Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

鼻内胰岛素预防老年小鼠麻醉诱导的认知障碍

卷 16, 期 1, 2019

页: [8 - 18] 页: 11

弟呕挨: 10.2174/1567205015666181031145045

价格: $65

摘要

背景 : 临床前和临床证据表明,老年人在全身麻醉后认知能力下降的风险增加。全身麻醉也被认为是术后认知功能障碍(POCD)和阿尔茨海默病(AD)的危险因素。在动物研究和小型临床试验中,通过鼻内注射胰岛素,直接将药物输送到大脑,能够改善记忆和认知能力。然而,胰岛素治疗改善认知功能的机理鲜为人知。 方法: 麻醉前用鼻内胰岛素或生理盐水对老龄小鼠进行预处理。胰岛素/生理盐水治疗第7天开始,将异丙酚腹腔注射给小鼠,维持全麻2小时/天,连续5天。小鼠继续胰岛素或生理盐水给药15天,第26天评估小鼠。. 结果: 研究发现,如新物体识别测试和情境依赖性恐惧调节测试所测试的,鼻内胰岛素治疗可预防麻醉引发的认知障碍。胰岛素治疗还增加了海马齿状回突触后密度蛋白95(PSD95)的表达,以及上调的微管相关蛋白2(MAP-2)。此外,我们发现胰岛素治疗通过激活PI3K/PDK1/AKT通路恢复了麻醉引起的胰岛素信号传导紊乱,并减弱了麻醉诱导的多个AD相关部位tau的高磷酸化。我们发现,通过增加Ser9处磷酸化的GSK3β水平,tau超磷酸化减弱,导致GSK-3β失活。 结论: 鼻腔注射胰岛素可能是预防老年人麻醉引发的认知障碍的一种有效治疗方法。

关键词: 术后认知功能障碍(POCD),胰岛素,丙泊酚,tau高磷酸化,认知障碍,记忆缺陷。

[1]
Hansen MV. Chronobiology: cognitive function and depressive symptoms in surgical patients. Danish Med J 61(9): B4914. (2014).
[2]
Wang W, Wang Y, Wu H, Lei L, Xu S, Shen X, et al. Postoperative cognitive dysfunction: current developments in mechanism and prevention. Med Sci Monit 20: 1908-12. (2014).
[3]
Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS, Group I. Long-term consequences of postoperative cognitive dysfunction. Anesthesiolog 110(3): 548-55. (2009).
[4]
Saniova B, Drobny M, Sulaj M. Delirium and postoperative cognitive dysfunction after general anesthesia. Med Sci Monit 15(5): CS81-7. (2009).
[5]
Fong HK, Sands LP, Leung JM. The role of postoperative analgesia in delirium and cognitive decline in elderly patients: a systematic review. Anesth Analg 102(4): 1255-66. (2006).
[6]
Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Theraps 136(1): 82-93. (2012).
[7]
Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1): 54-62. (2011).
[8]
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64(7): 614-28. (2012).
[9]
Chen Y, Run X, Liang Z, Zhao Y, Dai CL, Iqbal K, et al. Intranasal insulin prevents anesthesia-induced hyperphosphorylation of tau in 3xTg-AD mice. Front Aging Neurosci 6: 100. (2014).
[10]
Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10): 1326-34. (2004).
[11]
Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL, et al. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32(1): 239-43. (2007).
[12]
Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1): 29-38. (2012).
[13]
Run X, Liang Z, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX. Anesthesia induces phosphorylation of tau. J Alzheimers Dis 16(3): 619-26. (2009).
[14]
Le Freche H, Brouillette J, Fernandez-Gomez FJ, Patin P, Caillierez R, Zommer N, et al. Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment. Anesthesiology 116(4): 779-87. (2012).
[15]
Zhang Y, Dai CL, Chen Y, Iqbal K, Liu F, Gong CX. Intranasal insulin prevents anesthesia-induced spatial learning and memory deficit in mice. Sci Rep 6: 21186. (2016).
[16]
Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci 29(20): 6734-51. (2009).
[17]
Wang X, Blanchard J, Kohlbrenner E, Clement N, Linden RM, Radu A, et al. The carboxy-terminal fragment of inhibitor-2 of protein phosphatase-2A induces Alzheimer disease pathology and cognitive impairment. FASEB J 24(11): 4420-32. (2010).
[18]
Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, et al. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489(7416): 385-90. (2012).
[19]
Chen LM, Xiong YS, Kong FL, Qu M, Wang Q, Chen XQ, et al. Neuroglobin attenuates Alzheimer-like tau hyperphosphorylation by activating Akt signaling. J Neurochem 120(1): 157-64. (2012).
[20]
Liu X, Zeng K, Li M, Wang Q, Liu R, Zhang B, et al. Expression of P301L-hTau in mouse MEC induces hippocampus-dependent memory deficit. Sci Rep 7(1): 3914. (2017).
[21]
Chen Y, Zhao Y, Dai CL, Liang Z, Run X, Iqbal K, et al. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Abeta level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol 261: 610-9. (2014).
[22]
Greengard P, Valtorta F, Czernik AJ, Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259(5096): 780-5. (1993).
[23]
Cumming R, Burgoyne R. Neurobiology: contractile proteins in brain cells. Nature 304(5922): 118. (1983).
[24]
Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23): 2321-8. (2008).
[25]
Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85(2): 148-75. (2008).
[26]
Maqbool M, Mobashir M, Hoda N. Pivotal role of glycogen synthase kinase-3: a therapeutic target for Alzheimer’s disease. Eur chemistry. Med Chem 107: 63-81. (2016).
[27]
Chen Y, Zhang J, Zhang B, Gong CX. Targeting insulin signaling for the treatment of Alzheimer’s disease. Curr Topics Med Chem 16(5): 485-92. (2016).
[28]
Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol 47(1): 145-71. (2013).
[29]
Bilotta F, Qeva E, Matot I. Anesthesia and cognitive disorders: a systematic review of the clinical evidence. Exp Rev Neurotherap 16(11): 1311-20. (2016).
[30]
Vanderweyde T, Bednar MM, Forman SA, Wolozin B. Iatrogenic risk factors for Alzheimer’s disease: surgery and anesthesia. J Alzheimers Disease 22(3): 91-104. (2010).
[31]
Tsuchiya H. Anesthetic agents of plant origin: a review of phytochemicals with anesthetic activity. Molecules 22(8): E1369. (2017).
[32]
Zhu C, Gao J, Karlsson N, Li Q, Zhang Y, Huang Z, et al. Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J Cerebral Blood Flow Metabol 30(5): 1017-30. (2010).
[33]
Lin D, Cao L, Wang Z, Li J, Washington JM, Zuo Z. Lidocaine attenuates cognitive impairment after isoflurane anesthesia in old rats. Behavioural Brain Res 228(2): 319-27. (2012).
[34]
Chen Y, Dai CL, Wu Z, Iqbal K, Liu F, Zhang B, et al. Intranasal insulin prevents anesthesia-induced cognitive impairment and chronic neurobehavioral changes. Front Aging Neurosci 9: 136. (2017).
[35]
Whittington RA, Bretteville A, Dickler MF, Planel E. Anesthesia and tau pathology. Prog Neuropsychopharmacol Biol Psychiat 47: 147-55. (2013).
[36]
Run X, Liang Z, Gong CX. Anesthetics and tau protein: animal model studies. J Alzheimers Dis 22(3): 49-55. (2010).
[37]
Tang JX, Mardini F, Caltagarone BM, Garrity ST, Li RQ, Bianchi SL, et al. Anesthesia in presymptomatic Alzheimer’s disease: a study using the triple-transgenic mouse model. Alzheimers Dementia 7(5): 521-31. (2011).
[38]
Culley DJ, Baxter M, Yukhananov R, Crosby G. The memory effects of general anesthesia persist for weeks in young and aged rats. Anesthesia and analgesia 96(4): 1004-9. (2003).
[39]
Callaway JK, Jones NC, Royse AG, Royse CF. Sevoflurane anesthesia does not impair acquisition learning or memory in the Morris water maze in young adult and aged rats. Anesthesiology 117(5): 1091-101. (2012).
[40]
Lee IH, Culley DJ, Baxter MG, Xie Z, Tanzi RE, Crosby G. Spatial memory is intact in aged rats after propofol anesthesia. Anesthesia Analgesia 107(4): 1211-5. (2008).
[41]
Zhang X, Xin X, Dong Y, Zhang Y, Yu B, Mao J, et al. Surgical incision-induced nociception causes cognitive impairment and reduction in synaptic NMDA receptor 2B in mice. J Neurosci 33(45): 17737-48. (2013).
[42]
Kong F, Chen S, Cheng Y, Ma L, Lu H, Zhang H, et al. Minocycline attenuates cognitive impairment induced by isoflurane anesthesia in aged rats. PloS one 8(4): e61385. (2013).
[43]
Baranowska-Bik A, Bik W. Insulin and brain aging. Przeglad Menopauzalny Menopause Rev 16(2): 44-6. (2017).
[44]
Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J Alzheimers Dis 7(1): 63-80. (2005).
[45]
Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis 13(3): 323-31. (2008).
[46]
Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis 44(3): 897-906. (2015).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy