic rhinitis. J. Allergy. Clin. Immunol.,, 2014, 133(5), 1332-1339.1339.e1-3
[http://dx.doi.org/10.1016/j.jaci.2013.08.026] [PMID: 24139494]
[152]
Rami, H.K.; Thompson, M.; Stemp, G.; Fell, S.; Jerman, J.C.; Stevens, A.J.; Smart, D.; Sargent, B.; Sanderson, D.; Randall, A.D.; Gunthorpe, M.J.; Davis, J.B. Discovery of SB-705498: a potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorg. Med. Chem. Lett., 2006, 16(12), 3287-3291.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.030] [PMID: 16580202]
[153]
Bareille, P.; Murdoch, R.D.; Denyer, J.; Bentley, J.; Smart, K.; Yarnall, K.; Zieglmayer, P.; Zieglmayer, R.; Lemell, P.; Horak, F. The effects of a TRPV1 antagonist, SB-705498, in the treatment of seasonal allergic rhinitis. Int. J. Clin. Pharmacol. Ther., 2013, 51(7), 576-584.
[http://dx.doi.org/10.5414/CP201890] [PMID: 23735181]
[154]
Murdoch, R.D.; Bareille, P.; Denyer, J.; Newlands, A.; Bentley, J.; Smart, K.; Yarnall, K.; Patel, D. TRPV1 inhibition does not prevent cold dry air-elicited symptoms in non-allergic rhinitis. Int. J. Clin. Pharmacol. Ther., 2014, 52(4), 267-276.
[http://dx.doi.org/10.5414/CP202013] [PMID: 24472402]
[155]
Bel, E.H. Clinical Practice. Mild asthma. N. Engl. J. Med., 2013, 369(6), 549-557.
[http://dx.doi.org/10.1056/NEJMcp1214826] [PMID: 23924005]
[156]
To, T.; Stanojevic, S.; Moores, G.; Gershon, A.S.; Bateman, E.D.; Cruz, A.A.; Boulet, L.P. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health, 2012, 12, 204.
[http://dx.doi.org/10.1186/1471-2458-12-204] [PMID: 22429515]
[157]
Israel, E.; Reddel, H.K. Severe and difficult-to-treat asthma in adults. N. Engl. J. Med., 2017, 377(10), 965-976.
[http://dx.doi.org/10.1056/NEJMra1608969] [PMID: 28877019]
[158]
Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet, 2018, 391(10122), 783-800.
[http://dx.doi.org/10.1016/S0140-6736(17)33311-1] [PMID: 29273246]
[159]
Brouns, I.; Pintelon, I.; Timmermans, J.P.; Adriaensen, D. Novel insights in the neurochemistry and function of pulmonary sensory receptors. Adv. Anat. Embryol. Cell Biol.,, 2012, 211, 1-115. vii
[http://dx.doi.org/10.1007/978-3-642-22772-1_1] [PMID: 22128592]
[160]
Bonvini, S.J.; Belvisi, M.G. Cough and airway disease: The role of ion channels. Pulm. Pharmacol. Ther., 2017, 47, 21-28.
[http://dx.doi.org/10.1016/j.pupt.2017.06.009] [PMID: 28669932]
[161]
Nassenstein, C.; Kwong, K.; Taylor-Clark, T.; Kollarik, M.; Macglashan, D.M.; Braun, A.; Undem, B.J. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J. Physiol., 2008, 586(6), 1595-1604.
[http://dx.doi.org/10.1113/jphysiol.2007.148379] [PMID: 18218683]
[162]
Belvisi, M.G.; Birrell, M.A.; Khalid, S.; Wortley, M.A.; Dockry, R.; Coote, J.; Holt, K.; Dubuis, E.; Kelsall, A.; Maher, S.A.; Bonvini, S.; Woodcock, A.; Smith, J.A. Neurophenotypes in airway diseases. insights from translational cough studies. Am. J. Respir. Crit. Care Med., 2016, 193(12), 1364-1372.
[http://dx.doi.org/10.1164/rccm.201508-1602OC] [PMID: 26741046]
[163]
Kaneko, Y.; Szallasi, A. Transient receptor potential (TRP) channels: a clinical perspective. Br. J. Pharmacol., 2014, 171(10), 2474-2507.
[http://dx.doi.org/10.1111/bph.12414] [PMID: 24102319]
[164]
Bhattacharya, A.; Scott, B.P.; Nasser, N.; Ao, H.; Maher, M.P.; Dubin, A.E.; Swanson, D.M.; Shankley, N.P.; Wickenden, A.D.; Chaplan, S.R. Pharmacology and antitussive efficacy of 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), a transient receptor potential vanilloid 1 antagonist in guinea pigs. J. Pharmacol. Exp. Ther., 2007, 323(2), 665-674.
[http://dx.doi.org/10.1124/jpet.107.127258] [PMID: 17690251]
[165]
Andrè, E.; Gatti, R.; Trevisani, M.; Preti, D.; Baraldi, P.G.; Patacchini, R.; Geppetti, P. Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents. Br. J. Pharmacol., 2009, 158(6), 1621-1628.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00438.x] [PMID: 19845671]
[166]
Birrell, M.A.; Belvisi, M.G.; Grace, M.; Sadofsky, L.; Faruqi, S.; Hele, D.J.; Maher, S.A.; Freund-Michel, V.; Morice, A.H. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am. J. Respir. Crit. Care Med., 2009, 180(11), 1042-1047.
[http://dx.doi.org/10.1164/rccm.200905-0665OC] [PMID: 19729665]
[167]
Khalid, S.; Murdoch, R.; Newlands, A.; Smart, K.; Kelsall, A.; Holt, K.; Dockry, R.; Woodcock, A.; Smith, J.A. Transient receptor potential vanilloid 1 (TRPV1) antagonism in patients with refractory chronic cough: a double-blind randomized controlled trial. J. Allergy Clin. Immunol., 2014, 134(1), 56-62.
[http://dx.doi.org/10.1016/j.jaci.2014.01.038] [PMID: 24666696]
[168]
Banner, K.H.; Igney, F.; Poll, C. TRP channels: emerging targets for respiratory disease. Pharmacol. Ther., 2011, 130(3), 371-384.
[http://dx.doi.org/10.1016/j.pharmthera.2011.03.005] [PMID: 21420429]
[169]
Belvisi, M.G.; Birrell, M.A.; Wortley, M.A.; Maher, S.A.; Satia, I.; Badri, H.; Holt, K.; Round, P.; McGarvey, L.; Ford, J.; Smith, J.A. XEN-D0501, a novel transient receptor potential vanilloid 1 antagonist, does not reduce cough in patients with refractory cough. Am. J. Respir. Crit. Care Med., 2017, 196(10), 1255-1263.
[http://dx.doi.org/10.1164/rccm.201704-0769OC] [PMID: 28650204]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy