Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Dynamics of T Cells Repertoire During Trypanosoma cruzi Infection and its Post-Treatment Modulation

Author(s): Adriana Egui, Paola Lasso, Elena Pérez-Antón, M. Carmen Thomas and Manuel Carlos López*

Volume 26, Issue 36, 2019

Page: [6519 - 6543] Pages: 25

DOI: 10.2174/0929867325666181101111819

Price: $65

Abstract

Chagas disease courses with different clinical phases and has a variable clinical presentation and progression. The acute infection phase mostly exhibits a non-specific symptomatology. In the absence of treatment, the acute phase is followed by a chronic phase, which is initially asymptomatic. This chronic asymptomatic phase of the disease is characterized by a fragile balance between the host’s immune response and the parasite replication. The loss of this balance is crucial for the progression of the sickness. The virulence and tropism of the T. cruzi infecting strain together to the inflammation processes in the cardiac tissue are the main factors for the establishment and severity of the cardiomyopathy. The efficacy of treatment in chronic Chagas disease patients is controversial. However, several studies carried out in chronic patients demonstrated that antiparasitic treatment reduces parasite load in the bloodstream and leads to an improvement in the immune response against the Trypanosoma cruzi parasite. The present review is mainly focused on the cellular patterns associated to the clinical status and the evolution of the disease in chronic patients, as well as the effectiveness of the treatment related to T. cruzi infection control. Therefore, an emphasis is placed on the dynamics of specific-antigens T cell subpopulations, their memory and activation phenotypes, their functionality and their contribution to pathogenesis or disease control, as well as their association with risk of congenital transmission of the parasite.

Keywords: Chagas disease, Trypanosoma cruzi, trypanocidal treatment, biomarker, immune response, CD8 and CD4 T cells, CTL epitopes, vertical transmission.

[1]
Rassi, A., Jr; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet, 2010, 375(9723), 1388-1402.
[http://dx.doi.org/10.1016/S0140-6736(10)60061-X] [PMID: 20399979]
[2]
Tarleton, R.L. CD8+ t cells in trypanosoma cruzi infection. Semin. Immunopathol., 2015, 37(3), 233-238.
[http://dx.doi.org/10.1007/s00281-015-0481-9] [PMID: 25921214]
[3]
Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop., 2010, 115(1-2), 14-21.
[http://dx.doi.org/10.1016/j.actatropica.2009.11.003] [PMID: 19932071]
[4]
Gascon, J.; Bern, C.; Pinazo, M.J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop., 2010, 115(1-2), 22-27.
[http://dx.doi.org/10.1016/j.actatropica.2009.07.019] [PMID: 19646412]
[5]
WHO Chagas disease (American trypanosomiasis). Fact sheet. Available at: http://www.who.int/mediacentre/fact-sheets/fs340/en/ (Accessed March, 2016)
[6]
Feldman, A.M.; McNamara, D. Myocarditis. N. Engl. J. Med., 2000, 343(19), 1388-1398.
[http://dx.doi.org/10.1056/NEJM200011093431908] [PMID: 11070105]
[7]
Coura, J.R.; Dias, J.C. Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem. Inst. Oswaldo Cruz, 2009, 104(Suppl. 1), 31-40.
[http://dx.doi.org/10.1590/S0074-02762009000900006] [PMID: 19753455]
[8]
Lee, B.Y.; Bacon, K.M.; Bottazzi, M.E.; Hotez, P.J. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect. Dis., 2013, 13(4), 342-348.
[http://dx.doi.org/10.1016/S1473-3099(13)70002-1] [PMID: 23395248]
[9]
WHO. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Releve epidemiologique hebdomadaire, 2015, 90(6), 33-43.
[PMID: 25671846]
[10]
Alarcón de Noya, B.; Díaz-Bello, Z.; Colmenares, C.; Ruiz-Guevara, R.; Mauriello, L.; Zavala-Jaspe, R.; Suarez, J.A.; Abate, T.; Naranjo, L.; Paiva, M.; Rivas, L.; Castro, J.; Márques, J.; Mendoza, I.; Acquatella, H.; Torres, J.; Noya, O. Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J. Infect. Dis., 2010, 201(9), 1308-1315.
[http://dx.doi.org/10.1086/651608] [PMID: 20307205]
[11]
Piron, M.; Vergés, M.; Muñoz, J.; Casamitjana, N.; Sanz, S.; Maymó, R.M.; Hernández, J.M.; Puig, L.; Portús, M.; Gascón, J.; Sauleda, S. Seroprevalence of Trypanosoma cruzi infection in at-risk blood donors in Catalonia (Spain). Transfusion, 2008, 48(9), 1862-1868.
[http://dx.doi.org/10.1111/j.1537-2995.2008.01789.x] [PMID: 18522707]
[12]
Schmunis, G.A. Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem. Inst. Oswaldo Cruz, 2007, 102(Suppl. 1), 75-85.
[http://dx.doi.org/10.1590/S0074-02762007005000093] [PMID: 17891282]
[13]
Hotez, P.J.; Dumonteil, E.; Betancourt Cravioto, M.; Bottazzi, M.E.; Tapia-Conyer, R.; Meymandi, S.; Karunakara, U.; Ribeiro, I.; Cohen, R.M.; Pecoul, B. An unfolding tragedy of chagas disease in North America. PLoS Negl. Trop. Dis., 2013, 7(10)e2300
[http://dx.doi.org/10.1371/journal.pntd.0002300] [PMID: 24205411]
[14]
Requena-Méndez, A.; Aldasoro, E.; de Lazzari, E.; Sicuri, E.; Brown, M.; Moore, D.A.; Gascon, J.; Muñoz, J. Prevalence of Chagas disease in Latin-American migrants living in Europe: a systematic review and meta-analysis. PLoS Negl. Trop. Dis., 2015, 9(2)e0003540
[http://dx.doi.org/10.1371/journal.pntd.0003540] [PMID: 25680190]
[15]
Basile, L.; Jansa, J.M.; Carlier, Y.; Salamanca, D.D.; Angheben, A.; Bartoloni, A.; Seixas, J.; Van Gool, T.; Canavate, C.; Flores-Chavez, M.; Jackson, Y.; Chiodini, P.L.; Albajar-Vinas, P. Chagas disease in European countries: the challenge of a surveillance system. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 2011, 16(37), pii: 19968.
[PMID: 21944556]
[16]
Navarro, M.; Navaza, B.; Guionnet, A.; López-Vélez, R. Chagas disease in Spain: need for further public health measures. PLoS Negl. Trop. Dis., 2012, 6(12)e1962
[http://dx.doi.org/10.1371/journal.pntd.0001962] [PMID: 23301105]
[17]
Cardoso, M.S.; Reis-Cunha, J.L.; Bartholomeu, D.C. Evasion of the immune response by trypanosoma cruzi during acute infection. Front. Immunol., 2016, 6, 659.
[http://dx.doi.org/10.3389/fimmu.2015.00659] [PMID: 26834737]
[18]
Dos Santos Virgilio, F.; Pontes, C.; Dominguez, M.R.; Ersching, J.; Rodrigues, M.M.; Vasconcelos, J.R. CD8(+) T cell-mediated immunity during Trypanosoma cruzi infection: a path for vaccine development? Mediators Inflamm., 2014, 2014243786
[http://dx.doi.org/10.1155/2014/243786] [PMID: 25104879]
[19]
Viotti, R.; Vigliano, C.A.; Alvarez, M.G.; Lococo, B.E.; Petti, M.A.; Bertocchi, G.L.; Armenti, A.H. The impact of socioeconomic conditions on chronic Chagas disease progression. Rev. Esp. Cardiol., 2009, 62(11), 1224-1232.
[http://dx.doi.org/10.1016/S0300-8932(09)73074-X] [PMID: 19889333]
[20]
de Oliveira, A.P.; Bernardo, C.R.; Camargo, A.V.; Ronchi, L.S.; Borim, A.A.; de Mattos, C.C.; de Campos Júnior, E.; Castiglioni, L.; Netinho, J.G.; Cavasini, C.E.; Bestetti, R.B.; de Mattos, L.C. Genetic susceptibility to cardiac and digestive clinical forms of chronic chagas disease: involvement of the CCR5 59029 A/G polymorphism. PLoS One, 2015, 10(11)e0141847
[http://dx.doi.org/10.1371/journal.pone.0141847] [PMID: 26599761]
[21]
Prata, A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect. Dis., 2001, 1(2), 92-100.
[http://dx.doi.org/10.1016/S1473-3099(01)00065-2] [PMID: 11871482]
[22]
Dutra, W.O.; Rocha, M.O.; Teixeira, M.M. The clinical immunology of human Chagas disease. Trends Parasitol., 2005, 21(12), 581-587.
[http://dx.doi.org/10.1016/j.pt.2005.09.007] [PMID: 16236550]
[23]
Viotti, R.; Alarcón de Noya, B.; Araujo-Jorge, T.; Grijalva, M.J.; Guhl, F.; López, M.C.; Ramsey, J.M.; Ribeiro, I.; Schijman, A.G.; Sosa-Estani, S.; Torrico, F.; Gascon, J. Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob. Agents Chemother., 2014, 58(2), 635-639.
[http://dx.doi.org/10.1128/AAC.01662-13] [PMID: 24247135]
[24]
Garcia, S.; Ramos, C.O.; Senra, J.F.; Vilas-Boas, F.; Rodrigues, M.M.; Campos-de-Carvalho, A.C.; Ribeiro-Dos-Santos, R.; Soares, M.B. Treatment with benznidazole during the chronic phase of experimental Chagas’ disease decreases cardiac alterations. Antimicrob. Agents Chemother., 2005, 49(4), 1521-1528.
[http://dx.doi.org/10.1128/AAC.49.4.1521-1528.2005] [PMID: 15793134]
[25]
Machado-de-Assis, G.F.; Silva, A.R.; Do Bem, V.A.; Bahia, M.T.; Martins-Filho, O.A.; Dias, J.C.; Albajar-Viñas, P.; Torres, R.M.; Lana, M. Posttherapeutic cure criteria in Chagas’ disease: conventional serology followed by supplementary serological, parasitological, and molecular tests. Clin. Vaccine Immunol., 2012, 19(8), 1283-1291.
[http://dx.doi.org/10.1128/CVI.00274-12] [PMID: 22739694]
[26]
Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; Guhl, F.; Velazquez, E.; Bonilla, L.; Meeks, B.; Rao-Melacini, P.; Pogue, J.; Mattos, A.; Lazdins, J.; Rassi, A.; Connolly, S.J.; Yusuf, S.; Investigators, B. Randomized trial of benznidazole for chronic chagas’ cardiomyopathy. N. Engl. J. Med., 2015, 373(14), 1295-1306.
[http://dx.doi.org/10.1056/NEJMoa1507574] [PMID: 26323937]
[27]
Vallejo, A.; Monge-Maillo, B.; Gutiérrez, C.; Norman, F.F.; López-Vélez, R.; Pérez-Molina, J.A. Changes in the immune response after treatment with benznidazole versus no treatment in patients with chronic indeterminate Chagas disease. Acta Trop., 2016, 164, 117-124.
[http://dx.doi.org/10.1016/j.actatropica.2016.09.010] [PMID: 27619190]
[28]
Bustamante, J.M.; Presti, M.S.; Rivarola, H.W.; Fernández, A.R.; Enders, J.E.; Fretes, R.E.; Paglini-Oliva, P. Treatment with benznidazole or thioridazine in the chronic phase of experimental Chagas disease improves cardiopathy. Int. J. Antimicrob. Agents, 2007, 29(6), 733-737.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.01.014] [PMID: 17395432]
[29]
Fragata-Filho, A.A.; França, F.F. Fragata, Cda.S.; Lourenço, A.M.; Faccini, C.C.; Costa, C.A. Evaluation of parasiticide treatment with benznidazol in the electrocardiographic, clinical, and serological evolution of chagas disease. PLoS Negl. Trop. Dis., 2016, 10(3)e0004508
[http://dx.doi.org/10.1371/journal.pntd.0004508] [PMID: 26974551]
[30]
Albareda, M.C.; Laucella, S.A. Modulation of Trypanosoma cruzi-specific T-cell responses after chemotherapy for chronic Chagas disease. Mem. Inst. Oswaldo Cruz, 2015, 110(3), 414-421.
[http://dx.doi.org/10.1590/0074-02760140386] [PMID: 25993507]
[31]
Bern, C.; Montgomery, S.P.; Herwaldt, B.L.; Rassi, A., Jr; Marin-Neto, J.A.; Dantas, R.O.; Maguire, J.H.; Acquatella, H.; Morillo, C.; Kirchhoff, L.V.; Gilman, R.H.; Reyes, P.A.; Salvatella, R.; Moore, A.C. Evaluation and treatment of chagas disease in the United States: a systematic review. JAMA, 2007, 298(18), 2171-2181.
[http://dx.doi.org/10.1001/jama.298.18.2171] [PMID: 18000201]
[32]
Committee, W.E. Control of Chagas disease. World Health Organ. Tech. Rep. Ser., 2002, 905, i-vi, 1-109, back cover.
[PMID: 12092045]
[33]
Duschak, V.G. Targets and patented drugs for chemotherapy of chagas disease in the last 15 years-period. Recent Pat Antiinfect Drug Discov, 2016, 11(2), 74-173.
[http://dx.doi.org/10.2174/1574891X11666161024165304] [PMID: 27784230]
[34]
Carlier, Y.; Torrico, F.; Sosa-Estani, S.; Russomando, G.; Luquetti, A.; Freilij, H.; Albajar Vinas, P. Congenital Chagas disease: recommendations for diagnosis, treatment and control of newborns, siblings and pregnant women. PLoS Negl. Trop. Dis., 2011, 5(10)e1250
[http://dx.doi.org/10.1371/journal.pntd.0001250] [PMID: 22039554]
[35]
Viotti, R.; Vigliano, C.; Lococo, B.; Alvarez, M.G.; Petti, M.; Bertocchi, G.; Armenti, A. Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev. Anti Infect. Ther., 2009, 7(2), 157-163.
[http://dx.doi.org/10.1586/14787210.7.2.157] [PMID: 19254164]
[36]
Fabbro, D.L.; Streiger, M.L.; Arias, E.D.; Bizai, M.L.; del Barco, M.; Amicone, N.A. Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe city (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev. Soc. Bras. Med. Trop., 2007, 40(1), 1-10.
[http://dx.doi.org/10.1590/S0037-86822007000100001] [PMID: 17486245]
[37]
Viotti, R.; Vigliano, C.; Lococo, B.; Bertocchi, G.; Petti, M.; Alvarez, M.G.; Postan, M.; Armenti, A. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann. Intern. Med., 2006, 144(10), 724-734.
[http://dx.doi.org/10.7326/0003-4819-144-10-200605160-00006] [PMID: 16702588]
[38]
Cerisola, J.A.; Alvarez, M.; Bock, M.; Wegner, D. A comparison of a new antigen from amastigotes of Trypanosoma cruzi and an antigen from epimastigotes for the diagnosis of Chagas’ disease by the indirect immunofluorescence test. Rev. Inst. Med. Trop. São Paulo, 1971, 13(3), 162-166.
[PMID: 4998154]
[39]
Zulantay, I.; Honores, P.; Solari, A.; Apt, W.; Ortiz, S.; Osuna, A.; Rojas, A.; López, B.; Sánchez, G. Use of polymerase chain reaction (PCR) and hybridization assays to detect Trypanosoma cruzi in chronic chagasic patients treated with itraconazole or allopurinol. Diagn. Microbiol. Infect. Dis., 2004, 48(4), 253-257.
[http://dx.doi.org/10.1016/j.diagmicrobio.2003.10.011] [PMID: 15062917]
[40]
Duffy, T.; Cura, C.I.; Ramirez, J.C.; Abate, T.; Cayo, N.M.; Parrado, R.; Bello, Z.D.; Velazquez, E.; Muñoz-Calderon, A.; Juiz, N.A.; Basile, J.; Garcia, L.; Riarte, A.; Nasser, J.R.; Ocampo, S.B.; Yadon, Z.E.; Torrico, F.; de Noya, B.A.; Ribeiro, I.; Schijman, A.G. Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl. Trop. Dis., 2013, 7(1)e2000
[http://dx.doi.org/10.1371/journal.pntd.0002000] [PMID: 23350002]
[41]
Pinazo, M.J.; Thomas, M.C.; Bustamante, J.; Almeida, I.C.; Lopez, M.C.; Gascon, J. Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives. Mem. Inst. Oswaldo Cruz, 2015, 110(3), 422-432.
[http://dx.doi.org/10.1590/0074-02760140435] [PMID: 25946151]
[42]
Chatelain, E. Chagas disease research and development: Is there light at the end of the tunnel? Comput. Struct. Biotechnol. J., 2016, 15, 98-103.
[http://dx.doi.org/10.1016/j.csbj.2016.12.002] [PMID: 28066534]
[43]
Fernández-Villegas, A.; Pinazo, M.J.; Marañón, C.; Thomas, M.C.; Posada, E.; Carrilero, B.; Segovia, M.; Gascon, J.; López, M.C. Short-term follow-up of chagasic patients after benzonidazole treatment using multiple serological markers. BMC Infect. Dis., 2011, 11, 206.
[http://dx.doi.org/10.1186/1471-2334-11-206] [PMID: 21801456]
[44]
Fernandez-Villegas, A.; Thomas, M.C.; Carrilero, B.; Lasso, P.; Egui, A.; Murcia, L.; Segovia, M.; Alonso, C.; López, M.C. A 12-mer repetitive antigenic epitope from Trypanosoma cruzi is a potential marker of therapeutic efficacy in chronic Chagas’ disease. J. Antimicrob. Chemother., 2016, 71(7), 2005-2009.
[http://dx.doi.org/10.1093/jac/dkw090] [PMID: 27073267]
[45]
Fernández-Villegas, A.; Thomas, M.C.; Carrilero, B.; Téllez, C.; Marañón, C.; Murcia, L.; Moralo, S.; Alonso, C.; Segovia, M.; López, M.C. The innate immune response status correlates with a divergent clinical course in congenital Chagas disease of twins born in a non-endemic country. Acta Trop., 2014, 140, 84-90.
[http://dx.doi.org/10.1016/j.actatropica.2014.08.006] [PMID: 25149352]
[46]
Thomas, M.C.; Fernández-Villegas, A.; Carrilero, B.; Marañón, C.; Saura, D.; Noya, O.; Segovia, M.; Alarcón de Noya, B.; Alonso, C.; López, M.C. Characterization of an immunodominant antigenic epitope from Trypanosoma cruzi as a biomarker of chronic Chagas’ disease pathology. Clin. Vaccine Immunol., 2012, 19(2), 167-173.
[http://dx.doi.org/10.1128/CVI.05566-11] [PMID: 22155766]
[47]
Junqueira, C.; Caetano, B.; Bartholomeu, D.C.; Melo, M.B.; Ropert, C.; Rodrigues, M.M.; Gazzinelli, R.T. The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert Rev. Mol. Med., 2010, 12e29
[http://dx.doi.org/10.1017/S1462399410001560] [PMID: 20840799]
[48]
Bartholomeu, D.C.; Ropert, C.; Melo, M.B.; Parroche, P.; Junqueira, C.F.; Teixeira, S.M.; Sirois, C.; Kasperkovitz, P.; Knetter, C.F.; Lien, E.; Latz, E.; Golenbock, D.T.; Gazzinelli, R.T. Recruitment and endo-lysosomal activation of TLR9 in dendritic cells infected with Trypanosoma cruzi. J. Immunol., 2008, 181(2), 1333-1344.
[http://dx.doi.org/10.4049/jimmunol.181.2.1333] [PMID: 18606688]
[49]
Grommé, M.; Neefjes, J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol. Immunol., 2002, 39(3-4), 181-202.
[http://dx.doi.org/10.1016/S0161-5890(02)00101-3] [PMID: 12200050]
[50]
Yewdell, J.W.; Reits, E.; Neefjes, J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat. Rev. Immunol., 2003, 3(12), 952-961.
[http://dx.doi.org/10.1038/nri1250] [PMID: 14647477]
[51]
Tarleton, R.L. Immune system recognition of Trypanosoma cruzi. Curr. Opin. Immunol., 2007, 19(4), 430-434.
[http://dx.doi.org/10.1016/j.coi.2007.06.003] [PMID: 17651955]
[52]
Martin, D.; Tarleton, R. Generation, specificity, and function of CD8+ t cells in Trypanosoma cruzi infection. Immunol. Rev., 2004, 201, 304-317.
[http://dx.doi.org/10.1111/j.0105-2896.2004.00183.x] [PMID: 15361249]
[53]
Reche, P.A.; Reinherz, E.L. PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands. Nucleic Acids Res., 2005, 33, W138-W142.
[http://dx.doi.org/10.1093/nar/gki357] [PMID: 15980443]
[54]
Eickhoff, C.S.; Van Aartsen, D.; Terry, F.E.; Meymandi, S.K.; Traina, M.M.; Hernandez, S.; Martin, W.D.; Moise, L.; De Groot, A.S.; Hoft, D.F. An immunoinformatic approach for identification of trypanosoma cruzi HLA-A2-restricted CD8(+) T cell epitopes. Hum. Vaccin. Immunother., 2015, 11(9), 2322-2328.
[http://dx.doi.org/10.1080/21645515.2015.1061160] [PMID: 26107442]
[55]
Egui, A.; Thomas, M.C.; Morell, M.; Marañón, C.; Carrilero, B.; Segovia, M.; Puerta, C.J.; Pinazo, M.J.; Rosas, F.; Gascón, J.; López, M.C. Trypanosoma cruzi paraflagellar rod proteins 2 and 3 contain immunodominant CD8(+) T-cell epitopes that are recognized by cytotoxic T cells from Chagas disease patients. Mol. Immunol., 2012, 52(3-4), 289-298.
[http://dx.doi.org/10.1016/j.molimm.2012.05.021] [PMID: 22750229]
[56]
Fonseca, S.G.; Moins-Teisserenc, H.; Clave, E.; Ianni, B.; Nunes, V.L.; Mady, C.; Iwai, L.K.; Sette, A.; Sidney, J.; Marin, M.L.; Goldberg, A.C.; Guilherme, L.; Charron, D.; Toubert, A.; Kalil, J.; Cunha-Neto, E. Identification of multiple HLA-A*0201-restricted cruzipain and FL-160 CD8+ epitopes recognized by T cells from chronically Trypanosoma cruzi-infected patients. Microbes and infection / Institut Pasteur, 2005, 7(4), 688-697.
[http://dx.doi.org/10.1016/j.micinf.2005.01.001] [PMID: 15848276]
[57]
Marcon, G.E.; de Albuquerque, D.M.; Batista, A.M.; Andrade, P.D.; Almeida, E.A.; Guariento, M.E.; Teixeira, M.A.; Costa, S.C. Trypanosoma cruzi: parasite persistence in tissues in chronic chagasic Brazilian patients. Mem. Inst. Oswaldo Cruz, 2011, 106(1), 85-91.
[http://dx.doi.org/10.1590/S0074-02762011000100014] [PMID: 21340361]
[58]
Martin, D.L.; Weatherly, D.B.; Laucella, S.A.; Cabinian, M.A.; Crim, M.T.; Sullivan, S.; Heiges, M.; Craven, S.H.; Rosenberg, C.S.; Collins, M.H.; Sette, A.; Postan, M.; Tarleton, R.L. CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes. PLoS Pathog., 2006, 2(8)e77
[http://dx.doi.org/10.1371/journal.ppat.0020077] [PMID: 16879036]
[59]
Yewdell, J.W. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity, 2006, 25(4), 533-543.
[http://dx.doi.org/10.1016/j.immuni.2006.09.005] [PMID: 17046682]
[60]
Yewdell, J.W.; Bennink, J.R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol., 1999, 17, 51-88.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.51] [PMID: 10358753]
[61]
Gowthaman, U.; Chodisetti, S.B.; Parihar, P.; Agrewala, J.N. Evaluation of different generic in silico methods for predicting HLA class I binding peptide vaccine candidates using a reverse approach. Amino Acids, 2010, 39(5), 1333-1342.
[http://dx.doi.org/10.1007/s00726-010-0579-2] [PMID: 20379752]
[62]
Wizel, B.; Nunes, M.; Tarleton, R.L. Identification of Trypanosoma cruzi trans-sialidase family members as targets of protective CD8+ TC1 responses. J. Immunol., 1997, 159(12), 6120-6130.
[PMID: 9550413]
[63]
Albareda, M.C.; Laucella, S.A.; Alvarez, M.G.; Armenti, A.H.; Bertochi, G.; Tarleton, R.L.; Postan, M. Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas’ disease patients. Int. Immunol., 2006, 18(3), 465-471.
[http://dx.doi.org/10.1093/intimm/dxh387] [PMID: 16431876]
[64]
Rosenberg, C.S.; Martin, D.L.; Tarleton, R.L. CD8+ T cells specific for immunodominant trans-sialidase epitopes contribute to control of Trypanosoma cruzi infection but are not required for resistance. J. Immunol., 2010, 185(1), 560-568.
[http://dx.doi.org/10.4049/jimmunol.1000432] [PMID: 20530265]
[65]
Diez, H.; López, M.C.; Del Carmen Thomas, M.; Guzmán, F.; Rosas, F.; Velazco, V.; González, J.M.; Puerta, C. Evaluation of IFN-gamma production by CD8 T lymphocytes in response to the K1 peptide from KMP-11 protein in patients infected with Trypanosoma cruzi. Parasite Immunol., 2006, 28(3), 101-105.
[http://dx.doi.org/10.1111/j.1365-3024.2005.00815.x] [PMID: 16441508]
[66]
Lasso, P.; Mesa, D.; Cuéllar, A.; Guzmán, F.; Bolaños, N.; Rosas, F.; Velasco, V. Thomas, Mdel.C.; Lopez, M.C.; Gonzalez, J.M.; Puerta, C.J. Frequency of specific CD8+ T cells for a promiscuous epitope derived from trypanosoma cruzi KMP-11 protein in chagasic patients. Parasite Immunol., 2010, 32(7), 494-502.
[http://dx.doi.org/10.1111/j.1365-3024.2010.01206.x] [PMID: 20591120]
[67]
Maranon, C.; Egui, A.; Carrilero, B.; Thomas, M.C.; Pinazo, M.J.; Gascon, J.; Segovia, M.; Lopez, M.C. Identification of HLA-A*02:01-restricted CTL epitopes in trypanosoma cruzi heat shock protein-70 recognized by chagas disease patients. Microbes and infection / Institut Pasteur, 2011, 13(12-13), 1025-1032.
[http://dx.doi.org/10.1016/j.micinf.2011.05.010] [PMID: 21704723]
[68]
Egui, A.; Thomas, M.C.; Carrilero, B.; Segovia, M.; Alonso, C.; Marañón, C.; López, M.C. Differential phenotypic and functional profiles of TcCA-2 -specific cytotoxic CD8+ T cells in the asymptomatic versus cardiac phase in Chagasic patients. PLoS One, 2015, 10(3)e0122115
[http://dx.doi.org/10.1371/journal.pone.0122115] [PMID: 25816096]
[69]
Liu, J.; Zhang, S.; Tan, S.; Yi, Y.; Wu, B.; Cao, B.; Zhu, F.; Wang, C.; Wang, H.; Qi, J.; Gao, G.F. Cross-allele cytotoxic T lymphocyte responses against 2009 pandemic H1N1 influenza A virus among HLA-A24 and HLA-A3 supertype-positive individuals. J. Virol., 2012, 86(24), 13281-13294.
[http://dx.doi.org/10.1128/JVI.01841-12] [PMID: 23015716]
[70]
Frahm, N.; Yusim, K.; Suscovich, T.J.; Adams, S.; Sidney, J.; Hraber, P.; Hewitt, H.S.; Linde, C.H.; Kavanagh, D.G.; Woodberry, T.; Henry, L.M.; Faircloth, K.; Listgarten, J.; Kadie, C.; Jojic, N.; Sango, K.; Brown, N.V.; Pae, E.; Zaman, M.T.; Bihl, F.; Khatri, A.; John, M.; Mallal, S.; Marincola, F.M.; Walker, B.D.; Sette, A.; Heckerman, D.; Korber, B.T.; Brander, C. Extensive HLA class I allele promiscuity among viral CTL epitopes. Eur. J. Immunol., 2007, 37(9), 2419-2433.
[http://dx.doi.org/10.1002/eji.200737365] [PMID: 17705138]
[71]
Bixby, L.M.; Tarleton, R.L. Stable CD8+ T cell memory during persistent Trypanosoma cruzi infection. J. Immunol., 2008, 181(4), 2644-2650.
[http://dx.doi.org/10.4049/jimmunol.181.4.2644] [PMID: 18684955]
[72]
Wherry, E.J.; Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol., 2004, 78(11), 5535-5545.
[http://dx.doi.org/10.1128/JVI.78.11.5535-5545.2004] [PMID: 15140950]
[73]
Brenchley, J.M.; Karandikar, N.J.; Betts, M.R.; Ambrozak, D.R.; Hill, B.J.; Crotty, L.E.; Casazza, J.P.; Kuruppu, J.; Migueles, S.A.; Connors, M.; Roederer, M.; Douek, D.C.; Koup, R.A. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood, 2003, 101(7), 2711-2720.
[http://dx.doi.org/10.1182/blood-2002-07-2103] [PMID: 12433688]
[74]
Till, B.G.; Press, O.W. Depletion of Tregs for adoptive T-cell therapy using CD44 and CD137 as selection markers. Immunotherapy, 2012, 4(5), 483-485.
[http://dx.doi.org/10.2217/imt.12.33] [PMID: 22642331]
[75]
Bustamante, J.M.; Bixby, L.M.; Tarleton, R.L. Drug-induced cure drives conversion to a stable and protective CD8+ T central memory response in chronic Chagas disease. Nat. Med., 2008, 14(5), 542-550.
[http://dx.doi.org/10.1038/nm1744] [PMID: 18425131]
[76]
Fernández, M.C.; González Cappa, S.M.; Solana, M.E. Trypanosoma cruzi: Immunological predictors of benznidazole efficacy during experimental infection. Exp. Parasitol., 2010, 124(2), 172-180.
[http://dx.doi.org/10.1016/j.exppara.2009.09.006] [PMID: 19747482]
[77]
Tanowitz, H.B.; Kirchhoff, L.V.; Simon, D.; Morris, S.A.; Weiss, L.M.; Wittner, M. Chagas’ disease. Clin. Microbiol. Rev., 1992, 5(4), 400-419.
[http://dx.doi.org/10.1128/CMR.5.4.400] [PMID: 1423218]
[78]
Müller, U.; Sobek, V.; Balkow, S.; Hölscher, C.; Müllbacher, A.; Museteanu, C.; Mossmann, H.; Simon, M.M. Concerted action of perforin and granzymes is critical for the elimination of Trypanosoma cruzi from mouse tissues, but prevention of early host death is in addition dependent on the FasL/Fas pathway. Eur. J. Immunol., 2003, 33(1), 70-78.
[http://dx.doi.org/10.1002/immu.200390009] [PMID: 12594834]
[79]
Higuchi, M. L.; Benvenuti, L.A.; Martins Reis, M.; Metzger, M. Pathophysiology of the heart in Chagas’ disease: current status and new developments. Cardiovasc. Res., 2003, 60(1), 96-107.
[http://dx.doi.org/10.1016/S0008-6363(03)00361-4] [PMID: 14522411]
[80]
Reis, D.D.; Jones, E.M.; Tostes, S., Jr; Lopes, E.R.; Gazzinelli, G.; Colley, D.G.; McCurley, T.L. Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-alpha+ cells and dominance of granzyme A+, CD8+ lymphocytes. Am. J. Trop. Med. Hyg., 1993, 48(5), 637-644.
[http://dx.doi.org/10.4269/ajtmh.1993.48.637] [PMID: 8517482]
[81]
Sato, M.N.; Yamashiro-Kanashiro, E.H.; Tanji, M.M.; Kaneno, R.; Higuchi, M.L.; Duarte, A.J. CD8+ cells and natural cytotoxic activity among spleen, blood, and heart lymphocytes during the acute phase of Trypanosoma cruzi infection in rats. Infect. Immun., 1992, 60(3), 1024-1030.
[PMID: 1541517]
[82]
Tarleton, R.L.; Koller, B.H.; Latour, A.; Postan, M. Susceptibility of beta 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature, 1992, 356(6367), 338-340.
[http://dx.doi.org/10.1038/356338a0] [PMID: 1549177]
[83]
Tarleton, R.L.; Sun, J.; Zhang, L.; Postan, M. Depletion of T-cell subpopulations results in exacerbation of myocarditis and parasitism in experimental Chagas’ disease. Infect. Immun., 1994, 62(5), 1820-1829.
[PMID: 8168945]
[84]
Tarleton, R.L. Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. J. Immunol., 1990, 144(2), 717-724.
[PMID: 2104903]
[85]
Thomas, M.C.; Longobardo, M.V.; Carmelo, E.; Marañón, C.; Planelles, L.; Patarroyo, M.E.; Alonso, C.; López, M.C. Mapping of the antigenic determinants of the T. cruzi kinetoplastid membrane protein-11. Identification of a linear epitope specifically recognized by human Chagasic sera. Clin. Exp. Immunol., 2001, 123(3), 465-471.
[http://dx.doi.org/10.1046/j.1365-2249.2001.01478.x] [PMID: 11298135]
[86]
Planelles, L.; Thomas, M.; Pulgar, M.; Marañón, C.; Grabbe, S.; López, M.C. Trypanosoma cruzi heat-shock protein-70 kDa, alone or fused to the parasite KMP11 antigen, induces functional maturation of murine dendritic cells. Immunol. Cell Biol., 2002, 80(3), 241-247.
[http://dx.doi.org/10.1046/j.1440-1711.2002.01081.x] [PMID: 12067411]
[87]
Díez, H.; Guzmán, F.; Alba, M.P.; Cuéllar, A.; Thomas, M.C.; López, M.C.; Rosas, F.; Velasco, V.; González, J.M.; Patarroyo, M.E.; Puerta, C.J. Immunological and structural characterization of an epitope from the Trypanosoma cruzi KMP-11 protein. Peptides, 2007, 28(8), 1520-1526.
[http://dx.doi.org/10.1016/j.peptides.2007.06.017] [PMID: 17683828]
[88]
Marañón, C.; Thomas, M.C.; Planelles, L.; López, M.C. The immunization of A2/K(b) transgenic mice with the KMP11-HSP70 fusion protein induces CTL response against human cells expressing the T. cruzi KMP11 antigen: identification of A2-restricted epitopes. Mol. Immunol., 2001, 38(4), 279-287.
[http://dx.doi.org/10.1016/S0161-5890(01)00059-1] [PMID: 11566321]
[89]
Giraldo, N.A.; Bolaños, N.I.; Cuellar, A.; Guzman, F.; Uribe, A.M.; Bedoya, A.; Olaya, N.; Cucunubá, Z.M.; Roa, N.; Rosas, F.; Velasco, V.; Puerta, C.J.; González, J.M. Increased CD4+/CD8+ double-positive t cells in chronic chagasic patients. PLoS Negl. Trop. Dis., 2011, 5(8)e1294
[http://dx.doi.org/10.1371/journal.pntd.0001294] [PMID: 21886854]
[90]
Kumar, S.; Tarleton, R.L. Antigen-specific Th1 but not Th2 cells provide protection from lethal Trypanosoma cruzi infection in mice. J. Immunol., 2001, 166(7), 4596-4603.
[http://dx.doi.org/10.4049/jimmunol.166.7.4596] [PMID: 11254717]
[91]
Laucella, S.A.; Postan, M.; Martin, D.; Hubby Fralish, B.; Albareda, M.C.; Alvarez, M.G.; Lococo, B.; Barbieri, G.; Viotti, R.J.; Tarleton, R.L. Frequency of interferon- gamma -producing T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease. J. Infect. Dis., 2004, 189(5), 909-918.
[http://dx.doi.org/10.1086/381682] [PMID: 14976609]
[92]
Gomes, J.A.; Bahia-Oliveira, L.M.; Rocha, M.O.; Martins-Filho, O.A.; Gazzinelli, G.; Correa-Oliveira, R. Evidence that development of severe cardiomyopathy in human Chagas’ disease is due to a Th1-specific immune response. Infect. Immun., 2003, 71(3), 1185-1193.
[http://dx.doi.org/10.1128/IAI.71.3.1185-1193.2003] [PMID: 12595431]
[93]
Lasso, P.; Mateus, J.; Pavía, P.; Rosas, F.; Roa, N.; Thomas, M.C.; López, M.C.; González, J.M.; Puerta, C.J.; Cuéllar, A. Inhibitory receptor expression on CD8+ T Cells is linked to functional responses against trypanosoma cruzi antigens in chronic chagasic patients. J. Immunol., 2015, 195(8), 3748-3758.
[http://dx.doi.org/10.4049/jimmunol.1500459] [PMID: 26385520]
[94]
Mateus, J.; Lasso, P.; Pavia, P.; Rosas, F.; Roa, N.; Valencia-Hernández, C.A.; González, J.M.; Puerta, C.J.; Cuéllar, A. Low frequency of circulating CD8+ T stem cell memory cells in chronic chagasic patients with severe forms of the disease. PLoS Negl. Trop. Dis., 2015, 9(1)e3432
[http://dx.doi.org/10.1371/journal.pntd.0003432] [PMID: 25569149]
[95]
Lasso, P.; Beltrán, L.; Guzmán, F.; Rosas, F.; Thomas, M.C.; López, M.C.; González, J.M.; Cuéllar, A.; Puerta, C.J. Promiscuous recognition of a trypanosoma cruzi CD8+ T cell epitope among HLA-A2, HLA-A24 and HLA-A1 supertypes in chagasic patients. PLoS One, 2016, 11(3)e0150996
[http://dx.doi.org/10.1371/journal.pone.0150996] [PMID: 26974162]
[96]
Fiuza, J.A.; Fujiwara, R.T.; Gomes, J.A.; Rocha, M.O.; Chaves, A.T.; de Araújo, F.F.; Fares, R.C.; Teixeira-Carvalho, A.; Martins-Filho, O.A.; Cançado, G.G.; Correa-Oliveira, R. Profile of central and effector memory T cells in the progression of chronic human chagas disease. PLoS Negl. Trop. Dis., 2009, 3(9)e512
[http://dx.doi.org/10.1371/journal.pntd.0000512] [PMID: 19742301]
[97]
Wherry, E.J. T cell exhaustion. Nat. Immunol., 2011, 12(6), 492-499.
[http://dx.doi.org/10.1038/ni.2035] [PMID: 21739672]
[98]
Mahnke, Y.D.; Brodie, T.M.; Sallusto, F.; Roederer, M.; Lugli, E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol., 2013, 43(11), 2797-2809.
[http://dx.doi.org/10.1002/eji.201343751] [PMID: 24258910]
[99]
Gattinoni, L.; Lugli, E.; Ji, Y.; Pos, Z.; Paulos, C.M.; Quigley, M.F.; Almeida, J.R.; Gostick, E.; Yu, Z.; Carpenito, C.; Wang, E.; Douek, D.C.; Price, D.A.; June, C.H.; Marincola, F.M.; Roederer, M.; Restifo, N.P. A human memory T cell subset with stem cell-like properties. Nat. Med., 2011, 17(10), 1290-1297.
[http://dx.doi.org/10.1038/nm.2446] [PMID: 21926977]
[100]
Morrot, A. Lifelong protection mediated by stem cell-like CD8(+) T memory subset cells (Tscm) induced by vaccination. Ann. Transl. Med., 2016, 4(11), 221.
[http://dx.doi.org/10.21037/atm.2016.05.38] [PMID: 27386495]
[101]
Lugli, E.; Dominguez, M.H.; Gattinoni, L.; Chattopadhyay, P.K.; Bolton, D.L.; Song, K.; Klatt, N.R.; Brenchley, J.M.; Vaccari, M.; Gostick, E.; Price, D.A.; Waldmann, T.A.; Restifo, N.P.; Franchini, G.; Roederer, M. Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Invest., 2013, 123(2), 594-599.
[http://dx.doi.org/10.1172/JCI66327] [PMID: 23281401]
[102]
Ribeiro, S.P.; Milush, J.M.; Cunha-Neto, E.; Kallas, E.G.; Kalil, J.; Somsouk, M.; Hunt, P.W.; Deeks, S.G.; Nixon, D.F.; SenGupta, D. The CD8+ memory stem T cell (T(SCM)) subset is associated with improved prognosis in chronic HIV-1 infection. J. Virol., 2014, 88(23), 13836-13844.
[http://dx.doi.org/10.1128/JVI.01948-14] [PMID: 25253339]
[103]
Gattinoni, L.; Speiser, D.E.; Lichterfeld, M.; Bonini, C. T memory stem cells in health and disease. Nat. Med., 2017, 23(1), 18-27.
[http://dx.doi.org/10.1038/nm.4241] [PMID: 28060797]
[104]
Appay, V.; Dunbar, P.R.; Callan, M.; Klenerman, P.; Gillespie, G.M.; Papagno, L.; Ogg, G.S.; King, A.; Lechner, F.; Spina, C.A.; Little, S.; Havlir, D.V.; Richman, D.D.; Gruener, N.; Pape, G.; Waters, A.; Easterbrook, P.; Salio, M.; Cerundolo, V.; McMichael, A.J.; Rowland-Jones, S.L. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med., 2002, 8(4), 379-385.
[http://dx.doi.org/10.1038/nm0402-379] [PMID: 11927944]
[105]
Appay, V.; van Lier, R.A.; Sallusto, F.; Roederer, M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A, 2008, 73(11), 975-983.
[http://dx.doi.org/10.1002/cyto.a.20643] [PMID: 18785267]
[106]
Bratke, K.; Kuepper, M.; Bade, B.; Virchow, J.C. Jr.; Luttmann, W. Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur. J. Immunol., 2005, 35(9), 2608-2616.
[http://dx.doi.org/10.1002/eji.200526122] [PMID: 16106370]
[107]
Wherry, E.J.; Teichgräber, V.; Becker, T.C.; Masopust, D.; Kaech, S.M.; Antia, R.; von Andrian, U.H.; Ahmed, R. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol., 2003, 4(3), 225-234.
[http://dx.doi.org/10.1038/ni889] [PMID: 12563257]
[108]
Faria, D.R.; Souza, P.E.; Durães, F.V.; Carvalho, E.M.; Gollob, K.J.; Machado, P.R.; Dutra, W.O. Recruitment of CD8(+) T cells expressing granzyme A is associated with lesion progression in human cutaneous leishmaniasis. Parasite Immunol., 2009, 31(8), 432-439.
[http://dx.doi.org/10.1111/j.1365-3024.2009.01125.x] [PMID: 19646207]
[109]
Novais, F.O.; Carvalho, L.P.; Graff, J.W.; Beiting, D.P.; Ruthel, G.; Roos, D.S.; Betts, M.R.; Goldschmidt, M.H.; Wilson, M.E.; de Oliveira, C.I.; Scott, P. Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis. PLoS Pathog., 2013, 9(7)e1003504
[http://dx.doi.org/10.1371/journal.ppat.1003504] [PMID: 23874205]
[110]
Silverio, J.C.; Pereira, I.R. Cipitelli, Mda.C.; Vinagre, N.F.; Rodrigues, M.M.; Gazzinelli, R.T.; Lannes-Vieira, J. CD8+ T-cells expressing interferon gamma or perforin play antagonistic roles in heart injury in experimental Trypanosoma cruzi-elicited cardiomyopathy. PLoS Pathog., 2012, 8(4)e1002645
[http://dx.doi.org/10.1371/journal.ppat.1002645] [PMID: 22532799]
[111]
Alvarez, M.G.; Postan, M.; Weatherly, D.B.; Albareda, M.C.; Sidney, J.; Sette, A.; Olivera, C.; Armenti, A.H.; Tarleton, R.L.; Laucella, S.A. HLA Class I-T cell epitopes from trans-sialidase proteins reveal functionally distinct subsets of CD8+ T cells in chronic Chagas disease. PLoS Negl. Trop. Dis., 2008, 2(9)e288
[http://dx.doi.org/10.1371/journal.pntd.0000288] [PMID: 18846233]
[112]
Giraldo, N.A.; Bolaños, N.I.; Cuellar, A.; Roa, N.; Cucunubá, Z.; Rosas, F.; Velasco, V.; Puerta, C.J.; González, J.M. T lymphocytes from chagasic patients are activated but lack proliferative capacity and down-regulate CD28 and CD3ζ. PLoS Negl. Trop. Dis., 2013, 7(1)e2038
[http://dx.doi.org/10.1371/journal.pntd.0002038] [PMID: 23383358]
[113]
Perfetto, S.P.; Chattopadhyay, P.K.; Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol., 2004, 4(8), 648-655.
[http://dx.doi.org/10.1038/nri1416] [PMID: 15286731]
[114]
Seder, R.A.; Darrah, P.A.; Roederer, M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol., 2008, 8(4), 247-258.
[http://dx.doi.org/10.1038/nri2274] [PMID: 18323851]
[115]
Betts, M.R.; Nason, M.C.; West, S.M.; De Rosa, S.C.; Migueles, S.A.; Abraham, J.; Lederman, M.M.; Benito, J.M.; Goepfert, P.A.; Connors, M.; Roederer, M.; Koup, R.A. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood, 2006, 107(12), 4781-4789.
[http://dx.doi.org/10.1182/blood-2005-12-4818] [PMID: 16467198]
[116]
Appay, V.; Douek, D.C.; Price, D.A. CD8+ T cell efficacy in vaccination and disease. Nat. Med., 2008, 14(6), 623-628.
[http://dx.doi.org/10.1038/nm.f.1774] [PMID: 18535580]
[117]
de Alencar, B.C.; Persechini, P.M.; Haolla, F.A.; de Oliveira, G.; Silverio, J.C.; Lannes-Vieira, J.; Machado, A.V.; Gazzinelli, R.T.; Bruna-Romero, O.; Rodrigues, M.M. Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination. Infect. Immun., 2009, 77(10), 4383-4395.
[http://dx.doi.org/10.1128/IAI.01459-08] [PMID: 19651871]
[118]
Vasconcelos, J.R.; Dominguez, M.R.; Neves, R.L.; Ersching, J.; Araújo, A.; Santos, L.I.; Virgilio, F.S.; Machado, A.V.; Bruna-Romero, O.; Gazzinelli, R.T.; Rodrigues, M.M. Adenovirus vector-induced CD8+ T effector memory cell differentiation and recirculation, but not proliferation, are important for protective immunity against experimental Trypanosoma cruzi Infection. Hum. Gene Ther., 2014, 25(4), 350-363.
[http://dx.doi.org/10.1089/hum.2013.218] [PMID: 24568548]
[119]
Rigato, P.O.; de Alencar, B.C.; de Vasconcelos, J.R.; Dominguez, M.R.; Araújo, A.F.; Machado, A.V.; Gazzinelli, R.T.; Bruna-Romero, O.; Rodrigues, M.M. Heterologous plasmid DNA prime-recombinant human adenovirus 5 boost vaccination generates a stable pool of protective long-lived CD8(+) T effector memory cells specific for a human parasite, Trypanosoma cruzi. Infect. Immun., 2011, 79(5), 2120-2130.
[http://dx.doi.org/10.1128/IAI.01190-10] [PMID: 21357719]
[120]
Albareda, M.C.; De Rissio, A.M.; Tomas, G.; Serjan, A.; Alvarez, M.G.; Viotti, R.; Fichera, L.E.; Esteva, M.I.; Potente, D.; Armenti, A.; Tarleton, R.L.; Laucella, S.A. Polyfunctional T cell responses in children in early stages of chronic Trypanosoma cruzi infection contrast with monofunctional responses of long-term infected adults. PLoS Negl. Trop. Dis., 2013, 7(12)e2575
[http://dx.doi.org/10.1371/journal.pntd.0002575] [PMID: 24349591]
[121]
Lasso, P.; Mesa, D.; Bolaños, N.; Cuéllar, A.; Guzmán, F.; Cucunuba, Z.; Rosas, F.; Velasco, V.; Thomas, M.C.; López, M.C.; González, J.M.; Puerta, C.J. Chagasic patients are able to respond against a viral antigen from influenza virus. BMC Infect. Dis., 2012, 12(1), 198.
[http://dx.doi.org/10.1186/1471-2334-12-198] [PMID: 22920436]
[122]
Bengsch, B.; Seigel, B.; Ruhl, M.; Timm, J.; Kuntz, M.; Blum, H.E.; Pircher, H.; Thimme, R. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog., 2010, 6(6)e1000947
[http://dx.doi.org/10.1371/journal.ppat.1000947] [PMID: 20548953]
[123]
Blackburn, S.D.; Shin, H.; Haining, W.N.; Zou, T.; Workman, C.J.; Polley, A.; Betts, M.R.; Freeman, G.J.; Vignali, D.A.; Wherry, E.J. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol., 2009, 10(1), 29-37.
[http://dx.doi.org/10.1038/ni.1679] [PMID: 19043418]
[124]
Gigley, J.P.; Bhadra, R.; Moretto, M.M.; Khan, I.A. T cell exhaustion in protozoan disease. Trends Parasitol., 2012, 28(9), 377-384.
[http://dx.doi.org/10.1016/j.pt.2012.07.001] [PMID: 22832368]
[125]
Illingworth, J.; Butler, N.S.; Roetynck, S.; Mwacharo, J.; Pierce, S.K.; Bejon, P.; Crompton, P.D.; Marsh, K.; Ndungu, F.M. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J. Immunol., 2013, 190(3), 1038-1047.
[http://dx.doi.org/10.4049/jimmunol.1202438] [PMID: 23264654]
[126]
Nakamoto, N.; Cho, H.; Shaked, A.; Olthoff, K.; Valiga, M.E.; Kaminski, M.; Gostick, E.; Price, D.A.; Freeman, G.J.; Wherry, E.J.; Chang, K.M. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog., 2009, 5(2)e1000313
[http://dx.doi.org/10.1371/journal.ppat.1000313] [PMID: 19247441]
[127]
Barber, D.L.; Wherry, E.J.; Masopust, D.; Zhu, B.; Allison, J.P.; Sharpe, A.H.; Freeman, G.J.; Ahmed, R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439(7077), 682-687.
[http://dx.doi.org/10.1038/nature04444] [PMID: 16382236]
[128]
Butler, N.S.; Moebius, J.; Pewe, L.L.; Traore, B.; Doumbo, O.K.; Tygrett, L.T.; Waldschmidt, T.J.; Crompton, P.D.; Harty, J.T. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat. Immunol., 2011, 13(2), 188-195.
[http://dx.doi.org/10.1038/ni.2180] [PMID: 22157630]
[129]
Jin, H.T.; Anderson, A.C.; Tan, W.G.; West, E.E.; Ha, S.J.; Araki, K.; Freeman, G.J.; Kuchroo, V.K.; Ahmed, R. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14733-14738.
[http://dx.doi.org/10.1073/pnas.1009731107] [PMID: 20679213]
[130]
Gutierrez, F.R.; Mariano, F.S.; Oliveira, C.J.; Pavanelli, W.R.; Guedes, P.M.; Silva, G.K.; Campanelli, A.P.; Milanezi, C.M.; Azuma, M.; Honjo, T.; Teixeira, M.M.; Aliberti, J.C.; Silva, J.S. Regulation of Trypanosoma cruzi-induced myocarditis by programmed death cell receptor 1. Infect. Immun., 2011, 79(5), 1873-1881.
[http://dx.doi.org/10.1128/IAI.01047-10] [PMID: 21357717]
[131]
Martins, G.A.; Tadokoro, C.E.; Silva, R.B.; Silva, J.S.; Rizzo, L.V. CTLA-4 blockage increases resistance to infection with the intracellular protozoan Trypanosoma cruzi. J. Immunol., 2004, 172(8), 4893-4901.
[http://dx.doi.org/10.4049/jimmunol.172.8.4893] [PMID: 15067068]
[132]
Mateus, J.; Pérez-Antón, E.; Lasso, P.; Egui, A.; Roa, N.; Carrilero, B.; González, J.M.; Thomas, M.C.; Puerta, C.J.; López, M.C.; Cuéllar, A. Antiparasitic treatment induces an improved CD8+ T cell response in chronic chagasic patients. J. Immunol., 2017, 198(8), 3170-3180.
[http://dx.doi.org/10.4049/jimmunol.1602095] [PMID: 28258194]
[133]
Perez-Mazliah, D.E.; Alvarez, M.G.; Cooley, G.; Lococo, B.E.; Bertocchi, G.; Petti, M.; Albareda, M.C.; Armenti, A.H.; Tarleton, R.L.; Laucella, S.A.; Viotti, R. Sequential combined treatment with allopurinol and benznidazole in the chronic phase of Trypanosoma cruzi infection: a pilot study. J. Antimicrob. Chemother., 2013, 68(2), 424-437.
[http://dx.doi.org/10.1093/jac/dks390] [PMID: 23104493]
[134]
Sathler-Avelar, R.; Vitelli-Avelar, D.M.; Elói-Santos, S.M.; Gontijo, E.D.; Teixeira-Carvalho, A.; Martins-Filho, O.A. Blood leukocytes from benznidazole-treated indeterminate chagas disease patients display an overall type-1-modulated cytokine profile upon short-term in vitro stimulation with Trypanosoma cruzi antigens. BMC Infect. Dis., 2012, 12, 123.
[http://dx.doi.org/10.1186/1471-2334-12-123] [PMID: 22625224]
[135]
Sathler-Avelar, R.; Vitelli-Avelar, D.M.; Massara, R.L.; Borges, J.D.; Lana, M.; Teixeira-Carvalho, A.; Dias, J.C.; Elói-Santos, S.M.; Martins-Filho, O.A. Benznidazole treatment during early-indeterminate Chagas’ disease shifted the cytokine expression by innate and adaptive immunity cells toward a type 1-modulated immune profile. Scand. J. Immunol., 2006, 64(5), 554-563.
[http://dx.doi.org/10.1111/j.1365-3083.2006.01843.x] [PMID: 17032249]
[136]
Rowland, E.C.; Chen, Z. Inhibition of Trypanosoma cruzi egress from infected fibroblasts is mediated by CD4+ and mu+ immune cells. J. Parasitol., 2003, 89(4), 733-737.
[http://dx.doi.org/10.1645/GE-77R] [PMID: 14533683]
[137]
Ferraz, M.L.; Gazzinelli, R.T.; Alves, R.O.; Urbina, J.A.; Romanha, A.J. Absence of CD4+ T lymphocytes, CD8+ T lymphocytes, or B lymphocytes has different effects on the efficacy of posaconazole and benznidazole in treatment of experimental acute Trypanosoma cruzi infection. Antimicrob. Agents Chemother., 2009, 53(1), 174-179.
[http://dx.doi.org/10.1128/AAC.00779-08] [PMID: 19001113]
[138]
Sartori, A.M.; Neto, J.E.; Nunes, E.V.; Braz, L.M.; Caiaffa-Filho, H.H. Oliveira, Oda.C.Jr.; Neto, V.A.; Shikanai-Yasuda, M.A. Trypanosoma cruzi parasitemia in chronic Chagas disease: comparison between human immunodeficiency virus (HIV)-positive and HIV-negative patients. J. Infect. Dis., 2002, 186(6), 872-875.
[http://dx.doi.org/10.1086/342510] [PMID: 12198628]
[139]
de Freitas, V.L.; da Silva, S.C.; Sartori, A.M.; Bezerra, R.C.; Westphalen, E.V.; Molina, T.D.; Teixeira, A.R.; Ibrahim, K.Y.; Shikanai-Yasuda, M.A. Real-time PCR in HIV/Trypanosoma cruzi coinfection with and without Chagas disease reactivation: association with HIV viral load and CD4 level. PLoS Negl. Trop. Dis., 2011, 5(8)e1277
[http://dx.doi.org/10.1371/journal.pntd.0001277] [PMID: 21912712]
[140]
Argüello, R.J.; Vigliano, C.; Cabeza-Meckert, P.; Viotti, R.; Garelli, F.; Favaloro, L.E.; Favaloro, R.R.; Laguens, R.; Laucella, S.A. Presence of antigen-experienced T cells with low grade of differentiation and proliferative potential in chronic Chagas disease myocarditis. PLoS Negl. Trop. Dis., 2014, 8(8)e2989
[http://dx.doi.org/10.1371/journal.pntd.0002989] [PMID: 25144227]
[141]
Sanoja, C.; Carbajosa, S.; Fresno, M.; Gironès, N. Analysis of the dynamics of infiltrating CD4(+) T cell subsets in the heart during experimental Trypanosoma cruzi infection. PLoS One, 2013, 8(6)e65820
[http://dx.doi.org/10.1371/journal.pone.0065820] [PMID: 23776551]
[142]
Talvani, A.; Ribeiro, C.S.; Aliberti, J.C.; Michailowsky, V.; Santos, P.V.; Murta, S.M.; Romanha, A.J.; Almeida, I.C.; Farber, J.; Lannes-Vieira, J.; Silva, J.S.; Gazzinelli, R.T. Kinetics of cytokine gene expression in experimental chagasic cardiomyopathy: tissue parasitism and endogenous IFN-gamma as important determinants of chemokine mRNA expression during infection with Trypanosoma cruzi. Microbes and infection / Institut Pasteur, 2000, 2(8), 851-866.
[PMID: 10962268]
[143]
Janssen, E.M.; Lemmens, E.E.; Wolfe, T.; Christen, U.; von Herrath, M.G.; Schoenberger, S.P. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature, 2003, 421(6925), 852-856.
[http://dx.doi.org/10.1038/nature01441] [PMID: 12594515]
[144]
Müller, A.J.; Filipe-Santos, O.; Eberl, G.; Aebischer, T.; Späth, G.F.; Bousso, P. CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity, 2012, 37(1), 147-157.
[http://dx.doi.org/10.1016/j.immuni.2012.05.015] [PMID: 22727490]
[145]
Albareda, M.C.; Olivera, G.C.; Laucella, S.A.; Alvarez, M.G.; Fernandez, E.R.; Lococo, B.; Viotti, R.; Tarleton, R.L.; Postan, M. Chronic human infection with Trypanosoma cruzi drives CD4+ T cells to immune senescence. J. Immunol., 2009, 183(6), 4103-4108.
[http://dx.doi.org/10.4049/jimmunol.0900852] [PMID: 19692645]
[146]
Rodrigues, M.M.; Ribeirão, M.; Boscardin, S.B. CD4 Th1 but not Th2 clones efficiently activate macrophages to eliminate Trypanosoma cruzi through a nitric oxide dependent mechanism. Immunol. Lett., 2000, 73(1), 43-50.
[http://dx.doi.org/10.1016/S0165-2478(00)00205-4] [PMID: 10963810]
[147]
Argüello, R.J.; Albareda, M.C.; Alvarez, M.G.; Bertocchi, G.; Armenti, A.H.; Vigliano, C.; Meckert, P.C.; Tarleton, R.L.; Laucella, S.A. Inhibitory receptors are expressed by Trypanosoma cruzi-specific effector T cells and in hearts of subjects with chronic Chagas disease. PLoS One, 2012, 7(5)e35966
[http://dx.doi.org/10.1371/journal.pone.0035966] [PMID: 22574131]
[148]
Chaves, A.T.; de Assis Silva Gomes Estanislau, J.; Fiuza, J.A.; Carvalho, A.T.; Ferreira, K.S.; Fares, R.C.; Guimarães, P.H.; de Souza Fagundes, E.M.; Morato, M.J.; Fujiwara, R.T.; da Costa Rocha, M.O.; Correa-Oliveira, R. Immunoregulatory mechanisms in Chagas disease: modulation of apoptosis in T-cell mediated immune responses. BMC Infect. Dis., 2016, 16, 191.
[http://dx.doi.org/10.1186/s12879-016-1523-1] [PMID: 27138039]
[149]
Belkaid, Y.; Tarbell, K. Regulatory T cells in the control of host-microorganism interactions (*). Annu. Rev. Immunol., 2009, 27, 551-589.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132723] [PMID: 19302048]
[150]
de Araújo, F.F.; Vitelli-Avelar, D.M.; Teixeira-Carvalho, A.; Antas, P.R.; Assis Silva Gomes, J.; Sathler-Avelar, R.; Otávio Costa Rocha, M.; Elói-Santos, S.M.; Pinho, R.T.; Correa-Oliveira, R.; Martins-Filho, O.A. Regulatory T cells phenotype in different clinical forms of Chagas’ disease. PLoS Negl. Trop. Dis., 2011, 5(5)e992
[http://dx.doi.org/10.1371/journal.pntd.0000992] [PMID: 21655351]
[151]
da Silveira, A.B.; de Araújo, F.F.; Freitas, M.A.; Gomes, J.A.; Chaves, A.T.; de Oliveira, E.C.; Neto, S.G.; Luquetti, A.O.; da Cunha Souza, G.; Bernardino Júnior, R.; Fujiwara, R.; d’Avila Reis, D.; Correa-Oliveira, R. Characterization of the presence and distribution of Foxp3(+) cells in chagasic patients with and without megacolon. Hum. Immunol., 2009, 70(1), 65-67.
[http://dx.doi.org/10.1016/j.humimm.2008.10.015] [PMID: 19022313]
[152]
Vitelli-Avelar, D.M.; Sathler-Avelar, R.; Dias, J.C.; Pascoal, V.P.; Teixeira-Carvalho, A.; Lage, P.S.; Elói-Santos, S.M.; Corrêa-Oliveira, R.; Martins-Filho, O.A. Chagasic patients with indeterminate clinical form of the disease have high frequencies of circulating CD3+CD16-CD56+ natural killer T cells and CD4+CD25 high regulatory t lymphocytes. Scand. J. Immunol., 2005, 62(3), 297-308.
[http://dx.doi.org/10.1111/j.1365-3083.2005.01668.x] [PMID: 16179017]
[153]
Vitelli-Avelar, D.M.; Sathler-Avelar, R.; Massara, R.L.; Borges, J.D.; Lage, P.S.; Lana, M.; Teixeira-Carvalho, A.; Dias, J.C.; Elói-Santos, S.M.; Martins-Filho, O.A. Are increased frequency of macrophage-like and natural killer (NK) cells, together with high levels of NKT and CD4+CD25high T cells balancing activated CD8+ T cells, the key to control Chagas’ disease morbidity? Clin. Exp. Immunol., 2006, 145(1), 81-92.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03123.x] [PMID: 16792677]
[154]
Brown, D.M.; Lampe, A.T.; Workman, A.M. The differentiation and protective function of cytolytic CD4 T cells in influenza infection. Front. Immunol., 2016, 7, 93.
[http://dx.doi.org/10.3389/fimmu.2016.00093] [PMID: 27014272]
[155]
Keesen, T.S.; Gomes, J.A.; Fares, R.C.; de Araújo, F.F.; Ferreira, K.S.; Chaves, A.T.; Rocha, M.O.; Correa-Oliveira, R. Characterization of CD4+ cytotoxic lymphocytes and apoptosis markers induced by Trypanossoma cruzi infection. Scand. J. Immunol., 2012, 76(3), 311-319.
[http://dx.doi.org/10.1111/j.1365-3083.2012.02730.x] [PMID: 22670682]
[156]
Laucella, S.A.; Mazliah, D.P.; Bertocchi, G.; Alvarez, M.G.; Cooley, G.; Viotti, R.; Albareda, M.C.; Lococo, B.; Postan, M.; Armenti, A.; Tarleton, R.L. Changes in Trypanosoma cruzi-specific immune responses after treatment: surrogate markers of treatment efficacy. Clin. Infect. Dis., 2009, 49(11), 1675-1684.
[http://dx.doi.org/10.1086/648072] [PMID: 19877967]
[157]
Alvarez, M.G.; Bertocchi, G.L.; Cooley, G.; Albareda, M.C.; Viotti, R.; Perez-Mazliah, D.E.; Lococo, B.; Castro Eiro, M.; Laucella, S.A.; Tarleton, R.L. Treatment success in trypanosoma cruzi infection is predicted by early changes in serially monitored parasite-specific T and B cell responses. PLoS Negl. Trop. Dis., 2016, 10(4)e0004657
[http://dx.doi.org/10.1371/journal.pntd.0004657] [PMID: 27128444]
[158]
Acosta, D.M.; Arnaiz, M.R.; Esteva, M.I.; Barboza, M.; Stivale, D.; Orlando, U.D.; Torres, S.; Laucella, S.A.; Couto, A.S.; Duschak, V.G. Sulfates are main targets of immune responses to cruzipain and are involved in heart damage in BALB/c immunized mice. Int. Immunol., 2008, 20(4), 461-470.
[http://dx.doi.org/10.1093/intimm/dxm149] [PMID: 18195050]
[159]
Acosta, D.M.; Soprano, L.L.; Ferrero, M.R.; Esteva, M.I.; Riarte, A.; Couto, A.S.; Duschak, V.G. Structural and immunological characterization of sulphatides: relevance of sulphate moieties in Trypanosoma cruzi glycoconjugates. Parasite Immunol., 2012, 34(11), 499-510.
[http://dx.doi.org/10.1111/j.1365-3024.2012.01378.x] [PMID: 22738032]
[160]
Guedes, P.M.; Gutierrez, F.R.; Silva, G.K.; Dellalibera-Joviliano, R.; Rodrigues, G.J.; Bendhack, L.M.; Rassi, A., Jr; Rassi, A.; Schmidt, A.; Maciel, B.C.; Marin Neto, J.A.; Silva, J.S. Deficient regulatory T cell activity and low frequency of IL-17-producing T cells correlate with the extent of cardiomyopathy in human Chagas’ disease. PLoS Negl. Trop. Dis., 2012, 6(4)e1630
[http://dx.doi.org/10.1371/journal.pntd.0001630] [PMID: 22545173]
[161]
Magalhães, L.M.; Villani, F.N. Nunes, Mdo.C.; Gollob, K.J.; Rocha, M.O.; Dutra, W.O. High interleukin 17 expression is correlated with better cardiac function in human Chagas disease. J. Infect. Dis., 2013, 207(4), 661-665.
[http://dx.doi.org/10.1093/infdis/jis724] [PMID: 23204182]
[162]
Pérez, A.R.; Morrot, A.; Berbert, L.R.; Terra-Granado, E.; Savino, W. Extrathymic CD4+CD8+ lymphocytes in Chagas disease: possible relationship with an immunoendocrine imbalance. Ann. N. Y. Acad. Sci., 2012, 1262, 27-36.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06627.x] [PMID: 22823432]
[163]
Chauhan, N.K.; Vajpayee, M.; Mojumdar, K.; Singh, R.; Singh, A. Study of CD4+CD8+ double positive T-lymphocyte phenotype and function in Indian patients infected with HIV-1. J. Med. Virol., 2012, 84(6), 845-856.
[http://dx.doi.org/10.1002/jmv.23289] [PMID: 22499005]
[164]
Nascimbeni, M.; Shin, E.C.; Chiriboga, L.; Kleiner, D.E.; Rehermann, B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood, 2004, 104(2), 478-486.
[http://dx.doi.org/10.1182/blood-2003-12-4395] [PMID: 15044252]
[165]
Clénet, M.L.; Gagnon, F.; Moratalla, A.C.; Viel, E.C.; Arbour, N. Peripheral human CD4+CD8+ T lymphocytes exhibit a memory phenotype and enhanced responses to IL-2, IL-7 and IL-15. Sci. Rep., 2017, 7(1), 11612.
[http://dx.doi.org/10.1038/s41598-017-11926-2] [PMID: 28912605]
[166]
Xie, D.; Hai, B.; Xie, X.; Liu, L.; Ayello, J.; Ma, X.; Zhang, J. Peripheral CD4+CD8+cells are the activated T cells expressed granzyme B (GrB), Foxp3, interleukin 17 (IL-17), at higher levels in Th1/Th2 cytokines. Cell. Immunol., 2009, 259(2), 157-164.
[http://dx.doi.org/10.1016/j.cellimm.2009.06.011] [PMID: 19616200]
[167]
Pérez-Antón, E.; Egui, A.; Thomas, M.C.; Puerta, C.J.; González, J.M.; Cuéllar, A.; Segovia, M.; López, M.C. Impact of benznidazole treatment on the functional response of trypanosoma cruzi antigen-specific CD4+CD8+ T cells in chronic Chagas disease patients. PLoS Negl. Trop. Dis., 2018, 12(5)e0006480
[http://dx.doi.org/10.1371/journal.pntd.0006480] [PMID: 29750791]
[168]
Kahan, S.M.; Wherry, E.J.; Zajac, A.J. T cell exhaustion during persistent viral infections. Virology, 2015, 479-480, 180-193.
[http://dx.doi.org/10.1016/j.virol.2014.12.033] [PMID: 25620767]
[169]
Messenger, L.A.; Bern, C. Congenital Chagas disease: current diagnostics, limitations and future perspectives. Curr. Opin. Infect. Dis., 2018, 31(5), 415-421.
[http://dx.doi.org/10.1097/QCO.0000000000000478] [PMID: 30095485]
[170]
Bern, C.; Montgomery, S.P. An estimate of the burden of Chagas disease in the United States. Clin. Infect. Dis., 2009, 49(5), e52-e54.
[http://dx.doi.org/10.1086/605091] [PMID: 19640226]
[171]
Howard, E.J.; Xiong, X.; Carlier, Y.; Sosa-Estani, S.; Buekens, P. Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG, 2014, 121(1), 22-33.
[http://dx.doi.org/10.1111/1471-0528.12396] [PMID: 23924273]
[172]
Cevallos, A.M.; Hernández, R. Chagas’ disease: pregnancy and congenital transmission. BioMed Res. Int., 2014, 2014401864
[http://dx.doi.org/10.1155/2014/401864] [PMID: 24949443]
[173]
Carlier, Y.; Truyens, C. Congenital chagas disease as an ecological model of interactions between trypanosoma cruzi parasites, pregnant women, placenta and fetuses. Acta Trop., 2015, 151, 103-115.
[http://dx.doi.org/10.1016/j.actatropica.2015.07.016] [PMID: 26293886]
[174]
Oliveira, I.; Torrico, F.; Muñoz, J.; Gascon, J. Congenital transmission of Chagas disease: a clinical approach. Expert Rev. Anti Infect. Ther., 2010, 8(8), 945-956.
[http://dx.doi.org/10.1586/eri.10.74] [PMID: 20695749]
[175]
La Rocca, C.; Carbone, F.; Longobardi, S.; Matarese, G. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunol. Lett., 2014, 162(1 Pt A), 41-48.
[http://dx.doi.org/10.1016/j.imlet.2014.06.013] [PMID: 24996040]
[176]
Raghupathy, R. Pregnancy: success and failure within the Th1/Th2/Th3 paradigm. Semin. Immunol., 2001, 13(4), 219-227.
[http://dx.doi.org/10.1006/smim.2001.0316] [PMID: 11437629]
[177]
Meggyes, M.; Lajko, A.; Palkovics, T.; Totsimon, A.; Illes, Z.; Szereday, L.; Miko, E. Feto-maternal immune regulation by TIM-3/galectin-9 pathway and PD-1 molecule in mice at day 14.5 of pregnancy. Placenta, 2015, 36(10), 1153-1160.
[http://dx.doi.org/10.1016/j.placenta.2015.07.124] [PMID: 26278059]
[178]
Brutus, L.; Castillo, H.; Bernal, C.; Salas, N.A.; Schneider, D.; Santalla, J.A.; Chippaux, J.P. Detectable Trypanosoma cruzi parasitemia during pregnancy and delivery as a risk factor for congenital Chagas disease. Am. J. Trop. Med. Hyg., 2010, 83(5), 1044-1047.
[http://dx.doi.org/10.4269/ajtmh.2010.10-0326] [PMID: 21036835]
[179]
Siriano, Lda.R.; Luquetti, A.O.; Avelar, J.B.; Marra, N.L.; de Castro, A.M. Chagas disease: increased parasitemia during pregnancy detected by hemoculture. Am. J. Trop. Med. Hyg., 2011, 84(4), 569-574.
[http://dx.doi.org/10.4269/ajtmh.2011.10-0015] [PMID: 21460012]
[180]
Egui, A.; Lasso, P.; Thomas, M.C.; Carrilero, B.; González, J.M.; Cuéllar, A.; Segovia, M.; Puerta, C.J.; López, M.C. Expression of inhibitory receptors and polyfunctional responses of T cells are linked to the risk of congenital transmission of T. cruzi. PLoS Negl. Trop. Dis., 2017, 11(6)e0005627
[http://dx.doi.org/10.1371/journal.pntd.0005627] [PMID: 28598971]
[181]
Petroff, M.G. Immune interactions at the maternal-fetal interface. J. Reprod. Immunol., 2005, 68(1-2), 1-13.
[http://dx.doi.org/10.1016/j.jri.2005.08.003] [PMID: 16236361]
[182]
Taglauer, E.S.; Yankee, T.M.; Petroff, M.G. Maternal PD-1 regulates accumulation of fetal antigen-specific CD8+ T cells in pregnancy. J. Reprod. Immunol., 2009, 80(1-2), 12-21.
[http://dx.doi.org/10.1016/j.jri.2008.12.001] [PMID: 19368976]
[183]
Guleria, I.; Khosroshahi, A.; Ansari, M.J.; Habicht, A.; Azuma, M.; Yagita, H.; Noelle, R.J.; Coyle, A.; Mellor, A.L.; Khoury, S.J.; Sayegh, M.H. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J. Exp. Med., 2005, 202(2), 231-237.
[http://dx.doi.org/10.1084/jem.20050019] [PMID: 16027236]
[184]
Birebent, B.; Lorho, R.; Lechartier, H.; de Guibert, S.; Alizadeh, M.; Vu, N.; Beauplet, A.; Robillard, N.; Semana, G. Suppressive properties of human CD4+CD25+ regulatory T cells are dependent on CTLA-4 expression. Eur. J. Immunol., 2004, 34(12), 3485-3496.
[http://dx.doi.org/10.1002/eji.200324632] [PMID: 15484187]
[185]
Wafula, P.O.; Teles, A.; Schumacher, A.; Pohl, K.; Yagita, H.; Volk, H.D.; Zenclussen, A.C. PD-1 but not CTLA-4 blockage abrogates the protective effect of regulatory T cells in a pregnancy murine model. Am. J. Reprod. Immunol., 2009, 62(5), 283-292.
[http://dx.doi.org/10.1111/j.1600-0897.2009.00737.x] [PMID: 19811462]
[186]
Hermann, E.; Truyens, C.; Alonso-Vega, C.; Rodriguez, P.; Berthe, A.; Torrico, F.; Carlier, Y. Congenital transmission of Trypanosoma cruzi is associated with maternal enhanced parasitemia and decreased production of interferon- gamma in response to parasite antigens. J. Infect. Dis., 2004, 189(7), 1274-1281.
[http://dx.doi.org/10.1086/382511] [PMID: 15031797]
[187]
García, M.M.; De Rissio, A.M.; Villalonga, X.; Mengoni, E.; Cardoni, R.L. Soluble tumor necrosis factor (TNF) receptors (sTNF-R1 and -R2) in pregnant women chronically infected with Trypanosoma cruzi and their children. Am. J. Trop. Med. Hyg., 2008, 78(3), 499-503.
[http://dx.doi.org/10.4269/ajtmh.2008.78.499] [PMID: 18337349]
[188]
Cardoni, R.L.; García, M.M.; De Rissio, A.M. Proinflammatory and anti-inflammatory cytokines in pregnant women chronically infected with Trypanosoma cruzi. Acta Trop., 2004, 90(1), 65-72.
[http://dx.doi.org/10.1016/j.actatropica.2003.09.020] [PMID: 14739025]
[189]
Vleugels, M.P.; Eling, W.M.; Rolland, R.; de Graaf, R. Cortisol levels in human pregnancy in relation to parity and age. Am. J. Obstet. Gynecol., 1986, 155(1), 118-121.
[http://dx.doi.org/10.1016/0002-9378(86)90092-X] [PMID: 3728579]
[190]
Kabat, A.M.; Srinivasan, N.; Maloy, K.J. Modulation of immune development and function by intestinal microbiota. Trends Immunol., 2014, 35(11), 507-517.
[http://dx.doi.org/10.1016/j.it.2014.07.010] [PMID: 25172617]
[191]
Torrico, F.; Vega, C.A.; Suarez, E.; Tellez, T.; Brutus, L.; Rodriguez, P.; Torrico, M.C.; Schneider, D.; Truyens, C.; Carlier, Y. Are maternal re-infections with Trypanosoma cruzi associated with higher morbidity and mortality of congenital Chagas disease? Trop. Med. Int. Health, 2006, 11(5), 628-635.
[http://dx.doi.org/10.1111/j.1365-3156.2006.01623.x] [PMID: 16640615]
[192]
Torrico, F.; Alonso-Vega, C.; Suarez, E.; Rodriguez, P.; Torrico, M.C.; Dramaix, M.; Truyens, C.; Carlier, Y. Maternal Trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and non-infected newborns in Bolivia. Am. J. Trop. Med. Hyg., 2004, 70(2), 201-209.
[http://dx.doi.org/10.4269/ajtmh.2004.70.201] [PMID: 14993634]
[193]
Rytter, M.J.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The immune system in children with malnutrition-a systematic review. PLoS One, 2014, 9(8)e105017
[http://dx.doi.org/10.1371/journal.pone.0105017] [PMID: 25153531]
[194]
Fabbro, D.L.; Danesi, E.; Olivera, V.; Codebó, M.O.; Denner, S.; Heredia, C.; Streiger, M.; Sosa-Estani, S. Trypanocide treatment of women infected with Trypanosoma cruzi and its effect on preventing congenital Chagas. PLoS Negl. Trop. Dis., 2014, 8(11)e3312
[http://dx.doi.org/10.1371/journal.pntd.0003312] [PMID: 25411847]
[195]
Sosa-Estani, S.; Cura, E.; Velazquez, E.; Yampotis, C.; Segura, E.L. Etiological treatment of young women infected with Trypanosoma cruzi, and prevention of congenital transmission. Rev. Soc. Bras. Med. Trop., 2009, 42(5), 484-487.
[http://dx.doi.org/10.1590/S0037-86822009000500002] [PMID: 19967227]
[196]
Murcia, L.; Simón, M.; Carrilero, B.; Roig, M.; Segovia, M. Treatment of infected women of childbearing age prevents congenital trypanosoma cruzi infection by eliminating the parasitemia detected by PCR. J. Infect. Dis., 2017, 215(9), 1452-1458.
[http://dx.doi.org/10.1093/infdis/jix087] [PMID: 28201741]
[197]
Moscatelli, G.; Moroni, S.; García-Bournissen, F.; Ballering, G.; Bisio, M.; Freilij, H.; Altcheh, J. Prevention of congenital Chagas through treatment of girls and women of childbearing age. Mem. Inst. Oswaldo Cruz, 2015, 110(4), 507-509.
[http://dx.doi.org/10.1590/0074-02760140347] [PMID: 25993401]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy