Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

阿兹海默病小鼠模型APPSWE/PS1DE9的[18F]-Florbetaben PET/CT成像

卷 16, 期 1, 2019

页: [49 - 55] 页: 7

弟呕挨: 10.2174/1567205015666181022095904

价格: $65

摘要

背景: 使用18F标记的Florbetaben的正电子发射断层扫描(PET)可以在体内无创评估阿茨海默病(AD)的病理特征淀粉样β(Aβ)的水平。在临床前研究中,[18F]-氟贝塔本PET已经被用来测试无论是在人类还是在大脑淀粉样变性的转基因模型中,新药物的淀粉样蛋白降低潜力。本研究的目的是通过比较组织学上确定的脑Aβ斑块的数量和大小,确定患有AD的APPswe/ PS1dE9小鼠模型中[18F]-氟哌他汀的脑摄取空间模式。 方法: 静脉注射[18F]-氟哌他汀后,通过小动物PET/CT对12个月大的APPswe/PS1dE9和野生型小鼠进行了研究。高分辨率磁共振成像数据被用于通过感兴趣的体积分析量化PET数据。本研究分析了[18F]-氟β本在体内的标准化摄取值(SUV),以及死后大脑皮层、海马和小脑的Aβ斑块负荷。 结果: 视觉检查和SUV显示,与野生型小鼠相比,APPswe/ PS1dE9 小鼠的[18F]-氟哌他汀的大脑摄取增加,特别是在皮质、海马和小脑区域。然而,相对于小脑的SUV比率(SUVRs)显示,APPswe/PS1dE9和野生型小鼠仅海马体有显著差异,而皮质则没有。; 这一差异效应可能反映了在组织学分析中,皮质中的斑块面积低于海马中的斑块面积。 结论: 研究结果表明,在APPswe/PS1dE9小鼠模型中,使用[18F]-氟哌他汀可以在体内描述Aβ斑块大小和空间分布的组织病理学特征。

关键词: 阿茨海默症,正电子发射断层扫描,[18F]-氟β本,诊断,APPswe/PS1dE9小鼠模型,Aβ斑块大小。

[1]
Czech C, Tremp G, Pradier L. Presenilins and Alzheimer’s disease: biological functions and pathogenic mechanisms. Prog Neurobiol 60: 363-84. (2000).
[2]
Hyman BT. The neuropathological diagnosis of Alzheimer’s disease: clinical-pathological studies. Neurobiol Aging 18(4)(Suppl.): S27-32. (1997).
[3]
Villars H, Gillioz AS, Hein C, Voisin T, Nourhashemi F, Soto ME, et al. Alzheimer’s disease and syndromes related to the severe stage. Rev Neurol (Paris) 164(Spec No 2): F98-F106. (2008).
[4]
Ziegler-Graham K, Brookmeyer R, Johnson E, Arrighi HM. Worldwide variation in the doubling time of Alzheimer’s disease incidence rates. Alzheimers Dement 4: 316-23. (2008).
[5]
Ferreira LK, Busatto GF. Neuroimaging in Alzheimer’s disease: current role in clinical practice and potential future applications. Clinics (São Paulo) 66(Suppl. 1): 19-24. (2011).
[6]
Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367: 795-804. (2012).
[7]
Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9: 363-72. (2010).
[8]
Braak H, Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging 18(4)(Suppl.): S85-8. (1997).
[9]
Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41: 479-86. (1991).
[10]
Newell KL, Hyman BT, Growdon JH, Hedley-Whyte ET. Application of the National Institute on Aging (NIA)-Reagan Institute criteria for the neuropathological diagnosis of Alzheimer disease. J Neuropathol Exp Neurol 58: 1147-55. (1999).
[11]
Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13: 614-29. (2014).
[12]
Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7: 257-62. (2011).
[13]
Vlassenko AG, Benzinger TL, Morris JC. PET amyloid-beta imaging in preclinical Alzheimer’s disease. Biochim Biophys Acta 1822: 370-9. (2012).
[14]
Brockschnieder D, Schmitt-Willich H, Heinrich T, Varrone A, Gulyás B, Toth M, et al. Preclinical characterization of a novel class of 18F-labeled PET tracers for amyloid-β. J Nucl Med 53: 1794-801. (2012).
[15]
Quigley H, Colloby SJ, O’Brien JT. PET imaging of brain amyloid in dementia: a review. Int J Geriatr Psychiatry 26: 991-9.
[http://dx.doi.org/10.1002/gps.2640 (2011).]
[16]
Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55: 306-19. (2004).
[17]
Nordberg A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol 3: 519-27. (2004).
[18]
Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 68: 1718-25. (2007).
[19]
Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67: 446-52. (2006).
[20]
Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 69: 181-92. (2011).
[21]
Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, et al. Imaging of amyloid β in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7: 129-35. (2008).
[22]
Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand [18F]-AV-45 (florbetapir [corrected] F 18). J Nucl Med 51: 913-20. (2010).
[23]
Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-Flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68: 319-29. (2010).
[24]
Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with 18F-Florbetaben in Alzheimer disease and other dementias. J Nucl Med 52: 1210-7. (2011).
[25]
Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10: 424-35. (2011).
[26]
Yousefi BH, von Reutern B, Scherübl D, Manook A, Schwaiger M, Grimmer T, et al. FIBT versus florbetaben and PiB: a preclinical comparison study with amyloid-PET in transgenic mice. EJNMMI Res 5: 20. (2015).
[27]
Ni R, Gillberg PG, Bergfors A, Marutle A, Nordberg A. Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain 136: 2217-27. (2013).
[28]
Fodero-Tavoletti MT, Brockschnieder D, Villemagne VL, Martin L, Connor AR, Thiele A, et al. In vitro characterization of [18F]-florbetaben, an Aβ imaging radiotracer. Nucl Med Biol 39: 1042-8. (2012).
[29]
Rominger A, Brendel M, Burgold S, Keppler K, Baumann K, Xiong G, et al. Longitudinal assessment of cerebral Aβ deposition in mice overexpressing Swedish mutant Aβ precursor protein using 18F-florbetaben PET. J Nucl Med 54: 1127-34. (2013).
[30]
Brendel M, Jaworska A, Grießinger E, Rötzer C, Burgold S, Gildehaus FJ, et al. Cross-sectional comparison of small animal [18F]-florbetaben amyloid-PET between transgenic AD mouse models. PLoS One 10: e0116678. (2015).
[31]
Brendel M, Jaworska A, Herms J, Trambauer J, Rötzer C, Gildehaus FJ, et al. Amyloid-PET predicts inhibition of de novo plaque formation upon chronic γ-secretase modulator treatment. Mol Psychiatry 20: 1179-87. (2015).
[32]
Malm T, Koistinaho J, Kanninen K. Utilization of APPswe/PS1dE9 Transgenic Mice in Research of Alzheimer’s Disease: focus on Gene Therapy and Cell-Based Therapy Applications. Int J Alzheimers Dis 2011: 517160. (2011).
[33]
Jankowsky JL, Younkin LH, Gonzales V, Fadale DJ, Slunt HH, Lester HA, et al. Rodent A beta modulates the solubility and distribution of amyloid deposits in transgenic mice. J Biol Chem 282: 22707-20. (2007).
[34]
Xiong H, Callaghan D, Wodzinska J, Xu J, Premyslova M, Liu QY, et al. Biochemical and behavioral characterization of the double transgenic mouse model (APPswe/PS1dE9) of Alzheimer’s disease. Neurosci Bull 27: 221-32. (2011).
[35]
Kuhla A, Rühlmann C, Lindner T, Polei S, Hadlich S, Krause BJ, et al. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: A MRS and MRI study. Neuroimage Clin 15: 581-6. (2017).
[36]
Poisnel G, Dhilly M, Moustié O, et al. PET imaging with [18F]AV-45 in an APP/PS1-21 murine model of amyloid plaque deposition. Neurobiol Aging 33: 2561-71. (2012).
[37]
Overhoff F, Brendel M, Jaworska A, Korzhova V, Delker A, Probst F, et al. Automated spatial brain normalization and hindbrain white matter reference tissue give improved [18F]-Florbetaben PET quantitation in Alzheimer’s model mice. Front Neurosci 10: 45. (2016).
[38]
Chiaravalloti A, Danieli R, Lacanfora A, Palumbo B, Caltagirone C, Schillaci O. Usefulness of 18F florbetaben in diagnosis of Alzheimer’s disease and other types of dementia. Curr Alzheimer Res 14: 154-60. (2017).
[39]
Sabri O, Seibyl J, Rowe C, Barthel H. Beta-amyloid imaging with florbetaben. Clin Transl Imaging 3: 13-26. (2015).
[40]
Snellman A, Rokka J, López-Picón FR, Eskola O, Salmona M, Forloni G, et al. In vivo PET imaging of beta-amyloid deposition in mouse models of Alzheimer’s disease with a high specific activity PET imaging agent [18F]flutemetamol. EJNMMI Res 4: 37. (2014).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy