Review Article

用于递送寡核苷酸的基于聚乙烯亚胺的制剂

卷 26, 期 13, 2019

页: [2264 - 2284] 页: 21

弟呕挨: 10.2174/0929867325666181031094759

价格: $65

摘要

聚乙烯亚胺(PEI)作为非病毒基因递送载体是众所周知的,特别是对于寡核苷酸递送。然而,由于其高阳离子电荷,缺乏特异性以及与生物体液中的蛋白质和非靶细胞的相互作用,其临床应用受到显着限制,导致寡核苷酸转运的高细胞毒性,稳定性差和低转染效率。已经表明,PEI的分子量(MW),支化度,N / P比,缓冲能力,寡核苷酸结构,培养基pH,血清,是否存在和制备方法在细胞毒性方面产生显着差异。基于PEI的寡核苷酸递送系统的稳定性和转染效率。已经研究了PEI的配体,疏水性,亲水性和两亲性修饰以降低细胞毒性并改善稳定性,转染效率和治疗效果。此外,PEI的各种智能修饰,例如pH响应(腙键)和氧化还原敏感的接头(二硫键)可以控制寡核苷酸的释放并且引起了很多关注。通常,通过引入对PEI的修饰和通过优化PEI或基于PEI的制剂的参数,可以实现更有效的寡核苷酸递送。

关键词: 聚乙烯亚胺,寡核苷酸递送,药物,靶向,PEG修饰,pH敏感性接头,寡核苷酸递送载体。

[1]
Lehrman, S. Virus treatment questioned after gene therapy death. Nature, 1999, 401(6753), 517-518. [http://dx.doi.org/10.1038/43977]. [PMID: 10524611].
[2]
Liu, Q.; Muruve, D.A. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther., 2003, 10(11), 935-940. [http://dx.doi.org/10.1038/sj.gt.3302036]. [PMID: 12756413].
[3]
Yang, Z.; Chang, L.; Li, W.; Xie, J. Novel biomaterials and biotechnology for nanomedicine. Eu. J. Biomed. Res., 2015, 1(3), 1-2. [http://dx.doi.org/10.18088/ejbmr.1.3.2015.pp1-2].
[4]
Sun, J.Y.; Anand-Jawa, V.; Chatterjee, S.; Wong, K.K. Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther., 2003, 10(11), 964-976. [http://dx.doi.org/10.1038/sj.gt.3302039]. [PMID: 12756417].
[5]
Donahue, R.E.; Kessler, S.W.; Bodine, D.; McDonagh, K.; Dunbar, C.; Goodman, S.; Agricola, B.; Byrne, E.; Raffeld, M.; Moen, R. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med., 1992, 176(4), 1125-1135. [http://dx.doi.org/10.1084/jem.176.4.1125]. [PMID: 1383375].
[6]
Gore, M.E. Adverse effects of gene therapy: Gene therapy can cause leukaemia: No shock, mild horror but a probe. Gene Ther., 2003, 10(1), 4-4. [http://dx.doi.org/10.1038/sj.gt.3301946].
[7]
Glover, D.J.; Lipps, H.J.; Jans, D.A. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet., 2005, 6(4), 299-310. [http://dx.doi.org/10.1038/nrg1577]. [PMID: 15761468].
[8]
Yang, Z.; Xie, J.; Zhu, J.; Kang, C.; Chiang, C.; Wang, X.; Wang, X.; Kuang, T.; Chen, F.; Chen, Z.; Zhang, A.; Yu, B.; Lee, R.J.; Teng, L.; Lee, L.J. Functional exosome-mimic for delivery of siRNA to cancer: In vitro and in vivo evaluation. J. Control. Release, 2016, 243, 160-171. [http://dx.doi.org/10.1016/j.jconrel.2016.10.008].
[9]
Yang, Z.; Yu, B.; Zhu, J.; Huang, X.; Xie, J.; Xu, S.; Yang, X.; Wang, X.; Yung, B.C.; Lee, L.J.; Lee, R.J.; Teng, L. A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia. Nanoscale, 2014, 6(16), 9742-9751. [http://dx.doi.org/10.1039/C4NR01510J]. [PMID: 25003978].
[10]
Zhou, C.; Yang, Z.; Teng, L. Nanomedicine based on nucleic acids: Pharmacokinetic and pharmacodynamic perspectives. Curr. Pharm. Biotechnol., 2014, 15(9), 829-838. [http://dx.doi.org/10.2174/1389201015666141020155620]. [PMID: 25335533].
[11]
Yu, B.; Wang, X.; Zhou, C.; Teng, L.; Ren, W.; Yang, Z.; Shih, C.H.; Wang, T.; Lee, R.J.; Tang, S.; Lee, L.J. Insight into mechanisms of cellular uptake of lipid nanoparticles and intracellular release of small RNAs. Pharm. Res., 2014, 31(10), 2685-2695. [http://dx.doi.org/10.1007/s11095-014-1366-7]. [PMID: 24740244].
[12]
Chen, Z.; Zhang, A.; Wang, X.; Zhu, J.; Fan, Y.; Yu, H.; Yang, Z. The advances of carbon nanotubes in cancer diagnostics and therapeutics. J. Nanomater., 2017, 2017, 1-13.
[13]
Kuang, T.; Fu, D.; Chang, L.; Yang, Z.; Chen, Z.; Jin, L.; Chen, F.; Peng, X. Recent progress in dendrimer-based gene delivery systems. Curr. Org. Chem., 2016, 20(17), 1820-1826. [http://dx.doi.org/10.2174/1385272820666151123235059].
[14]
Lee, L.J.; Yang, Z.; Rahman, M.; Ma, J.; Kwak, K.J.; McElroy, J.; Shilo, K.; Goparaju, C.; Yu, L.; Rom, W.; Kim, T.K.; Wu, X.; He, Y.; Wang, K.; Pass, H.I.; Nana-Sinkam, S.P. Extracellular mRNA detected by tethered lipoplex nanoparticle biochip for lung adenocarcinoma detection. Am. J. Respir. Crit. Care Med., 2016, 193(12), 1431-1433. [http://dx.doi.org/10.1164/rccm.201511-2129LE]. [PMID: 27304243].
[15]
Kang, C.; Sun, Y.; Zhu, J.; Li, W.; Zhang, A.; Kuang, T.; Xie, J.; Yang, Z. Delivery of nanoparticles for treatment of brain tumor. Curr. Drug Metab., 2016, 17(8), 745-754. [http://dx.doi.org/10.2174/1389200217666160728152939]. [PMID: 27469219].
[16]
Xie, J.; Yang, Z.; Zhou, C.; Zhu, J.; Lee, R.J.; Teng, L. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol. Adv., 2016, 34(4), 343-353. [http://dx.doi.org/10.1016/j.biotechadv.2016.04.002]. [PMID: 27071534].
[17]
Chen, Z.; Chen, Z.; Zhang, A.; Hu, J.; Wang, X.; Yang, Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater. Sci., 2016, 4(6), 922-932. [http://dx.doi.org/10.1039/C6BM00070C]. [PMID: 27048889].
[18]
Yang, X.; Yang, S.; Chai, H.; Yang, Z.; Lee, R.J.; Liao, W.; Teng, L. A novel isoquinoline derivative anticancer agent and its targeted delivery to tumor cells using transferrin-conjugated liposomes. PLoS One, 2015, 10(8)e0136649 [http://dx.doi.org/10.1371/journal.pone.0136649]. [PMID: 26309138].
[19]
Sha, L.L.; Chen, Z.F.; Chen, Z.; Zhang, A.L.; Yang, Z.G. Polylactic acid based nanocomposites: Promising safe and biodegradable materials in biomedical field. Int. J. Polym. Sci., 2016.article ID 6869154 [http://dx.doi.org/10.1155/2016/6869154].
[20]
Chen, Z.; Zhang, A.L.; Yang, Z.G.; Wang, X.M.; Chang, L.Q.; Chen, Z.F.; Lee, L.J. Application of DODMA and derivatives in cationic nanocarriers for gene delivery. Curr. Org. Chem., 2016, 20(17), 1813-1819. [http://dx.doi.org/10.2174/1385272820666160202004348].
[21]
Chen, Z.; Cong, M.Q.; Hu, J.M.; Yang, Z.G.; Chen, Z.F. Preparation of functionalized TiO2 nanotube arrays and their applications. Sci. Adv. Mater., 2016, 8(6), 1231-1241. [http://dx.doi.org/10.1166/sam.2016.2719].
[22]
Chen, Z.; Wu, C.; Yang, Y.; Shi, J.; Hu, J.; Yang, Z.; Chen, Z. Synthesis and drug delivery of mesoporous silica nanoparticles for cancer therapy. Eur. J. Biomed. Res., 2015, 1(3), 30-36. [http://dx.doi.org/10.18088/ejbmr.1.3.2015.pp30-36].
[23]
Remaut, K.; Sanders, N.N.; De Geest, B.G.; Braeckmans, K.; Demeester, J.; De Smedt, S.C. Nucleic acid delivery: Where material sciences and bio-sciences meet. Mater. Sci. Eng. Rep., 2007, 58(3-5), 117-161. [http://dx.doi.org/10.1016/j.mser.2007.06.001].
[24]
Sun, J.; Shen, J.; Chen, S.; Cooper, M.; Fu, H.; Wu, D.; Yang, Z. Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polymers (Basel), 2018, 10(5), 505. [http://dx.doi.org/10.3390/polym10050505].
[25]
Yang, Z.; Wang, X.; Huang, X.; Xie, J.; Zhou, C. Nanotechnology in gene delivery: Pharmacokinetic and pharmacodynamic perspectives. The World Scientific Encyclopedia of Nanomedicine and Bioengineering I. Front. Nanobiomed. Res., , 2016; 5, p. (295)326.
[26]
Huang, H.; Yu, H.; Tang, G.; Wang, Q.; Li, J. Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector. Biomaterials, 2010, 31(7), 1830-1838. [http://dx.doi.org/10.1016/j.biomaterials.2009.11.012]. [PMID: 19942284].
[27]
von Harpe, A.; Petersen, H.; Li, Y.; Kissel, T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release, 2000, 69(2), 309-322. [http://dx.doi.org/10.1016/S0168-3659(00)00317-5]. [PMID: 11064137].
[28]
Monnery, B.D.; Shaunak, S.; Thanou, M.; Steinke, J.H.G. Improved synthesis of linear poly(ethylenimine) via low-temperature polymerization of 2-isopropyl-2-oxazoline in chlorobenzene. Macromolecules, 2015, 48(10), 3197-3206. [http://dx.doi.org/10.1021/acs.macromol.5b00437].
[29]
Kircheis, R.; Wightman, L.; Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev., 2001, 53(3), 341-358. [http://dx.doi.org/10.1016/S0169-409X(01)00202-2]. [PMID: 11744176].
[30]
Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA, 1995, 92(16), 7297-7301. [http://dx.doi.org/10.1073/pnas.92.16.7297]. [PMID: 7638184].
[31]
Oh, Y.K.; Suh, D.; Kim, J.M.; Choi, H.G.; Shin, K.; Ko, J.J. Polyethylenimine-mediated cellular uptake, nucleus trafficking and expression of cytokine plasmid DNA. Gene Ther., 2002, 9(23), 1627-1632. [http://dx.doi.org/10.1038/sj.gt.3301735]. [PMID: 12424615].
[32]
Suh, J.; Paik, H.J.; Hwang, B.K. Ionization of poly(ethylenimine) and poly(allylamine) at various pH′s. Bioorg. Chem., 1994, 22(3), 318-327. [http://dx.doi.org/10.1006/bioo.1994.1025].
[33]
Friend, D.S.; Papahadjopoulos, D.; Debs, R.J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta, 1996, 1278(1), 41-50. [http://dx.doi.org/10.1016/0005-2736(95)00219-7]. [PMID: 8611605].
[34]
Labat-Moleur, F.; Steffan, A.M.; Brisson, C.; Perron, H.; Feugeas, O.; Furstenberger, P.; Oberling, F.; Brambilla, E.; Behr, J.P. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther., 1996, 3(11), 1010-1017. [PMID: 9044741].
[35]
Zuhorn, I.S.; Kalicharan, R.; Hoekstra, D. Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J. Biol. Chem., 2002, 277(20), 18021-18028. [http://dx.doi.org/10.1074/jbc.M111257200]. [PMID: 11875062].
[36]
Kircheis, R.; Wightman, L.; Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev., 2001, 53(3), 341-358. [http://dx.doi.org/10.1016/S0169-409X(01)00202-2]. [PMID: 11744176].
[37]
Neu, M.; Fischer, D.; Kissel, T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J. Gene Med., 2005, 7(8), 992-1009. [http://dx.doi.org/10.1002/jgm.773]. [PMID: 15920783].
[38]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Size matters: Molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res., 1999, 45(3), 268-275. [http://dx.doi.org/10.1002/(SICI)1097-4636(19990605)45:3<268:AID-JBM15>3.0.CO;2-Q]. [PMID: 10397985].
[39]
Israel, L.L.; Lellouche, E.; Ostrovsky, S.; Yarmiayev, V.; Bechor, M.; Michaeli, S.; Lellouche, J.P. Acute in vivo toxicity mitigation of PEI-coated maghemite nanoparticles using controlled oxidation and surface modifications toward siRNA delivery. ACS Appl. Mater. Interfaces, 2015, 7(28), 15240-15255. [http://dx.doi.org/10.1021/acsami.5b02743]. [PMID: 26120905].
[40]
Yang, S.; Lee, R.J.; Yang, X.; Zheng, B.; Xie, J.; Meng, L.; Liu, Y.; Teng, L. A novel reduction-sensitive modified polyethylenimine oligonucleotide vector. Int. J. Pharm., 2015, 484(1-2), 44-50. [http://dx.doi.org/10.1016/j.ijpharm.2015.02.036]. [PMID: 25698089].
[41]
Werth, S.; Urban-Klein, B.; Dai, L.; Hobel, S.; Grzelinski, M.; Bakowsky, U.; Czubayko, F.; Aigner, A. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J. Control. Rel. Soc., 2006, 112(2), 257-270.
[42]
Höbel, S.; Koburger, I.; John, M.; Czubayko, F.; Hadwiger, P.; Vornlocher, H.P.; Aigner, A. Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab. J. Gene Med., 2010, 12(3), 287-300. [PMID: 20052738].
[43]
Xie, J.; Teng, L.; Yang, Z.; Zhou, C.; Liu, Y.; Yung, B.C.; Lee, R.J. A polyethylenimine-linoleic acid conjugate for antisense oligonucleotide delivery. BioMed Res. Int., 2013, 2013710502 [http://dx.doi.org/10.1155/2013/710502]. [PMID: 23862153].
[44]
Zhong, Z.; Song, Y.; Engbersen, J.F.; Lok, M.C.; Hennink, W.E.; Feijen, J. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s. J. Control. Rel. Soc., 2005, 109(1-3), 317-329.
[45]
Sun, C.; Tang, T.; Uludağ, H.; Cuervo, J.E. Molecular dynamics simulations of DNA/PEI complexes: Effect of PEI branching and protonation state. Biophys. J., 2011, 100(11), 2754-2763. [http://dx.doi.org/10.1016/j.bpj.2011.04.045]. [PMID: 21641321].
[46]
Chitkara, D.; Mittal, A.; Mahato, R.I. miRNAs in pancreatic cancer: therapeutic potential, delivery challenges and strategies. Adv. Drug Deliv. Rev., 2015, 81, 34-52. [http://dx.doi.org/10.1016/j.addr.2014.09.006]. [PMID: 25252098].
[47]
Kim, T.H.; Cook, S.E.; Arote, R.B.; Cho, M.H.; Nah, J.W.; Choi, Y.J.; Cho, C.S. A degradable hyperbranched poly(ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier. Macromol. Biosci., 2007, 7(5), 611-619. [http://dx.doi.org/10.1002/mabi.200600245]. [PMID: 17457939].
[48]
Arote, R.; Kim, T.H.; Kim, Y.K.; Hwang, S.K.; Jiang, H.L.; Song, H.H.; Nah, J.W.; Cho, M.H.; Cho, C.S. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials, 2007, 28(4), 735-744. [http://dx.doi.org/10.1016/j.biomaterials.2006.09.028]. [PMID: 17034844].
[49]
Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24(7), 1121-1131. [http://dx.doi.org/10.1016/S0142-9612(02)00445-3]. [PMID: 12527253].
[50]
Shen, J.; Zhao, D.J.; Li, W.; Hu, Q.L.; Wang, Q.W.; Xu, F.J.; Tang, G.P. A polyethylenimine-mimetic biodegradable polycation gene vector and the effect of amine composition in transfection efficiency. Biomaterials, 2013, 34(18), 4520-4531. [http://dx.doi.org/10.1016/j.biomaterials.2013.02.068]. [PMID: 23518402].
[51]
Bonner, D.K.; Zhao, X.; Buss, H.; Langer, R.; Hammond, P.T. Crosslinked linear polyethylenimine enhances delivery of DNA to the cytoplasm. J. Control. Rel. Soc., 2013, 167(1), 101-107. [http://dx.doi.org/10.1016/j.jconrel.2012.09.004].
[52]
Han So, Mahato, R.I.; Kim, S.W. Water-soluble lipopolymer for gene delivery. Bioconjug. Chem., 2001, 12(3), 337-345. [http://dx.doi.org/10.1021/bc000120w]. [PMID: 11353530].
[53]
Forrest, M.L.; Koerber, J.T.; Pack, D.W. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem., 2003, 14(5), 934-940. [http://dx.doi.org/10.1021/bc034014g]. [PMID: 13129396].
[54]
Park, M.R.; Kim, H.W.; Hwang, C.S.; Han, K.O.; Choi, Y.J.; Song, S.C.; Cho, M.H.; Cho, C.S. Highly efficient gene transfer with degradable poly(ester amine) based on poly(ethylene glycol) diacrylate and polyethylenimine in vitro and in vivo. J. Gene Med., 2008, 10(2), 198-207. [http://dx.doi.org/10.1002/jgm.1139]. [PMID: 18064729].
[55]
Park, M.R.; Han, K.O.; Han, I.K.; Cho, M.H.; Nah, J.W.; Choi, Y.J.; Cho, C.S. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J. Control. Rel. Soc., 2005, 105(3), 367-380.
[56]
Green, J.J.; Langer, R.; Anderson, D.G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res., 2008, 41(6), 749-759. [http://dx.doi.org/10.1021/ar7002336]. [PMID: 18507402].
[57]
Zhang, H.; Vinogradov, S.V. Short biodegradable polyamines for gene delivery and transfection of brain capillary endothelial cells. J. Control. Rel. Soc., 2010, 143(3), 359-366. [http://dx.doi.org/10.1016/j.jconrel.2010.01.020].
[58]
Malek, A.; Czubayko, F.; Aigner, A. PEG grafting of polyethylenimine (PEI) exerts different effects on DNA transfection and siRNA-induced gene targeting efficacy. J. Drug Target., 2008, 16(2), 124-139. [http://dx.doi.org/10.1080/10611860701849058]. [PMID: 18274933].
[59]
Rejman, J.; Oberle, V.; Zuhorn, I.S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J., 2004, 377(Pt 1), 159-169. [http://dx.doi.org/10.1042/bj20031253]. [PMID: 14505488].
[60]
Zhang, X.; Pan, S.R.; Hu, H.M.; Wu, G.F.; Feng, M.; Zhang, W.; Luo, X. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: effects of PEG molecular weight and PEGylation degree. J. Biomed. Mater. Res. A, 2008, 84(3), 795-804. [http://dx.doi.org/10.1002/jbm.a.31343]. [PMID: 17635020].
[61]
Kleemann, E.; Neu, M.; Jekel, N.; Fink, L.; Schmehl, T.; Gessler, T.; Seeger, W.; Kissel, T. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J. Control. Rel. Soc., 2005, 109(1-3), 299-316.
[62]
Grayson, A.C.; Doody, A.M.; Putnam, D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res., 2006, 23(8), 1868-1876. [http://dx.doi.org/10.1007/s11095-006-9009-2]. [PMID: 16845585].
[63]
Choosakoonkriang, S.; Lobo, B.A.; Koe, G.S.; Koe, J.G.; Middaugh, C.R. Biophysical characterization of PEI/DNA complexes. J. Pharm. Sci., 2003, 92(8), 1710-1722. [http://dx.doi.org/10.1002/jps.10437]. [PMID: 12884257].
[64]
Gao, B.; Lei, H.; Jiang, L.; Zhu, Y. Studies on preparing and adsorption property of grafting terpolymer microbeads of PEI-GMA/AM/MBA for bilirubin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 853(1-2), 62-69. [http://dx.doi.org/10.1016/j.jchromb.2007.02.055]. [PMID: 17400038].
[65]
Finsinger, D.; Remy, J.S.; Erbacher, P.; Koch, C.; Plank, C. Protective copolymers for nonviral gene vectors: Synthesis, vector characterization and application in gene delivery. Gene Ther., 2000, 7(14), 1183-1192. [http://dx.doi.org/10.1038/sj.gt.3301227]. [PMID: 10918486].
[66]
Oupicky, D.; Ogris, M.; Howard, K.A.; Dash, P.R.; Ulbrich, K.; Seymour, L.W. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol. Ther., 2002, 5(4), 463-472. [http://dx.doi.org/10.1006/mthe.2002.0568].
[67]
Rudolph, C.; Schillinger, U.; Ortiz, A.; Plank, C.; Golas, M.M.; Sander, B.; Stark, H.; Rosenecker, J. Aerosolized nanogram quantities of plasmid DNA mediate highly efficient gene delivery to mouse airway epithelium. Mol. Ther., 2005, 12(3), 493-501. [http://dx.doi.org/10.1016/j.ymthe.2005.03.002].
[68]
Wightman, L.; Kircheis, R.; Rössler, V.; Carotta, S.; Ruzicka, R.; Kursa, M.; Wagner, E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med., 2001, 3(4), 362-372. [http://dx.doi.org/10.1002/jgm.187]. [PMID: 11529666].
[69]
Rudolph, C.; Lausier, J.; Naundorf, S.; Müller, R.H.; Rosenecker, J. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med., 2000, 2(4), 269-278. [http://dx.doi.org/10.1002/1521-2254(200007/08)2:4<269:AID-JGM112>3.0.CO;2-F]. [PMID: 10953918].
[70]
Islam, M.A.; Yun, C.H.; Choi, Y.J.; Shin, J.Y.; Arote, R.; Jiang, H.L.; Kang, S.K.; Nah, J.W.; Park, I.K.; Cho, M.H.; Cho, C.S. Accelerated gene transfer through a polysorbitol-based transporter mechanism. Biomaterials, 2011, 32(36), 9908-9924. [http://dx.doi.org/10.1016/j.biomaterials.2011.09.013]. [PMID: 21959011].
[71]
Sato, T.; Ishii, T.; Okahata, Y. In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials, 2001, 22(15), 2075-2080. [http://dx.doi.org/10.1016/S0142-9612(00)00385-9]. [PMID: 11432586].
[72]
Liu, Y.; Yang, X.; Lei, Q.; Li, Z.; Hu, J.; Wen, X.; Wang, H.; Liu, Z. PEG-PEI/siROCK2 protects against Aβ42-induced neurotoxicity in primary neuron cells for Alzheimer Disease. Cell. Mol. Neurobiol., 2015, 35(6), 841-848. [http://dx.doi.org/10.1007/s10571-015-0178-6]. [PMID: 25776136].
[73]
Pojják, K.; Mészáros, R. Association between branched poly(ethyleneimine) and sodium dodecyl sulfate in the presence of neutral polymers. J. Colloid Interface Sci., 2011, 355(2), 410-416. [http://dx.doi.org/10.1016/j.jcis.2010.12.051]. [PMID: 21227445].
[74]
Wang, B.; Liu, P.; Shi, B.; Gao, J.; Gong, P. Preparation of pH-sensitive dextran nanoparticle for doxorubicin delivery. J. Nanosci. Nanotechnol., 2015, 15(4), 2613-2618. [http://dx.doi.org/10.1166/jnn.2015.9243]. [PMID: 26353472].
[75]
de Bruin, K.G.; Fella, C.; Ogris, M.; Wagner, E.; Ruthardt, N.; Brauchle, C. Dynamics of photoinduced endosomal release of polyplexes. J. Control. Release, 2008, 130(2), 175-182. [http://dx.doi.org/10.1016/j.jconrel.2008.06.001].
[76]
Rezvani Amin, Z.; Rahimizadeh, M.; Eshghi, H.; Dehshahri, A.; Ramezani, M. The effect of cationic charge density change on transfection efficiency of polyethylenimine. Iran. J. Basic Med. Sci., 2013, 16(2), 150-156. [PMID: 24298383].
[77]
Akinc, A.; Thomas, M.; Klibanov, A.M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med., 2005, 7(5), 657-663. [http://dx.doi.org/10.1002/jgm.696]. [PMID: 15543529].
[78]
Singh, B.; Maharjan, S.; Park, T.E.; Jiang, T.; Kang, S.K.; Choi, Y.J.; Cho, C.S. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: Staying in or out of the endosomes. Macromol. Biosci., 2015, 15(5), 622-635. [http://dx.doi.org/10.1002/mabi.201400463]. [PMID: 25581293].
[79]
Osada, K. Development of functional polyplex micelles for systemic gene therapy. Polym. J., 2014, 46(8), 469-475. [http://dx.doi.org/10.1038/pj.2014.49].
[80]
Ren, Y.; Jiang, X.; Pan, D.; Mao, H.Q. Charge density and molecular weight of polyphosphoramidate gene carrier are key parameters influencing its DNA compaction ability and transfection efficiency. Biomacromolecules, 2010, 11(12), 3432-3439. [http://dx.doi.org/10.1021/bm1009574]. [PMID: 21067136].
[81]
Abebe, D.G.; Kandil, R.; Kraus, T.; Elsayed, M.; Merkel, O.M.; Fujiwara, T. Three-Layered Biodegradable Micelles Prepared by Two-Step Self-Assembly of PLA-PEI-PLA and PLA-PEG-PLA triblock copolymers as efficient gene delivery system. Macromol. Biosci., 2015, 15(5), 698-711. [http://dx.doi.org/10.1002/mabi.201400488]. [PMID: 25644720].
[82]
Chen, J.L.; Wang, H.; Gao, J.Q.; Chen, H.L.; Liang, W.Q. Liposomes modified with polycation used for gene delivery: Preparation, characterization and transfection in vitro. Int. J. Pharm., 2007, 343(1-2), 255-261. [http://dx.doi.org/10.1016/j.ijpharm.2007.05.045]. [PMID: 17624698].
[83]
Kim, S.H.; Jeong, J.H.; Lee, S.H.; Kim, S.W.; Park, T.G. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug. Chem., 2008, 19(11), 2156-2162. [http://dx.doi.org/10.1021/bc800249n]. [PMID: 18850733].
[84]
Lim, H.J.; Kim, J.K.; Park, J.S. Complexation of apoptotic genes with polyethyleneimine (PEI)-Coated Poly-(DL)-lactic-co-glycolic acid nanoparticles for cancer cell apoptosis. J. Biomed. Nanotechnol., 2015, 11(2), 211-225. [http://dx.doi.org/10.1166/jbn.2015.1880]. [PMID: 26349297].
[85]
Nguyen, H.K.; Lemieux, P.; Vinogradov, S.V.; Gebhart, C.L.; Guérin, N.; Paradis, G.; Bronich, T.K.; Alakhov, V.Y.; Kabanov, A.V. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther., 2000, 7(2), 126-138. [http://dx.doi.org/10.1038/sj.gt.3301052]. [PMID: 10673718].
[86]
Regnström, K.; Ragnarsson, E.G.; Köping-Höggård, M.; Torstensson, E.; Nyblom, H.; Artursson, P. PEI - a potent, but not harmless, mucosal immuno-stimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Ther., 2003, 10(18), 1575-1583. [http://dx.doi.org/10.1038/sj.gt.3302054]. [PMID: 12907949].
[87]
Ryan, S.M.; Mantovani, G.; Wang, X.; Haddleton, D.M.; Brayden, D.J. Advances in PEGylation of important biotech molecules: Delivery aspects. Expert Opin. Drug Deliv., 2008, 5(4), 371-383. [http://dx.doi.org/10.1517/17425247.5.4.371]. [PMID: 18426380].
[88]
Tian, H.Y.; Deng, C.; Lin, H.; Sun, J.; Deng, M.; Chen, X.; Jing, X. Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: Synthesis and micelle characterization. Biomaterials, 2005, 26(20), 4209-4217. [http://dx.doi.org/10.1016/j.biomaterials.2004.11.002]. [PMID: 15683643].
[89]
Petersen, H.; Fechner, P.M.; Martin, A.L.; Kunath, K.; Stolnik, S.; Roberts, C.J.; Fischer, D.; Davies, M.C.; Kissel, T. Polyethylenimine-graft-poly(ethylene glycol) copolymers: Influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug. Chem., 2002, 13(4), 845-854. [http://dx.doi.org/10.1021/bc025529v]. [PMID: 12121141].
[90]
Merdan, T.; Kunath, K.; Petersen, H.; Bakowsky, U.; Voigt, K.H.; Kopecek, J.; Kissel, T. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjug. Chem., 2005, 16(4), 785-792. [http://dx.doi.org/10.1021/bc049743q]. [PMID: 16029019].
[91]
Mao, S.; Neu, M.; Germershaus, O.; Merkel, O.; Sitterberg, J.; Bakowsky, U.; Kissel, T. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug. Chem., 2006, 17(5), 1209-1218. [http://dx.doi.org/10.1021/bc060129j]. [PMID: 16984130].
[92]
Meade, B.R.; Dowdy, S.F. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv. Drug Deliv. Rev., 2008, 60(4-5), 530-536. [http://dx.doi.org/10.1016/j.addr.2007.10.004]. [PMID: 18155315].
[93]
Malek, A.; Merkel, O.; Fink, L.; Czubayko, F.; Kissel, T.; Aigner, A. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Toxicol. Appl. Pharmacol., 2009, 236(1), 97-108. [http://dx.doi.org/10.1016/j.taap.2009.01.014]. [PMID: 19371615].
[94]
Ito, T.; Yoshihara, C.; Hamada, K.; Koyama, Y. DNA/polyethyleneimine/hyaluronic acid small complex particles and tumor suppression in mice. Biomaterials, 2010, 31(10), 2912-2918. [http://dx.doi.org/10.1016/j.biomaterials.2009.12.032]. [PMID: 20047759].
[95]
Song, H.; Wang, G.; He, B.; Li, L.; Li, C.; Lai, Y.; Xu, X.; Gu, Z. Cationic lipid-coated PEI/DNA polyplexes with improved efficiency and reduced cytotoxicity for gene delivery into mesenchymal stem cells. Int. J. Nanomedicine, 2012, 7, 4637-4648. [PMID: 22942645].
[96]
Xun, M.M.; Zhang, X.C.; Zhang, J.; Jiang, Q.Q.; Yi, W.J.; Zhu, W.; Yu, X.Q. Low molecular weight PEI-based biodegradable lipopolymers as gene delivery vectors. Org. Biomol. Chem., 2013, 11(7), 1242-1250. [http://dx.doi.org/10.1039/c2ob27211c]. [PMID: 23318505].
[97]
De Rosa, G.; Quaglia, F.; La Rotonda, M.I.; Appel, M.; Alphandary, H.; Fattal, E. Poly(lactide-co-glycolide) microspheres for the controlled release of oligonucleotide/polyethylenimine complexes. J. Pharm. Sci., 2002, 91(3), 790-799. [http://dx.doi.org/10.1002/jps.10063]. [PMID: 11920765].
[98]
Ganas, C.; Weiss, A.; Nazarenus, M.; Rosler, S.; Kissel, T.; Rivera Gil, P.; Parak, W.J. Biodegradable capsules as non-viral vectors for in vitro delivery of PEI/siRNA polyplexes for efficient gene silencing. J. Control. Release, 2014, 196, 132-138.
[99]
Fattal, E.; De Rosa, G.; Bochot, A. Gel and solid matrix systems for the controlled delivery of drug carrier-associated nucleic acids. Int. J. Pharm., 2004, 277(1-2), 25-30. [http://dx.doi.org/10.1016/j.ijpharm.2003.01.002]. [PMID: 15158966].
[100]
De Rosa, G.; Quaglia, F.; Bochot, A.; Ungaro, F.; Fattal, E. Long-term release and improved intracellular penetration of oligonucleotide-polyethylenimine complexes entrapped in biodegradable microspheres. Biomacromolecules, 2003, 4(3), 529-536. [http://dx.doi.org/10.1021/bm025684c]. [PMID: 12741766].
[101]
Liang, B.; He, M.L.; Xiao, Z.P.; Li, Y.; Chan, C.Y.; Kung, H.F.; Shuai, X.T.; Peng, Y. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochem. Biophys. Res. Commun., 2008, 367(4), 874-880. [http://dx.doi.org/10.1016/j.bbrc.2008.01.024]. [PMID: 18201560].
[102]
Mi Bae, Y.; Choi, H.; Lee, S.; Ho Kang, S.; Tae Kim, Y.; Nam, K.; Sang Park, J.; Lee, M.; Sig Choi, J. Dexamethasone-conjugated low molecular weight polyethylenimine as a nucleus-targeting lipopolymer gene carrier. Bioconjug. Chem., 2007, 18(6), 2029-2036. [http://dx.doi.org/10.1021/bc070012a]. [PMID: 17850108].
[103]
Hildebrandt, I.J.; Iyer, M.; Wagner, E.; Gambhir, S.S. Optical imaging of transferrin targeted PEI/DNA complexes in living subjects. Gene Ther., 2003, 10(9), 758-764. [http://dx.doi.org/10.1038/sj.gt.3301939]. [PMID: 12704414].
[104]
Zeng, J.; Wang, X.; Wang, S. Self-assembled ternary complexes of plasmid DNA, low molecular weight polyethylenimine and targeting peptide for nonviral gene delivery into neurons. Biomaterials, 2007, 28(7), 1443-1451. [http://dx.doi.org/10.1016/j.biomaterials.2006.11.015]. [PMID: 17156837].
[105]
Rudolph, C.; Sieverling, N.; Schillinger, U.; Lesina, E.; Plank, C.; Thünemann, A.F.; Schönberger, H.; Rosenecker, J. Thyroid hormone (T3)-modification of polyethyleneglycol (PEG)-polyethyleneimine (PEI) graft copolymers for improved gene delivery to hepatocytes. Biomaterials, 2007, 28(10), 1900-1911. [http://dx.doi.org/10.1016/j.biomaterials.2006.12.011]. [PMID: 17196251].
[106]
Weiss, S.I.; Sieverling, N.; Niclasen, M.; Maucksch, C.; Thünemann, A.F.; Möhwald, H.; Reinhardt, D.; Rosenecker, J.; Rudolph, C. Uronic acids functionalized polyethyleneimine (PEI)-polyethyleneglycol (PEG)-graft-copolymers as novel synthetic gene carriers. Biomaterials, 2006, 27(10), 2302-2312. [http://dx.doi.org/10.1016/j.biomaterials.2005.11.011]. [PMID: 16337267].
[107]
Liu, L.; Zheng, M.; Renette, T.; Kissel, T. Modular synthesis of folate conjugated ternary copolymers: polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery. Bioconjug. Chem., 2012, 23(6), 1211-1220. [http://dx.doi.org/10.1021/bc300025d]. [PMID: 22548308].
[108]
Yang, S.; Yang, X.; Liu, Y.; Zheng, B.; Meng, L.; Lee, R.J.; Xie, J.; Teng, L. Non-covalent complexes of folic acid and oleic acid conjugated polyethylenimine: An efficient vehicle for antisense oligonucleotide delivery. Colloids Surf. B Biointerfaces, 2015, 135, 274-282. [http://dx.doi.org/10.1016/j.colsurfb.2015.07.047]. [PMID: 26263216].
[109]
Sun, Y.X.; Zeng, X.; Meng, Q.F.; Zhang, X.Z.; Cheng, S.X.; Zhuo, R.X. The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes. Biomaterials, 2008, 29(32), 4356-4365. [http://dx.doi.org/10.1016/j.biomaterials.2008.07.045]. [PMID: 18718656].
[110]
Tian, H.; Lin, L.; Chen, J.; Chen, X.; Park, T.G.; Maruyama, A. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J. Control. Release, 2011, 155(1), 47-53. [http://dx.doi.org/10.1016/j.jconrel.2011.01.025].
[111]
Lu, Z.X.; Liu, L.T.; Qi, X.R. Development of small interfering RNA delivery system using PEI-PEG-APRPG polymer for antiangiogenic vascular endothelial growth factor tumor-targeted therapy. Int. J. Nanomedicine, 2011, 6, 1661-1673. [PMID: 21904456].
[112]
Park, T.E.; Singh, B.; Li, H.; Lee, J.Y.; Kang, S.K.; Choi, Y.J.; Cho, C.S. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials, 2015, 38, 61-71. [http://dx.doi.org/10.1016/j.biomaterials.2014.10.068]. [PMID: 25457984].
[113]
Choi, S.; Lee, K.D. Enhanced gene delivery using disulfide-crosslinked low molecular weight polyethylenimine with listeriolysin o-polyethylenimine disulfide conjugate. J. Control. Release, 2008, 131(1), 70-76. [http://dx.doi.org/10.1016/j.jconrel.2008.07.007].
[114]
Son, S.; Singha, K.; Kim, W.J. Bioreducible BPEI-SS-PEG-cNGR polymer as a tumor targeted nonviral gene carrier. Biomaterials, 2010, 31(24), 6344-6354. [http://dx.doi.org/10.1016/j.biomaterials.2010.04.047]. [PMID: 20537703].
[115]
Yu, J.H.; Quan, J.S.; Huang, J.; Wang, C.Y.; Sun, B.; Nah, J.W.; Cho, M.H.; Cho, C.S. Alpha,beta-poly(L-aspartate-graft-PEI): A pseudo-branched PEI as a gene carrier with low toxicity and high transfection efficiency. Acta Biomater., 2009, 5(7), 2485-2494. [http://dx.doi.org/10.1016/j.actbio.2009.03.012]. [PMID: 19357003].
[116]
Li, W.; Yang, L.; Wang, Y. Modification of PEI with cyclodextrin as a tool for better understanding the major barriers for DNA delivery. J. Control. Release, 2013, 172(1)e117 [http://dx.doi.org/10.1016/j.jconrel.2013.08.280].
[117]
Ihm, J.E.; Krier, I.; Lim, J.M.; Shim, S.; Han, D.K.; Hubbell, J.A. Improved biocompatibility of polyethylenimine (PEI) as a gene carrier by conjugating urocanic acid: In vitro and in vivo. Macromol. Res., 2015, 23(4), 387-395. [http://dx.doi.org/10.1007/s13233-015-3047-8].
[118]
Cho, W.Y.; Hong, S.H.; Singh, B.; Islam, M.A.; Lee, S.; Lee, A.Y.; Gankhuyag, N.; Kim, J.E.; Yu, K.N.; Kim, K.H.; Park, Y.C.; Cho, C.S.; Cho, M.H. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA. Eur. J. Pharm. Biopharm., 2015, 94, 450-462.
[119]
Lu, S.; Morris, V.B.; Labhasetwar, V. Codelivery of DNA and siRNA via arginine-rich PEI-based polyplexes. Mol. Pharm., 2015, 12(2), 621-629. [http://dx.doi.org/10.1021/mp5006883]. [PMID: 25591125].
[120]
Sun, Y.X.; Xiao, W.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Synthesis of (Dex-HMDI)-g-PEIs as effective and low cytotoxic nonviral gene vectors. J. Control. Release, 2008, 128(2), 171-178.
[121]
Ping, Y.; Liu, C.; Zhang, Z.; Liu, K.L.; Chen, J.; Li, J. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials, 2011, 32(32), 8328-8341. [http://dx.doi.org/10.1016/j.biomaterials.2011.07.038]. [PMID: 21840593].
[122]
Wu, M.; Liu, X.; Jin, W.; Li, Y.; Li, Y.; Hu, Q.; Chu, P.K.; Tang, G.; Ping, Y. Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy. J. Control. Release, 2017, 253, 110-121. [http://dx.doi.org/10.1016/j.jconrel.2017.03.011].
[123]
Alshamsan, A.; Haddadi, A.; Incani, V.; Samuel, J.; Lavasanifar, A.; Uludağ, H. Formulation and delivery of siRNA by oleic acid and stearic acid modified polyethylenimine. Mol. Pharm., 2009, 6(1), 121-133. [http://dx.doi.org/10.1021/mp8000815]. [PMID: 19053537].
[124]
Yang, S.; Guo, Z.; Yang, X.; Xie, J.; Lee, R.J.; Jiang, D.; Teng, L. Enhanced survivin siRNA delivery using cationic liposome incorporating fatty acid-modified polyethylenimine. Chem. Res. Chin. Univ., 2015, 31(3), 401-405. [http://dx.doi.org/10.1007/s40242-015-5060-z].
[125]
Zintchenko, A.; Philipp, A.; Dehshahri, A.; Wagner, E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug. Chem., 2008, 19(7), 1448-1455. [http://dx.doi.org/10.1021/bc800065f]. [PMID: 18553894].
[126]
Aravindan, L.; Bicknell, K.A.; Brooks, G.; Khutoryanskiy, V.V.; Williams, A.C. Effect of acyl chain length on transfection efficiency and toxicity of polyethylenimine. Int. J. Pharm., 2009, 378(1-2), 201-210. [http://dx.doi.org/10.1016/j.ijpharm.2009.05.052]. [PMID: 19501146].
[127]
Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R.H. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces, 2000, 18(3-4), 301-313. [http://dx.doi.org/10.1016/S0927-7765(99)00156-3]. [PMID: 10915952].
[128]
Beyerle, A.; Braun, A.; Banerjee, A.; Ercal, N.; Eickelberg, O.; Kissel, T.H.; Stoeger, T. Inflammatory responses to pulmonary application of PEI-based siRNA nanocarriers in mice. Biomaterials, 2011, 32(33), 8694-8701. [http://dx.doi.org/10.1016/j.biomaterials.2011.07.082]. [PMID: 21855131].
[129]
Endres, T.; Zheng, M.; Kılıç, A.; Turowska, A.; Beck-Broichsitter, M.; Renz, H.; Merkel, O.M.; Kissel, T. Amphiphilic biodegradable PEG-PCL-PEI triblock copolymers for FRET-capable in vitro and in vivo delivery of siRNA and quantum dots. Mol. Pharm., 2014, 11(4), 1273-1281. [http://dx.doi.org/10.1021/mp400744a]. [PMID: 24592902].
[130]
Shi, S.; Shi, K.; Tan, L.; Qu, Y.; Shen, G.; Chu, B.; Zhang, S.; Su, X.; Li, X.; Wei, Y.; Qian, Z. The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials, 2014, 35(15), 4536-4547. [http://dx.doi.org/10.1016/j.biomaterials.2014.02.010]. [PMID: 24582554].
[131]
Gaspar, V.M.; Baril, P.; Costa, E.C.; de Melo-Diogo, D.; Foucher, F.; Queiroz, J.A.; Sousa, F.; Pichon, C.; Correia, I.J. Bioreducible poly(2-ethyl-2-oxazoline)-PLA-PEI-SS triblock copolymer micelles for co-delivery of DNA minicircles and doxorubicin. J. Control. Release, 2015, 213, 175-191.
[132]
Beyerle, A.; Braun, A.; Merkel, O.; Koch, F.; Kissel, T.; Stoeger, T. Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice. J. Control. Release, 2011, 151(1), 51-56.
[133]
Fang, G.; Zeng, F.; Yu, C.; Wu, S. Low molecular weight PEIs modified by hydrazone-based crosslinker and betaine as improved gene carriers. Colloids Surf. B Biointerfaces, 2014, 122, 472-481. [http://dx.doi.org/10.1016/j.colsurfb.2014.07.007]. [PMID: 25092585].
[134]
Wang, M.; Liu, T.; Han, L.; Gao, W.; Yang, S.; Zhang, N. Functionalized O-carboxymethyl-chitosan/polyethylenimine based novel dual pH-responsive nanocarriers for controlled co-delivery of DOX and genes. Polym. Chem., 2015, 6(17), 3324-3335. [http://dx.doi.org/10.1039/C5PY00013K].
[135]
Dong, D.W.; Xiang, B.; Gao, W.; Yang, Z.Z.; Li, J.Q.; Qi, X.R. pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells. Biomaterials, 2013, 34(20), 4849-4859. [http://dx.doi.org/10.1016/j.biomaterials.2013.03.018]. [PMID: 23541420].
[136]
Yan, Y.; Li, J.; Zheng, J.; Pan, Y.; Wang, J.; He, X.; Zhang, L.; Liu, D. Poly(L-lysine)-based star-block copolymers as pH-responsive nanocarriers for anionic drugs. Colloids Surf. B Biointerfaces, 2012, 95, 137-143. [http://dx.doi.org/10.1016/j.colsurfb.2012.02.034]. [PMID: 22424829].
[137]
Hu, J.; Miura, S.; Na, K.; Bae, Y.H. pH-responsive and charge shielded cationic micelle of poly(L-histidine)-block-short branched PEI for acidic cancer treatment. J. Control. Release, 2013, 172(1), 69-76.
[138]
Xu, M.; Qian, J.; Suo, A.; Liu, T.; Liu, X.; Wang, H. A reduction-dissociable PEG-b-PGAH-b-PEI triblock copolymer as a vehicle for targeted co-delivery of doxorubicin and P-gp siRNA. Polym. Chem., 2015, 6(13), 2445-2456. [http://dx.doi.org/10.1039/C5PY00034C].
[139]
Li, H.; Qian, Z.M. Transferrin/transferrin receptor-mediated drug delivery. Med. Res. Rev., 2002, 22(3), 225-250. [http://dx.doi.org/10.1002/med.10008]. [PMID: 11933019].
[140]
Bao, X.; Wang, W.; Wang, C.; Wang, Y.; Zhou, J.; Ding, Y.; Wang, X.; Jin, Y. A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy. Biomaterials, 2014, 35(29), 8450-8466. [http://dx.doi.org/10.1016/j.biomaterials.2014.06.025]. [PMID: 24997481].
[141]
Teng, L.; Xie, J.; Teng, L.; Lee, R.J. Enhanced siRNA delivery using oleic acid derivative of polyethylenimine. Anticancer Res., 2012, 32(4), 1267-1271. [PMID: 22493358].
[142]
Xun, M.M.; Liu, Y.H.; Guo, Q.; Zhang, J.; Zhang, Q.F.; Wu, W.X.; Yu, X.Q. Low molecular weight PEI-appended polyesters as non-viral gene delivery vectors. Eur. J. Med. Chem., 2014, 78, 118-125. [http://dx.doi.org/10.1016/j.ejmech.2014.03.050]. [PMID: 24681389].
[143]
Dong, D.; Gao, W.; Liu, Y.; Qi, X.R. Therapeutic potential of targeted multifunctional nanocomplex co-delivery of siRNA and low-dose doxorubicin in breast cancer. Cancer Lett., 2015, 359(2), 178-186. [http://dx.doi.org/10.1016/j.canlet.2015.01.011]. [PMID: 25592040].
[144]
Fang, G.; Zeng, F.; Yu, C.; Wu, S. Low molecular weight PEIs modified by hydrazone-based crosslinker and betaine as improved gene carriers. Colloids Surf. B Biointerfaces, 2014, 122, 472-481. [http://dx.doi.org/10.1016/j.colsurfb.2014.07.007]. [PMID: 25092585].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy