Review Article

肥胖外科患者围手术期心脑轴保护:营养基因组学方法

卷 27, 期 2, 2020

页: [258 - 281] 页: 24

弟呕挨: 10.2174/0929867325666181015145225

价格: $65

摘要

接受心脏和非心脏手术的肥胖患者数量正在迅速增加,因为他们更容易并发疾病,如糖尿病、血栓、睡眠呼吸障碍、心脑血管疾病。即使已经有指导方针来管理肥胖患者的麻醉和手术,在未来几年,对过度肥胖外科患者心脏和大脑疾病的围手术期发病率和死亡率的评估仍将是一个挑战。本综述将概述健康和病态肥胖患者围手术期心脑轴(HBA)易损性的新机制。最后,我们将描述营养基因组学的方法,一个新兴的饮食工具,保持一个健康的体重,减少HBA受伤倾向接受所有类型的手术的肥胖个体的个性化摄入的植物化合物调节开关从健康到疾病的表观遗传方式。我们的综述提供了关于肥胖外科患者HBA反应机制的最新见解,以及它们是如何被表观遗传活性食物成分调节的。

关键词: 心脏保护,表观遗传学,功能性食品,神经保护作用,肥胖,围手术期医学。

[1]
Tahsili-Fahadan, P.; Geocadin, R.G. Heart-brain axis: effects of neurologic injury on cardiovascular function. Circ. Res., 2017, 120(3), 559-572.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308446] [PMID: 28154104]
[2]
Samuels, M.A. The brain-heart connection. Circulation, 2007, 116(1), 77-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.678995] [PMID: 17606855]
[3]
Manea, M.M.; Comsa, M.; Minca, A.; Dragos, D.; Popa, C. Brain-heart axis--Review Article. J. Med. Life, 2015, 8(3), 266-271.
[PMID: 26351525]
[4]
Taggart, P.; Critchley, H.; Lambiase, P.D. Heart-brain interactions in cardiac arrhythmia. Heart, 2011, 97(9), 698-708.
[http://dx.doi.org/10.1136/hrt.2010.209304] [PMID: 21367742]
[5]
Tawakol, A.; Ishai, A.; Takx, R.A.; Figueroa, A.L.; Ali, A.; Kaiser, Y.; Truong, Q.A.; Solomon, C.J.; Calcagno, C.; Mani, V.; Tang, C.Y.; Mulder, W.J.; Murrough, J.W.; Hoffmann, U.; Nahrendorf, M.; Shin, L.M.; Fayad, Z.A.; Pitman, R.K. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet, 2017, 389(10071), 834-845.
[http://dx.doi.org/10.1016/S0140-6736(16)31714-7] [PMID: 28088338]
[6]
Mazzeo, A.T.; Micalizzi, A.; Mascia, L.; Scicolone, A.; Siracusano, L. Brain-heart crosstalk: the many faces of stress-related cardiomyopathy syndromes in anaesthesia and intensive care. Br. J. Anaesth., 2014, 112(5), 803-815.
[http://dx.doi.org/10.1093/bja/aeu046] [PMID: 24638232]
[7]
Reis, C.; Akyol, O.; Araujo, C.; Huang, L.; Enkhjargal, B.; Malaguit, J.; Gospodarev, V.; Zhang, J.H. Pathophysiology and the monitoring methods for cardiac arrest associated brain injury. Int. J. Mol. Sci., 2017, 18(1), E129
[http://dx.doi.org/10.3390/ijms18010129] [PMID: 28085069]
[8]
Moonga, I.; Niccolini, F.; Wilson, H.; Pagano, G.; Politis, M. Alzheimer’s Disease Neuroimaging Initiative. Hypertension is associated with worse cognitive function and hippocampal hypometabolism in Alzheimer’s disease. Eur. J. Neurol., 2017, 24(9), 1173-1182.
[http://dx.doi.org/10.1111/ene.13374] [PMID: 28752644]
[9]
Roy, B.; Woo, M.A.; Wang, D.J.J.; Fonarow, G.C.; Harper, R.M.; Kumar, R. Reduced regional cerebral blood flow in patients with heart failure. Eur. J. Heart Fail., 2017, 19(10), 1294-1302.
[http://dx.doi.org/10.1002/ejhf.874] [PMID: 28560737]
[10]
Abete, P.; Della-Morte, D.; Gargiulo, G.; Basile, C.; Langellotto, A.; Galizia, G.; Testa, G.; Canonico, V.; Bonaduce, D.; Cacciatore, F. Cognitive impairment and cardiovascular diseases in the elderly. A heart-brain continuum hypothesis. Ageing Res. Rev., 2014, 18, 41-52.
[http://dx.doi.org/10.1016/j.arr.2014.07.003] [PMID: 25107566]
[11]
Eriksson, U.K.; Bennet, A.M.; Gatz, M.; Dickman, P.W.; Pedersen, N.L. Nonstroke cardiovascular disease and risk of Alzheimer disease and dementia. Alzheimer Dis. Assoc. Disord., 2010, 24(3), 213-219.
[http://dx.doi.org/10.1097/WAD.0b013e3181d1b99b] [PMID: 20473139]
[12]
Alosco, M.L.; Hayes, S.M. Structural brain alterations in heart failure: a review of the literature and implications for risk of Alzheimer’s disease. Heart Fail. Rev., 2015, 20(5), 561-571.
[http://dx.doi.org/10.1007/s10741-015-9488-5] [PMID: 25896528]
[13]
Bain, C.R.; Shaw, A.D. Genetics and epigenetics in perioperative medicine. Curr. Opin. Crit. Care, 2012, 18(5), 548-554.
[http://dx.doi.org/10.1097/MCC.0b013e328357af6d] [PMID: 22914427]
[14]
Lionetti, V. The unexpected cardioprotection by epigenetic foods. J Siena Acad Sci, 2016, 8(1), 1-9.
[http://dx.doi.org/10.4081/jsas.2016.6951]
[15]
Saba, R.; Kaye, A.D.; Urman, R.D. Pharmacogenomics in Anesthesia. Anesthesiol. Clin., 2017, 35(2), 285-294.
[http://dx.doi.org/10.1016/j.anclin.2017.01.014] [PMID: 28526149]
[16]
Kristensen, S.D.; Knuuti, J.; Saraste, A.; Anker, S.; Bøtker, H.E.; De Hert, S.; Ford, I.; Gonzalez Juanatey, J.R.; Gorenek, B.; Heyndrickx, G.R.; Hoeft, A.; Huber, K.; Iung, B.; Kjeldsen, K.P.; Longrois, D.; Luescher, T.F.; Pierard, L.; Pocock, S.; Price, S.; Roffi, M.; Sirnes, P.A.; Uva, M.S.; Voudris, V.; Funck-Brentano, C. Authors/Task Force Members. 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. J. Anaesthesiol., 2014, 31(10), 517-573.
[http://dx.doi.org/10.1097/EJA.0000000000000150] [PMID: 25127426]
[17]
London, M.J. Cardiovascular problems in noncardiac surgery. Curr. Opin. Crit. Care, 2009, 15(4), 333-341.
[http://dx.doi.org/10.1097/MCC.0b013e32832e4795] [PMID: 19553809]
[18]
Bilotta, F.; Gelb, A.W.; Stazi, E.; Titi, L.; Paoloni, F.P.; Rosa, G. Pharmacological perioperative brain neuroprotection: a qualitative review of randomized clinical trials. Br. J. Anaesth., 2013, 110(Suppl. 1), i113-i120.
[http://dx.doi.org/10.1093/bja/aet059] [PMID: 23562933]
[19]
Traupe, I.; Giacalone, M.; Agrimi, J.; Baroncini, M.; Pomé, A.; Fabiani, D.; Danti, S.; Timpano Sportiello, M.R.; Di Sacco, F.; Lionetti, V.; Giunta, F.; Forfori, F. Postoperative cognitive dysfunction and short-term neuroprotection from blueberries: a pilot study. Minerva Anestesiol., 2018, 84(12), 1352-1360.
[http://dx.doi.org/10.23736/S0375-9393.18.12333-9] [PMID: 29856175]
[20]
Zhang, T.Z.; Zhou, J.; Jin, Q.; Sun, Y.J.; Diao, Y.G.; Zhang, Y.N.; Zhang, Z. Protective effects of remifentanil preconditioning on cerebral injury during pump-assisted coronary artery bypass graft. Genet. Mol. Res., 2014, 13(3), 7658-7665.
[http://dx.doi.org/10.4238/2014.September.26.3] [PMID: 25299079]
[21]
Rodriguez, A.; Guilera, N.; Mases, A.; Sierra, P.; Oliva, J.C.; Colilles, C. REGISTRESTENTS group. Management of antiplatelet therapy in patients with coronary stents undergoing noncardiac surgery: association with adverse events. Br. J. Anaesth., 2018, 120(1), 67-76.
[http://dx.doi.org/10.1016/j.bja.2017.11.012] [PMID: 29397139]
[22]
Ng, J.L.; Chan, M.T.; Gelb, A.W. Perioperative stroke in noncardiac, nonneurosurgical surgery. Anesthesiology, 2011, 115(4), 879-890.
[http://dx.doi.org/10.1097/ALN.0b013e31822e9499] [PMID: 21862923]
[23]
Macellari, F.; Paciaroni, M.; Agnelli, G.; Caso, V. Perioperative stroke risk in nonvascular surgery. Cerebrovasc. Dis., 2012, 34(3), 175-181.
[http://dx.doi.org/10.1159/000339982] [PMID: 22922182]
[24]
Sierra, C.; Coca, A.; Schiffrin, E.L. Vascular mechanisms in the pathogenesis of stroke. Curr. Hypertens. Rep., 2011, 13(3), 200-207.
[http://dx.doi.org/10.1007/s11906-011-0195-x] [PMID: 21331606]
[25]
Kamel, H.; Healey, J.S. Cardioembolic Stroke. Circ. Res., 2017, 120(3), 514-526.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308407] [PMID: 28154101]
[26]
Devinney, M.J.; Mathew, J.P.; Berger, M. Postoperative delirium and postoperative cognitive dysfunction: two sides of the same coin? Anesthesiology, 2018, 129(3), 389-391.
[http://dx.doi.org/10.1097/ALN.0000000000002338] [PMID: 29965817]
[27]
Peng, L.; Xu, L.; Ouyang, W. Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One, 2013, 8(11), e79624
[http://dx.doi.org/10.1371/journal.pone.0079624] [PMID: 24236147]
[28]
Mu, D.L.; Li, L.H.; Wang, D.X.; Li, N.; Shan, G.J.; Li, J.; Yu, Q.J.; Shi, C.X. High postoperative serum cortisol level is associated with increased risk of cognitive dysfunction early after coronary artery bypass graft surgery: a prospective cohort study. PLoS One, 2013, 8(10), e77637
[http://dx.doi.org/10.1371/journal.pone.0077637] [PMID: 24143249]
[29]
Patel, N.; Minhas, J.S.; Chung, E.M. Risk factors associated with cognitive decline after cardiac surgery: a systematic review. Cardiovasc. Psychiatry Neurol., 2015, 2015, 370612
[http://dx.doi.org/10.1155/2015/370612] [PMID: 26491558]
[30]
Whitlock, E.L.; Torres, B.A.; Lin, N.; Helsten, D.L.; Nadelson, M.R.; Mashour, G.A.; Avidan, M.S. Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. Anesth. Analg., 2014, 118(4), 809-817.
[http://dx.doi.org/10.1213/ANE.0000000000000028] [PMID: 24413548]
[31]
Parente, D.; Luís, C.; Veiga, D.; Silva, H.; Abelha, F. Congestive heart failure as a determinant of postoperative delirium. Rev. Port. Cardiol., 2013, 32(9), 665-671.
[http://dx.doi.org/10.1016/j.repc.2012.12.020] [PMID: 24011864]
[32]
Ishikawa, H.; Tajiri, N.; Vasconcellos, J.; Kaneko, Y.; Mimura, O.; Dezawa, M.; Borlongan, C.V. Ischemic stroke brain sends indirect cell death signals to the heart. Stroke, 2013, 44(11), 3175-3182.
[http://dx.doi.org/10.1161/STROKEAHA.113.001714] [PMID: 24008571]
[33]
Mauermann, E.; Puelacher, C.; Lurati Buse, G. Myocardial injury after noncardiac surgery: an underappreciated problem and current challenges. Curr. Opin. Anaesthesiol., 2016, 29(3), 403-412.
[http://dx.doi.org/10.1097/ACO.0000000000000336] [PMID: 27008065]
[34]
Devereaux, P.J.; Sessler, D.I. Cardiac complications in patients undergoing major noncardiac surgery. N. Engl. J. Med., 2015, 373(23), 2258-2269.
[http://dx.doi.org/10.1056/NEJMra1502824] [PMID: 26630144]
[35]
Ellis, S.G.; Hertzer, N.R.; Young, J.R.; Brener, S. Angiographic correlates of cardiac death and myocardial infarction complicating major nonthoracic vascular surgery. Am. J. Cardiol., 1996, 77(12), 1126-1128.
[http://dx.doi.org/10.1016/S0002-9149(96)00130-0] [PMID: 8644673]
[36]
Duvall, W.L.; Sealove, B.; Pungoti, C.; Katz, D.; Moreno, P.; Kim, M. Angiographic investigation of the pathophysiology of perioperative myocardial infarction. Catheter. Cardiovasc. Interv., 2012, 80(5), 768-776.
[http://dx.doi.org/10.1002/ccd.23446] [PMID: 22419582]
[37]
Tsai, A.; Schumann, R. Morbid obesity and perioperative complications. Curr. Opin. Anaesthesiol., 2016, 29(1), 103-108.
[http://dx.doi.org/10.1097/ACO.0000000000000279] [PMID: 26595547]
[38]
Badrudin, D.; Khaliel, F.; Cartier, R. Obesity paradox in off-pump coronary artery bypass surgery: does it benefit the elderly? Ann. Thorac. Surg., 2016, 102(6), 1974-1980.
[http://dx.doi.org/10.1016/j.athoracsur.2016.05.005] [PMID: 27372372]
[39]
Klasen, J.; Junger, A.; Hartmann, B.; Jost, A.; Benson, M.; Virabjan, T.; Hempelmann, G. Increased body mass index and peri-operative risk in patients undergoing non-cardiac surgery. Obes. Surg., 2004, 14(2), 275-281.
[http://dx.doi.org/10.1381/096089204322857708] [PMID: 15027438]
[40]
Moulton, M.J.; Creswell, L.L.; Mackey, M.E.; Cox, J.L.; Rosenbloom, M. Obesity is not a risk factor for significant adverse outcomes after cardiac surgery. Circulation, 1996, 94(Suppl. 9), II87-II92.
[PMID: 8901725]
[41]
Lopez-Delgado, J.C.; Esteve, F.; Manez, R.; Torrado, H.; Carrio, M.L.; Rodríguez-Castro, D.; Farrero, E.; Javierre, C.; Skaltsa, K.; Ventura, J.L. The influence of body mass index on outcomes in patients undergoing cardiac surgery: does the obesity paradox really exist? PLoS One, 2015, 10(3), e0118858
[http://dx.doi.org/10.1371/journal.pone.0118858] [PMID: 25781994]
[42]
Gao, M.; Sun, J.; Young, N.; Boyd, D.; Atkins, Z.; Li, Z.; Ding, Q.; Diehl, J.; Liu, H. Impact of body mass index on outcomes in cardiac surgery. J. Cardiothorac. Vasc. Anesth., 2016, 30(5), 1308-1316.
[http://dx.doi.org/10.1053/j.jvca.2016.03.002] [PMID: 27461794]
[43]
Van Nieuwenhove, Y.; Dambrauskas, Z.; Campillo-Soto, A.; van Dielen, F.; Wiezer, R.; Janssen, I.; Kramer, M.; Thorell, A. Preoperative very low-calorie diet and operative outcome after laparoscopic gastric bypass: a randomized multicenter study. Arch. Surg., 2011, 146(11), 1300-1305.
[http://dx.doi.org/10.1001/archsurg.2011.273] [PMID: 22106323]
[44]
Nguyen, B.; Tao, M.; Yu, P.; Mauro, C.; Seidman, M.A.; Wang, Y.E.; Mitchell, J.; Ozaki, C.K. Preoperative diet impacts the adipose tissue response to surgical trauma. Surgery, 2013, 153(4), 584-593.
[http://dx.doi.org/10.1016/j.surg.2012.11.001] [PMID: 23274098]
[45]
Cornier, M.A.; Després, J.P.; Davis, N.; Grossniklaus, D.A.; Klein, S.; Lamarche, B.; Lopez-Jimenez, F.; Rao, G.; St-Onge, M.P.; Towfighi, A.; Poirier, P. American Heart Association Obesity Committee of the Council on Nutrition; Physical Activity and Metabolism; Council on Arteriosclerosis; Thrombosis and Vascular Biology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing, Council on Epidemiology and Prevention; Council on the Kidney in Cardiovascular Disease, and Stroke Council. Assessing adiposity: a scientific statement from the American Heart Association. Circulation, 2011, 124(18), 1996-2019.
[http://dx.doi.org/10.1161/CIR.0b013e318233bc6a] [PMID: 21947291]
[46]
Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; D’Agostino, R.B., Sr; O’Donnell, C.J. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation, 2007, 116(1), 39-48.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.675355] [PMID: 17576866]
[47]
Caselli, C.; Lionetti, V.; Cabiati, M.; Prescimone, T.; Aquaro, G.D.; Ottaviano, V.; Bernini, F.; Mattii, L.; Del Ry, S.; Giannessi, D. Regional evidence of modulation of cardiac adiponectin level in dilated cardiomyopathy: pilot study in a porcine animal model. Cardiovasc. Diabetol., 2012, 11, 143.
[http://dx.doi.org/10.1186/1475-2840-11-143] [PMID: 23164042]
[48]
Dye, L.; Boyle, N.B.; Champ, C.; Lawton, C. The relationship between obesity and cognitive health and decline. Proc. Nutr. Soc., 2017, 76(4), 443-454.
[http://dx.doi.org/10.1017/S0029665117002014] [PMID: 28889822]
[49]
Yusuf, S.; Hawken, S.; Ounpuu, S. Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; Lisheng, L. INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 2004, 364(9438), 937-952.
[http://dx.doi.org/10.1016/S0140-6736(04)17018-9] [PMID: 15364185]
[50]
Suemoto, C.K.; Gilsanz, P.; Mayeda, E.R.; Glymour, M.M. Body mass index and cognitive function: the potential for reverse causation. Int. J. Obes., 2015, 39(9), 1383-1389.
[http://dx.doi.org/10.1038/ijo.2015.83] [PMID: 25953125]
[51]
Rodríguez-Fernández, J.M.; Danies, E.; Martínez-Ortega, J.; Chen, W.C. Cognitive decline, body mass index, and waist circumference in community-dwelling elderly participants. J. Geriatr. Psychiatry Neurol., 2017, 30(2), 67-76.
[http://dx.doi.org/10.1177/0891988716686832] [PMID: 28077009]
[52]
Coutinho, T.; Goel, K.; Corrêa de Sá, D.; Kragelund, C.; Kanaya, A.M.; Zeller, M.; Park, J.S.; Kober, L.; Torp-Pedersen, C.; Cottin, Y.; Lorgis, L.; Lee, S.H.; Kim, Y.J.; Thomas, R.; Roger, V.L.; Somers, V.K.; Lopez-Jimenez, F. Central obesity and survival in subjects with coronary artery disease: a systematic review of the literature and collaborative analysis with individual subject data. J. Am. Coll. Cardiol., 2011, 57(19), 1877-1886.
[http://dx.doi.org/10.1016/j.jacc.2010.11.058] [PMID: 21545944]
[53]
Coutinho, T.; Goel, K.; Corrêa de Sá, D.; Carter, R.E.; Hodge, D.O.; Kragelund, C.; Kanaya, A.M.; Zeller, M.; Park, J.S.; Kober, L.; Torp-Pedersen, C.; Cottin, Y.; Lorgis, L.; Lee, S.H.; Kim, Y.J.; Thomas, R.; Roger, V.L.; Somers, V.K.; Lopez-Jimenez, F. Combining body mass index with measures of central obesity in the assessment of mortality in subjects with coronary disease: role of “normal weight central obesity”. J. Am. Coll. Cardiol., 2013, 61(5), 553-560.
[http://dx.doi.org/10.1016/j.jacc.2012.10.035] [PMID: 23369419]
[54]
Kartheuser, A.H.; Leonard, D.F.; Penninckx, F.; Paterson, H.M.; Brandt, D.; Remue, C.; Bugli, C.; Dozois, E.; Mortensen, N.; Ris, F.; Tiret, E. Waist Circumference Study Group. Waist circumference and waist/hip ratio are better predictive risk factors for mortality and morbidity after colorectal surgery than body mass index and body surface area. Ann. Surg., 2013, 258(5), 722-730.
[http://dx.doi.org/10.1097/SLA.0b013e3182a6605a] [PMID: 24096768]
[55]
Ozhan, H.; Alemdar, R.; Caglar, O.; Ordu, S.; Kaya, A.; Albayrak, S.; Turker, Y.; Bulur, S.; Investigators, M. MELEN Investigators. Performance of bioelectrical impedance analysis in the diagnosis of metabolic syndrome. J. Investig. Med., 2012, 60(3), 587-591.
[http://dx.doi.org/10.2310/JIM.0b013e318244e2d9] [PMID: 22257993]
[56]
Wang, H.; Chen, Y.E.; Eitzman, D.T. Imaging body fat: techniques and cardiometabolic implications. Arterioscler. Thromb. Vasc. Biol., 2014, 34(10), 2217-2223.
[http://dx.doi.org/10.1161/ATVBAHA.114.303036] [PMID: 25147343]
[57]
Tanamas, S.K.; Lean, M.E.J.; Combet, E.; Vlassopoulos, A.; Zimmet, P.Z.; Peeters, A. Changing guards: time to move beyond body mass index for population monitoring of excess adiposity. QJM, 2016, 109(7), 443-446.
[http://dx.doi.org/10.1093/qjmed/hcv201] [PMID: 26527773]
[58]
Onat, A.; Avci, G.S.; Barlan, M.M.; Uyarel, H.; Uzunlar, B.; Sansoy, V. Measures of abdominal obesity assessed for visceral adiposity and relation to coronary risk. Int. J. Obes. Relat. Metab. Disord., 2004, 28(8), 1018-1025.
[http://dx.doi.org/10.1038/sj.ijo.0802695] [PMID: 15197408]
[59]
Rexrode, K.M.; Carey, V.J.; Hennekens, C.H.; Walters, E.E.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Manson, J.E. Abdominal adiposity and coronary heart disease in women. JAMA, 1998, 280(21), 1843-1848.
[http://dx.doi.org/10.1001/jama.280.21.1843] [PMID: 9846779]
[60]
Makino, T.; Shukla, P.J.; Rubino, F.; Milsom, J.W. The impact of obesity on perioperative outcomes after laparoscopic colorectal resection. Ann. Surg., 2012, 255(2), 228-236.
[http://dx.doi.org/10.1097/SLA.0b013e31823dcbf7] [PMID: 22190113]
[61]
Park, B.; Dargon, P.; Binette, C.; Babic, B.; Thomas, T.; Divinagracia, T.; Dahn, M.S.; Menzoian, J.O. Obesity is not an independent risk factor for adverse perioperative and long-term clinical outcomes following open AAA repair or EVAR. Vasc. Endovascular Surg., 2011, 45(7), 607-613.
[http://dx.doi.org/10.1177/1538574411415427] [PMID: 21788282]
[62]
Flegal, K.M.; Graubard, B.I.; Williamson, D.F.; Gail, M.H. Excess deaths associated with underweight, overweight, and obesity. JAMA, 2005, 293(15), 1861-1867.
[http://dx.doi.org/10.1001/jama.293.15.1861] [PMID: 15840860]
[63]
Mariscalco, G.; Wozniak, M.J.; Dawson, A.G.; Serraino, G.F.; Porter, R.; Nath, M.; Klersy, C.; Kumar, T.; Murphy, G.J. Body mass index and mortality among adults undergoing cardiac surgery: a nationwide study with a systematic review and meta-analysis. Circulation, 2017, 135(9), 850-863.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022840] [PMID: 28034901]
[64]
Jacobs, E.J.; Newton, C.C.; Wang, Y.; Patel, A.V.; McCullough, M.L.; Campbell, P.T.; Thun, M.J.; Gapstur, S.M. Waist circumference and all-cause mortality in a large US cohort. Arch. Intern. Med., 2010, 170(15), 1293-1301.
[http://dx.doi.org/10.1001/archinternmed.2010.201] [PMID: 20696950]
[65]
Turrentine, F.E.; Hanks, J.B.; Schirmer, B.D.; Stukenborg, G.J. The relationship between body mass index and 30-day mortality risk, by principal surgical procedure. Arch. Surg., 2012, 147(3), 236-242.
[http://dx.doi.org/10.1001/archsurg.2011.310] [PMID: 22106249]
[66]
West, N.A.; Lirette, S.T.; Cannon, V.A.; Turner, S.T.; Mosley, T.H. Jr.; Windham, B.G. Adiposity, change in adiposity, and cognitive decline in mid- and late life. J. Am. Geriatr. Soc., 2017, 65(6), 1282-1288.
[http://dx.doi.org/10.1111/jgs.14786] [PMID: 28248413]
[67]
Mullen, J.T.; Moorman, D.W.; Davenport, D.L. The obesity paradox: body mass index and outcomes in patients undergoing nonbariatric general surgery. Ann. Surg., 2009, 250(1), 166-172.
[http://dx.doi.org/10.1097/SLA.0b013e3181ad8935] [PMID: 19561456]
[68]
Thornqvist, C.; Gislason, G.H.; Køber, L.; Jensen, P.F.; Torp-Pedersen, C.; Andersson, C. Body mass index and risk of perioperative cardiovascular adverse events and mortality in 34,744 Danish patients undergoing hip or knee replacement. Acta Orthop., 2014, 85(5), 456-462.
[http://dx.doi.org/10.3109/17453674.2014.934184] [PMID: 24954493]
[69]
O’Brien, P.D.; Hinder, L.M.; Callaghan, B.C.; Feldman, E.L. Neurological consequences of obesity. Lancet Neurol., 2017, 16(6), 465-477.
[http://dx.doi.org/10.1016/S1474-4422(17)30084-4] [PMID: 28504110]
[70]
Duggan, E.W.; Carlson, K.; Umpierrez, G.E. Perioperative hyperglycemia management: an update. Anesthesiology, 2017, 126(3), 547-560.
[http://dx.doi.org/10.1097/ALN.0000000000001515] [PMID: 28121636]
[71]
Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121), 840-846.
[http://dx.doi.org/10.1038/nature05482] [PMID: 17167471]
[72]
Tanti, J.F.; Ceppo, F.; Jager, J.; Berthou, F. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front. Endocrinol. (Lausanne), 2013, 3, 181.
[http://dx.doi.org/10.3389/fendo.2012.00181] [PMID: 23316186]
[73]
Torres, S.H.; De Sanctis, J.B. de L Briceño, M.; Hernández, N.; Finol, H.J. Inflammation and nitric oxide production in skeletal muscle of type 2 diabetic patients. J. Endocrinol., 2004, 181(3), 419-427.
[http://dx.doi.org/10.1677/joe.0.1810419] [PMID: 15171690]
[74]
Elizalde, M.; Rydén, M.; van Harmelen, V.; Eneroth, P.; Gyllenhammar, H.; Holm, C.; Ramel, S.; Olund, A.; Arner, P.; Andersson, K. Expression of nitric oxide synthases in subcutaneous adipose tissue of nonobese and obese humans. J. Lipid Res., 2000, 41(8), 1244-1251.
[PMID: 10946012]
[75]
Sugita, H.; Fujimoto, M.; Yasukawa, T.; Shimizu, N.; Sugita, M.; Yasuhara, S.; Martyn, J.A.; Kaneki, M. Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells. J. Biol. Chem., 2005, 280(14), 14203-14211.
[http://dx.doi.org/10.1074/jbc.M411226200] [PMID: 15805118]
[76]
Becerril, S.; Rodríguez, A.; Catalán, V.; Méndez-Giménez, L.; Ramírez, B.; Sáinz, N.; Llorente, M.; Unamuno, X.; Gómez-Ambrosi, J.; Frühbeck, G. Targeted disruption of the iNOS gene improves adipose tissue inflammation and fibrosis in leptin-deficient ob/ob mice: role of tenascin C. Int. J. Obes., 2018, 42(8), 1458-1470.
[http://dx.doi.org/10.1038/s41366-018-0005-5] [PMID: 29449623]
[77]
Larsen, C.M.; Faulenbach, M.; Vaag, A.; Vølund, A.; Ehses, J.A.; Seifert, B.; Mandrup-Poulsen, T.; Donath, M.Y. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med., 2007, 356(15), 1517-1526.
[http://dx.doi.org/10.1056/NEJMoa065213] [PMID: 17429083]
[78]
Hundal, R.S.; Petersen, K.F.; Mayerson, A.B.; Randhawa, P.S.; Inzucchi, S.; Shoelson, S.E.; Shulman, G.I. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest., 2002, 109(10), 1321-1326.
[http://dx.doi.org/10.1172/JCI0214955] [PMID: 12021247]
[79]
Sugita, H.; Kaneki, M.; Tokunaga, E.; Sugita, M.; Koike, C.; Yasuhara, S.; Tompkins, R.G.; Martyn, J.A. Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2002, 282(2), E386-E394.
[http://dx.doi.org/10.1152/ajpendo.00087.2001] [PMID: 11788371]
[80]
Clavien, P.A.; Petrowsky, H.; DeOliveira, M.L.; Graf, R. Strategies for safer liver surgery and partial liver transplantation. N. Engl. J. Med., 2007, 356(15), 1545-1559.
[http://dx.doi.org/10.1056/NEJMra065156] [PMID: 17429086]
[81]
Pontes, J.P.J.; Mendes, F.F.; Vasconcelos, M.M.; Batista, N.R. Evaluation and perioperative management of patients with diabetes mellitus. A challenge for the anesthesiologist Rev. Bras. Anestesiol., 2018, 68(1), 75-86.
[http://dx.doi.org/10.1016/j.bjan.2017.04.017] [PMID: 28571661]
[82]
Arsenault, B.J.; Boekholdt, S.M.; Kastelein, J.J. Lipid parameters for measuring risk of cardiovascular disease. Nat. Rev. Cardiol., 2011, 8(4), 197-206.
[http://dx.doi.org/10.1038/nrcardio.2010.223] [PMID: 21283149]
[83]
Li, W.; Prakash, R.; Chawla, D.; Du, W.; Didion, S.P.; Filosa, J.A.; Zhang, Q.; Brann, D.W.; Lima, V.V.; Tostes, R.C.; Ergul, A. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 304(11), R1001-R1008.
[http://dx.doi.org/10.1152/ajpregu.00523.2012] [PMID: 23576615]
[84]
Tsai, C.K.; Kao, T.W.; Lee, J.T.; Wu, C.J.; Hueng, D.Y.; Liang, C.S.; Wang, G.C.; Yang, F.C.; Chen, W.L. Increased risk of cognitive impairment in patients with components of metabolic syndrome. Medicine (Baltimore), 2016, 95(36), e4791
[http://dx.doi.org/10.1097/MD.0000000000004791] [PMID: 27603384]
[85]
Clemente-Postigo, M.; Queipo-Ortuño, M.I.; Fernandez-Garcia, D.; Gomez-Huelgas, R.; Tinahones, F.J.; Cardona, F. Adipose tissue gene expression of factors related to lipid processing in obesity. PLoS One, 2011, 6(9), e24783
[http://dx.doi.org/10.1371/journal.pone.0024783] [PMID: 21966368]
[86]
Karpe, F.; Olivecrona, T.; Walldius, G.; Hamsten, A. Lipoprotein lipase in plasma after an oral fat load: relation to free fatty acids. J. Lipid Res., 1992, 33(7), 975-984.
[PMID: 1431589]
[87]
Subramanian, S.; Chait, A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim. Biophys. Acta, 2012, 1821(5), 819-825.
[http://dx.doi.org/10.1016/j.bbalip.2011.10.003] [PMID: 22005032]
[88]
Deeb, S.S.; Zambon, A.; Carr, M.C.; Ayyobi, A.F.; Brunzell, J.D. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. J. Lipid Res., 2003, 44(7), 1279-1286.
[http://dx.doi.org/10.1194/jlr.R200017-JLR200] [PMID: 12639974]
[89]
Packard, C.J. Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. Biochem. Soc. Trans., 2003, 31(Pt 5), 1066-1069.
[http://dx.doi.org/10.1042/bst0311066] [PMID: 14505481]
[90]
Wang, H.; Peng, D.Q. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis., 2011, 10, 176.
[http://dx.doi.org/10.1186/1476-511X-10-176] [PMID: 21988829]
[91]
Tchernof, A.; Lamarche, B. Prud’Homme, D.; Nadeau, A.; Moorjani, S.; Labrie, F.; Lupien, P.J.; Després, J.P. The dense LDL phenotype. Association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. Diabetes Care, 1996, 19(6), 629-637.
[http://dx.doi.org/10.2337/diacare.19.6.629] [PMID: 8725863]
[92]
Björntorp, P.; Bergman, H.; Varnauskas, E. Plasma free fatty acid turnover rate in obesity. Acta Med. Scand., 1969, 185(4), 351-356.
[http://dx.doi.org/10.1111/j.0954-6820.1969.tb07347.x] [PMID: 5806343]
[93]
Capurso, C.; Capurso, A. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul. Pharmacol., 2012, 57(2-4), 91-97.
[http://dx.doi.org/10.1016/j.vph.2012.05.003] [PMID: 22609131]
[94]
McQuaid, S.E.; Hodson, L.; Neville, M.J.; Dennis, A.L.; Cheeseman, J.; Humphreys, S.M.; Ruge, T.; Gilbert, M.; Fielding, B.A.; Frayn, K.N.; Karpe, F. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes, 2011, 60(1), 47-55.
[http://dx.doi.org/10.2337/db10-0867] [PMID: 20943748]
[95]
Guiducci, L.; Lionetti, V.; Burchielli, S.; Simi, C.; Masi, S.; Liistro, T.; Pardini, S.; Porciello, C.; Di Cecco, P.; Vettor, R.; Calcagno, A.; Ciociaro, D.; Recchia, F.A.; Salvadori, P.A.; Iozzo, P. A dose-response elevation in hepatic glucose uptake is paralleled by liver triglyceride synthesis and release. Endocr. Res., 2011, 36(1), 9-18.
[http://dx.doi.org/10.3109/07435800.2010.534751] [PMID: 21226563]
[96]
Couillard, C.; Bergeron, N.; Prud’homme, D.; Bergeron, J.; Tremblay, A.; Bouchard, C.; Mauriège, P.; Després, J.P. Postprandial triglyceride response in visceral obesity in men. Diabetes, 1998, 47(6), 953-960.
[http://dx.doi.org/10.2337/diabetes.47.6.953] [PMID: 9604874]
[97]
Bermúdez-Cardona, J.; Velásquez-Rodríguez, C. Profile of free fatty acids and fractions of phospholipids, cholesterol esters and triglycerides in serum of obese youth with and without metabolic syndrome. Nutrients, 2016, 8(2), 54.
[http://dx.doi.org/10.3390/nu8020054] [PMID: 26891317]
[98]
Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature, 2006, 444(7121), 875-880.
[http://dx.doi.org/10.1038/nature05487] [PMID: 17167476]
[99]
Gunathilake, R.; Oldmeadow, C.; McEvoy, M.; Inder, K.J.; Schofield, P.W.; Nair, B.R.; Attia, J. The association between obesity and cognitive function in older persons: how much is mediated by inflammation, fasting plasma glucose, and hypertriglyceridemia? J. Gerontol. A Biol. Sci. Med. Sci., 2016, 71(12), 1603-1608.
[http://dx.doi.org/10.1093/gerona/glw070] [PMID: 27075896]
[100]
Feng, X.; Degos, V.; Koch, L.G.; Britton, S.L.; Zhu, Y.; Vacas, S.; Terrando, N.; Nelson, J.; Su, X.; Maze, M. Surgery results in exaggerated and persistent cognitive decline in a rat model of the Metabolic Syndrome. Anesthesiology, 2013, 118(5), 1098-1105.
[http://dx.doi.org/10.1097/ALN.0b013e318286d0c9] [PMID: 23353794]
[101]
Zheng, Z.; Jayaram, R.; Jiang, L.; Emberson, J.; Zhao, Y.; Li, Q.; Du, J.; Guarguagli, S.; Hill, M.; Chen, Z.; Collins, R.; Casadei, B. Perioperative rosuvastatin in cardiac surgery. N. Engl. J. Med., 2016, 374(18), 1744-1753.
[http://dx.doi.org/10.1056/NEJMoa1507750] [PMID: 27144849]
[102]
Pitt, B.; Rossignol, P. Mineralocorticoid receptor antagonists in high-risk heart failure patients with diabetes mellitus and/or chronic kidney disease. J. Am. Heart Assoc., 2017, 6(12), e008054
[http://dx.doi.org/10.1161/JAHA.117.008054] [PMID: 29275377]
[103]
Brant, L.C.; Wang, N.; Ojeda, F.M.; LaValley, M.; Barreto, S.M.; Benjamin, E.J.; Mitchell, G.F.; Vasan, R.S.; Palmisano, J.N.; Münzel, T.; Blankenberg, S.; Wild, P.S.; Zeller, T.; Ribeiro, A.L.; Schnabel, R.B.; Hamburg, N.M. Relations of metabolically healthy and unhealthy obesity to digital vascular function in three community-based cohorts: a meta-analysis. J. Am. Heart Assoc., 2017, 6(3), e004199
[http://dx.doi.org/10.1161/JAHA.116.004199] [PMID: 28275071]
[104]
Poredos, P.; Mavric, A.; Leben, L.; Poredos, P.; Jezovnik, M.K. Total hip replacement provokes endothelial dysfunction. Angiology, 2018, 69(10), 871-877.
[http://dx.doi.org/10.1177/0003319718774660] [PMID: 29739239]
[105]
Kuhn, E.W.; Choi, Y.H.; Pyun, J.M.; Neef, K.; Liakopoulos, O.J.; Stamm, C.; Wittwer, T.; Wahlers, T. Endothelial injury associated with cold or warm blood cardioplegia during coronary artery bypass graft surgery. BioMed Res. Int., 2015, 2015, 256905
[http://dx.doi.org/10.1155/2015/256905] [PMID: 26090394]
[106]
Panagiotopoulos, I.; Palatianos, G.; Michalopoulos, A.; Chatzigeorgiou, A.; Prapas, S.; Kamper, E.F. Alterations in biomarkers of endothelial function following on-pump coronary artery revascularization. J. Clin. Lab. Anal., 2010, 24(6), 389-398.
[http://dx.doi.org/10.1002/jcla.20416] [PMID: 21089169]
[107]
McIlroy, D.R.; Chan, M.T.; Wallace, S.K.; Symons, J.A.; Koo, E.G.; Chu, L.C.; Myles, P.S. Automated preoperative assessment of endothelial dysfunction and risk stratification for perioperative myocardial injury in patients undergoing non-cardiac surgery. Br. J. Anaesth., 2014, 112(1), 47-56.
[http://dx.doi.org/10.1093/bja/aet354] [PMID: 24172055]
[108]
Ohno, S.; Kohjitani, A.; Miyata, M.; Tohya, A.; Yamashita, K.; Hashiguchi, T.; Ohishi, M.; Sugimura, M. Recovery of Endothelial Function after minor-to-moderate surgery is impaired by diabetes mellitus, obesity, hyperuricemia and sevoflurane-based anesthesia. Int. Heart J., 2018, 59(3), 559-565.
[http://dx.doi.org/10.1536/ihj.17-143] [PMID: 29681567]
[109]
Lionetti, V.; Barile, L. Perioperative cardioprotection: back to bedside. Minerva Anestesiol., 2019.
[PMID: 31808661]
[110]
Dushpanova, A.; Agostini, S.; Ciofini, E.; Cabiati, M.; Casieri, V.; Matteucci, M.; Del Ry, S.; Clerico, A.; Berti, S.; Lionetti, V. Gene silencing of endothelial von Willebrand Factor attenuates angiotensin II-induced endothelin-1 expression in porcine aortic endothelial cells. Sci. Rep., 2016, 6, 30048.
[http://dx.doi.org/10.1038/srep30048] [PMID: 27443965]
[111]
Agostini, S.; Lionetti, V. New insights into the non-hemostatic role of von Willebrand factor in endothelial protection. Can. J. Physiol. Pharmacol., 2017, 95(10), 1183-1189.
[http://dx.doi.org/10.1139/cjpp-2017-0126] [PMID: 28715643]
[112]
Hernández-Romero, D.; Lahoz, Á.; Roldan, V.; Jover, E.; Romero-Aniorte, A.I.; Martinez, C.M.; Jara-Rubio, R.; Arribas, J.M.; Garcia-Alberola, A.; Cánovas, S.; Valdés, M.; Marín, F. Von Willebrand factor is associated with atrial fibrillation development in ischaemic patients after cardiac surgery. Europace, 2016, 18(9), 1328-1334.
[http://dx.doi.org/10.1093/europace/euv354] [PMID: 26566941]
[113]
Phan, K.; Khuong, J.N.; Xu, J.; Kanagaratnam, A.; Yan, T.D. Obesity and postoperative atrial fibrillation in patients undergoing cardiac surgery: Systematic review and meta-analysis. Int. J. Cardiol., 2016, 217, 49-57.
[http://dx.doi.org/10.1016/j.ijcard.2016.05.002] [PMID: 27179208]
[114]
Blann, A.D.; Bushell, D.; Davies, A.; Faragher, E.B.; Miller, J.P.; McCollum, C.N. von Willebrand factor, the endothelium and obesity. Int. J. Obes. Relat. Metab. Disord., 1993, 17(12), 723-725.
[PMID: 8118478]
[115]
Youngson, N.A.; Morris, M.J. What obesity research tells us about epigenetic mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 368(1609), 20110337
[http://dx.doi.org/10.1098/rstb.2011.0337] [PMID: 23166398]
[116]
Romano, S.L.; Lionetti, V. From cell phenotype to epigenetic mechanisms: new insights into regenerating myocardium. Can. J. Physiol. Pharmacol., 2013, 91(8), 579-585.
[http://dx.doi.org/10.1139/cjpp-2012-0392] [PMID: 23889534]
[117]
Martínez, J.A.; Milagro, F.I.; Claycombe, K.J.; Schalinske, K.L. Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv. Nutr., 2014, 5(1), 71-81.
[http://dx.doi.org/10.3945/an.113.004705] [PMID: 24425725]
[118]
Matteucci, M.; Papini, G.; Ciofini, E.; Barile, L.; Lionetti, V. Epigenetic regulation of myocardial homeostasis, self-regeneration and senescence. Curr. Drug Targets, 2015, 16(8), 827-842.
[http://dx.doi.org/10.2174/1389450116666150630110821] [PMID: 26122032]
[119]
Delgado-Morales, R.; Agís-Balboa, R.C.; Esteller, M.; Berdasco, M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin. Epigenetics, 2017, 9, 67.
[http://dx.doi.org/10.1186/s13148-017-0365-z] [PMID: 28670349]
[120]
McAllister, E.J.; Dhurandhar, N.V.; Keith, S.W.; Aronne, L.J.; Barger, J.; Baskin, M.; Benca, R.M.; Biggio, J.; Boggiano, M.M.; Eisenmann, J.C.; Elobeid, M.; Fontaine, K.R.; Gluckman, P.; Hanlon, E.C.; Katzmarzyk, P.; Pietrobelli, A.; Redden, D.T.; Ruden, D.M.; Wang, C.; Waterland, R.A.; Wright, S.M.; Allison, D.B. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr., 2009, 49(10), 868-913.
[http://dx.doi.org/10.1080/10408390903372599] [PMID: 19960394]
[121]
Anghel, S.I.; Wahli, W. Fat poetry: a kingdom for PPAR γ. Cell Res., 2007, 17(6), 486-511.
[http://dx.doi.org/10.1038/cr.2007.48] [PMID: 17563755]
[122]
Fujiki, K.; Kano, F.; Shiota, K.; Murata, M. Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol., 2009, 7, 38.
[http://dx.doi.org/10.1186/1741-7007-7-38] [PMID: 19589179]
[123]
Tateishi, K.; Okada, Y.; Kallin, E.M.; Zhang, Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature, 2009, 458(7239), 757-761.
[http://dx.doi.org/10.1038/nature07777] [PMID: 19194461]
[124]
Lionetti, V.; Linke, A.; Chandler, M.P.; Young, M.E.; Penn, M.S.; Gupte, S.; d’Agostino, C.; Hintze, T.H.; Stanley, W.C.; Recchia, F.A. Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc. Res., 2005, 66(3), 454-461.
[http://dx.doi.org/10.1016/j.cardiores.2005.02.004] [PMID: 15914110]
[125]
Lionetti, V.; Guiducci, L.; Simioniuc, A.; Aquaro, G.D.; Simi, C.; De Marchi, D.; Burchielli, S.; Pratali, L.; Piacenti, M.; Lombardi, M.; Salvadori, P.; Pingitore, A.; Neglia, D.; Recchia, F.A. Mismatch between uniform increase in cardiac glucose uptake and regional contractile dysfunction in pacing-induced heart failure. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(5), H2747-H2756.
[http://dx.doi.org/10.1152/ajpheart.00592.2007] [PMID: 17704291]
[126]
Lionetti, V.; Aquaro, G.D.; Simioniuc, A.; Di Cristofano, C.; Forini, F.; Cecchetti, F.; Campan, M.; De Marchi, D.; Bernini, F.; Grana, M.; Nannipieri, M.; Mancini, M.; Lombardi, M.; Recchia, F.A.; Pingitore, A. Severe mechanical dyssynchrony causes regional hibernation-like changes in pigs with nonischemic heart failure. J. Card. Fail., 2009, 15(10), 920-928.
[http://dx.doi.org/10.1016/j.cardfail.2009.06.436] [PMID: 19944370]
[127]
Lionetti, V.; Matteucci, M.; Ribezzo, M.; Di Silvestre, D.; Brambilla, F.; Agostini, S.; Mauri, P.; Padeletti, L.; Pingitore, A.; Delsedime, L.; Rinaldi, M.; Recchia, F.A.; Pucci, A. Regional mapping of myocardial hibernation phenotype in idiopathic end-stage dilated cardiomyopathy. J. Cell. Mol. Med., 2014, 18(3), 396-414.
[http://dx.doi.org/10.1111/jcmm.12198] [PMID: 24444256]
[128]
Labinskyy, V.; Bellomo, M.; Chandler, M.P.; Young, M.E.; Lionetti, V.; Qanud, K.; Bigazzi, F.; Sampietro, T.; Stanley, W.C.; Recchia, F.A. Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure. J. Pharmacol. Exp. Ther., 2007, 321(1), 165-171.
[http://dx.doi.org/10.1124/jpet.106.116871] [PMID: 17215446]
[129]
Belancio, V.P.; Roy-Engel, A.M.; Pochampally, R.R.; Deininger, P. Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res., 2010, 38(12), 3909-3922.
[http://dx.doi.org/10.1093/nar/gkq132] [PMID: 20215437]
[130]
Turcot, V.; Tchernof, A.; Deshaies, Y.; Pérusse, L.; Bélisle, A.; Marceau, S.; Biron, S.; Lescelleur, O.; Biertho, L.; Vohl, M.C. LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin. Epigenetics, 2012, 4(1), 10.
[http://dx.doi.org/10.1186/1868-7083-4-10] [PMID: 22748066]
[131]
Nelson, H.H.; Marsit, C.J.; Kelsey, K.T. Global methylation in exposure biology and translational medical science. Environ. Health Perspect., 2011, 119(11), 1528-1533.
[http://dx.doi.org/10.1289/ehp.1103423] [PMID: 21669556]
[132]
Bollati, V.; Galimberti, D.; Pergoli, L.; Dalla Valle, E.; Barretta, F.; Cortini, F.; Scarpini, E.; Bertazzi, P.A.; Baccarelli, A. DNA methylation in repetitive elements and Alzheimer disease. Brain Behav. Immun., 2011, 25(6), 1078-1083.
[http://dx.doi.org/10.1016/j.bbi.2011.01.017] [PMID: 21296655]
[133]
Martinelli, R.; Nardelli, C.; Pilone, V.; Buonomo, T.; Liguori, R.; Castanò, I.; Buono, P.; Masone, S.; Persico, G.; Forestieri, P.; Pastore, L.; Sacchetti, L. miR-519d overexpression is associated with human obesity. Obesity pression is associated with human obesity. Obesity (Silver Spring), 2010, 18(11), 2170-2176.
[http://dx.doi.org/10.1038/oby.2009.474] [PMID: 20057369]
[134]
Kuryłowicz, A.; Wicik, Z.; Owczarz, M.; Jonas, M.I.; Kotlarek, M.; Świerniak, M.; Lisik, W.; Jonas, M.; Noszczyk, B.; Puzianowska-Kuźnicka, M. NGS reveals molecular pathways affected by obesity and weight loss-related changes in miRNA levels in adipose tissue. Int. J. Mol. Sci., 2017, 19(1), E66
[http://dx.doi.org/10.3390/ijms19010066] [PMID: 29280944]
[135]
Doumatey, A.P.; He, W.J.; Gaye, A.; Lei, L.; Zhou, J.; Gibbons, G.H.; Adeyemo, A.; Rotimi, C.N. Circulating MiR-374a-5p is a potential modulator of the inflammatory process in obesity. Sci. Rep., 2018, 8(1), 7680.
[http://dx.doi.org/10.1038/s41598-018-26065-5] [PMID: 29769661]
[136]
Stranahan, A.M. Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience, 2015, 309, 125-139.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.045] [PMID: 25934036]
[137]
Wosiski-Kuhn, M.; Erion, J.R.; Gomez-Sanchez, E.P.; Gomez-Sanchez, C.E.; Stranahan, A.M. Glucocorticoid receptor activation impairs hippocampal plasticity by suppressing BDNF expression in obese mice. Psychoneuroendocrinology, 2014, 42, 165-177.
[http://dx.doi.org/10.1016/j.psyneuen.2014.01.020] [PMID: 24636513]
[138]
Lirk, P.; Fiegl, H.; Weber, N.C.; Hollmann, M.W. Epigenetics in the perioperative period. Br. J. Pharmacol., 2015, 172(11), 2748-2755.
[http://dx.doi.org/10.1111/bph.12865] [PMID: 25073649]
[139]
Doehring, A.; Oertel, B.G.; Sittl, R.; Lötsch, J. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain. Pain, 2013, 154(1), 15-23.
[http://dx.doi.org/10.1016/j.pain.2012.06.011] [PMID: 23273101]
[140]
Lirk, P.; Berger, R.; Hollmann, M.W.; Fiegl, H. Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br. J. Anaesth., 2012, 109(2), 200-207.
[http://dx.doi.org/10.1093/bja/aes128] [PMID: 22542536]
[141]
Herroeder, S.; Pecher, S.; Schönherr, M.E.; Kaulitz, G.; Hahnenkamp, K.; Friess, H.; Böttiger, B.W.; Bauer, H.; Dijkgraaf, M.G.; Durieux, M.E.; Hollmann, M.W. Systemic lidocaine shortens length of hospital stay after colorectal surgery: a double-blinded, randomized, placebo-controlled trial. Ann. Surg., 2007, 246(2), 192-200.
[http://dx.doi.org/10.1097/SLA.0b013e31805dac11] [PMID: 17667496]
[142]
Doo, M.; Kim, Y. Obesity: interactions of genome and nutrients intake. Prev. Nutr. Food Sci., 2015, 20(1), 1-7.
[http://dx.doi.org/10.3746/pnf.2015.20.1.1] [PMID: 25866743]
[143]
Giardina, S.; Hernández-Alonso, P.; Díaz-López, A.; Salas-Huetos, A.; Salas-Salvadó, J.; Bulló, M. Changes in circulating miRNAs in healthy overweight and obese subjects: Effect of diet composition and weight loss. Clin. Nutr., 2019, 38(1), 438-443.
[http://dx.doi.org/10.1016/j.clnu.2017.11.014] [PMID: 29233588]
[144]
Wang, K.; Liu, C.Y.; Zhang, X.J.; Feng, C.; Zhou, L.Y.; Zhao, Y.; Li, P.F. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ., 2015, 22(6), 1058-1068.
[http://dx.doi.org/10.1038/cdd.2014.200] [PMID: 25501599]
[145]
Thorleifsson, G.; Walters, G.B.; Gudbjartsson, D.F.; Steinthorsdottir, V.; Sulem, P.; Helgadottir, A.; Styrkarsdottir, U.; Gretarsdottir, S.; Thorlacius, S.; Jonsdottir, I.; Jonsdottir, T.; Olafsdottir, E.J.; Olafsdottir, G.H.; Jonsson, T.; Jonsson, F.; Borch-Johnsen, K.; Hansen, T.; Andersen, G.; Jorgensen, T.; Lauritzen, T.; Aben, K.K.; Verbeek, A.L.; Roeleveld, N.; Kampman, E.; Yanek, L.R.; Becker, L.C.; Tryggvadottir, L.; Rafnar, T.; Becker, D.M.; Gulcher, J.; Kiemeney, L.A.; Pedersen, O.; Kong, A.; Thorsteinsdottir, U.; Stefansson, K. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet., 2009, 41(1), 18-24.
[http://dx.doi.org/10.1038/ng.274] [PMID: 19079260]
[146]
Coppin, G.; Nolan-Poupart, S.; Jones-Gotman, M.; Small, D.M. Working memory and reward association learning impairments in obesity. Neuropsychologia, 2014, 65, 146-155.
[http://dx.doi.org/10.1016/j.neuropsychologia.2014.10.004] [PMID: 25447070]
[147]
Heyward, F.D.; Walton, R.G.; Carle, M.S.; Coleman, M.A.; Garvey, W.T.; Sweatt, J.D. Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiol. Learn. Mem., 2012, 98(1), 25-32.
[http://dx.doi.org/10.1016/j.nlm.2012.04.005] [PMID: 22542746]
[148]
Heyward, F.D.; Gilliam, D.; Coleman, M.A.; Gavin, C.F.; Wang, J.; Kaas, G.; Trieu, R.; Lewis, J.; Moulden, J.; Sweatt, J.D. Obesity weighs down memory through a mechanism involving the neuroepigenetic dysregulation of Sirt1. J. Neurosci., 2016, 36(4), 1324-1335.
[http://dx.doi.org/10.1523/JNEUROSCI.1934-15.2016] [PMID: 26818519]
[149]
Pugazhenthi, S. Metabolic syndrome and the cellular phase of alzheimer’s disease. Prog. Mol. Biol. Transl. Sci., 2017, 146, 243-258.
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.016] [PMID: 28253987]
[150]
Bishop, T.; Ratcliffe, P.J. HIF hydroxylase pathways in cardiovascular physiology and medicine. Circ. Res., 2015, 117(1), 65-79.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305109] [PMID: 26089364]
[151]
Zeng, H.; Vaka, V.R.; He, X.; Booz, G.W.; Chen, J.X. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J. Cell. Mol. Med., 2015, 19(8), 1847-1856.
[http://dx.doi.org/10.1111/jcmm.12556] [PMID: 25782072]
[152]
Fukushima, A.; Lopaschuk, G.D. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure. Biochim. Biophys. Acta, 2016, 1862(12), 2211-2220.
[http://dx.doi.org/10.1016/j.bbadis.2016.07.020] [PMID: 27479696]
[153]
Zhang, L.; Du, J.; Yano, N.; Wang, H.; Zhao, Y.T.; Dubielecka, P.M.; Zhuang, S.; Chin, Y.E.; Qin, G.; Zhao, T.C. Sodium butyrate protects -against high fat diet-induced cardiac dysfunction and metabolic disorders in type II diabetic mice. J. Cell. Biochem., 2017, 118(8), 2395-2408.
[http://dx.doi.org/10.1002/jcb.25902] [PMID: 28109123]
[154]
Berná, G.; Oliveras-López, M.J.; Jurado-Ruíz, E.; Tejedo, J.; Bedoya, F.; Soria, B.; Martín, F. Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. Nutrients, 2014, 6(11), 5338-5369.
[http://dx.doi.org/10.3390/nu6115338] [PMID: 25421534]
[155]
Chen, G.; Wang, H.; Zhang, X.; Yang, S.T. Nutraceuticals and functional foods in the management of hyperlipidemia. Crit. Rev. Food Sci. Nutr., 2014, 54(9), 1180-1201.
[http://dx.doi.org/10.1080/10408398.2011.629354] [PMID: 24499150]
[156]
Féart, C.; Samieri, C.; Rondeau, V.; Amieva, H.; Portet, F.; Dartigues, J.F.; Scarmeas, N.; Barberger-Gateau, P. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA, 2009, 302(6), 638-648.
[http://dx.doi.org/10.1001/jama.2009.1146] [PMID: 19671905]
[157]
Quirk, S.E.; Williams, L.J.; O’Neil, A.; Pasco, J.A.; Jacka, F.N.; Housden, S.; Berk, M.; Brennan, S.L. The association between diet quality, dietary patterns and depression in adults: a systematic review. BMC Psychiatry, 2013, 13, 175.
[http://dx.doi.org/10.1186/1471-244X-13-175] [PMID: 23802679]
[158]
Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; Lamuela-Raventos, R.M.; Serra-Majem, L.; Pintó, X.; Basora, J.; Muñoz, M.A.; Sorlí, J.V.; Martínez, J.A.; Fitó, M.; Gea, A.; Hernán, M.A.; Martínez-González, M.A. PREDIMED study investigators. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med., 2018, 378(25), e34
[http://dx.doi.org/10.1056/NEJMoa1800389] [PMID: 29897866]
[159]
Arpón, A.; Milagro, F.I.; Razquin, C.; Corella, D.; Estruch, R.; Fitó, M.; Marti, A.; Martínez-González, M.A.; Ros, E.; Salas-Salvadó, J.; Riezu-Boj, J.I.; Martínez, J.A. Impact of consuming extra-virgin olive oil or nuts within a mediterranean diet on DNA methylation in peripheral white blood cells within the PREDIMED-navarra randomized controlled trial: a role for dietary lipids. Nutrients, 2017, 10(1), E15
[http://dx.doi.org/10.3390/nu10010015] [PMID: 29295516]
[160]
Houghton, C.A.; Fassett, R.G.; Coombes, J.S. Sulforaphane and other nutrigenomic nrf2 activators: can the clinician’s expectation be matched by the reality? Oxid. Med. Cell. Longev., 2016, 2016, 7857186
[http://dx.doi.org/10.1155/2016/7857186] [PMID: 26881038]
[161]
Papini, G.; Lionetti, V. Regulation of the adaptive response of cardiac cells to ischemia: role of nanovesicles. NanoWorld J., 2017, 3(S2), S18-S24.
[http://dx.doi.org/10.17756/nwj.2017-s2-003]
[162]
Zhang, J.; Zhang, R.; Zhan, Z.; Li, X.; Zhou, F.; Xing, A.; Jiang, C.; Chen, Y.; An, L. Beneficial effects of sulforaphane treatment in alzheimer’s disease may be mediated through reduced HDAC1/3 and increased P75NTR expression. Front. Aging Neurosci., 2017, 9, 121.
[http://dx.doi.org/10.3389/fnagi.2017.00121] [PMID: 28507518]
[163]
Tocchetti, C.G.; Molinaro, M.; Angelone, T.; Lionetti, V.; Madonna, R.; Mangiacapra, F.; Moccia, F.; Penna, C.; Sartiani, L.; Quaini, F.; Pagliaro, P. Nitroso-redox balance and modulation of basal myocardial function: an update from the Italian Society of Cardiovascular Research (SIRC). Curr. Drug Targets, 2015, 16(8), 895-903.
[http://dx.doi.org/10.2174/1389450116666150304103517] [PMID: 25738298]
[164]
Bai, Y.; Chen, Q.; Sun, Y.P.; Wang, X.; Lv, L.; Zhang, L.P.; Liu, J.S.; Zhao, S.; Wang, X.L. Sulforaphane protection against the development of doxorubicin-induced chronic heart failure is associated with Nrf2 Upregulation. Cardiovasc. Ther., 2017, 35(5), e12277
[http://dx.doi.org/10.1111/1755-5922.12277] [PMID: 28636290]
[165]
Bai, Y.; Cui, W.; Xin, Y.; Miao, X.; Barati, M.T.; Zhang, C.; Chen, Q.; Tan, Y.; Cui, T.; Zheng, Y.; Cai, L. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation. J. Mol. Cell. Cardiol., 2013, 57, 82-95.
[http://dx.doi.org/10.1016/j.yjmcc.2013.01.008] [PMID: 23353773]
[166]
Xu, Z.; Wang, S.; Ji, H.; Zhang, Z.; Chen, J.; Tan, Y.; Wintergerst, K.; Zheng, Y.; Sun, J.; Cai, L. Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci. Rep., 2016, 6, 30252.
[http://dx.doi.org/10.1038/srep30252] [PMID: 27457280]
[167]
Padiya, R.; Chowdhury, D.; Borkar, R.; Srinivas, R.; Pal Bhadra, M.; Banerjee, S.K. Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS One, 2014, 9(5), e94228
[http://dx.doi.org/10.1371/journal.pone.0094228] [PMID: 24796753]
[168]
Bagul, P.K.; Deepthi, N.; Sultana, R.; Banerjee, S.K. Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J. Nutr. Biochem., 2015, 26(11), 1298-1307.
[http://dx.doi.org/10.1016/j.jnutbio.2015.06.006] [PMID: 26298192]
[169]
Lin, K.H.; Liu, C.L.; Kuo, W.W.; Paul, C.R.; Chen, W.K.; Wen, S.Y.; Day, C.H.; Wu, H.C.; Viswanadha, V.P.; Huang, C.Y. Early fluid resuscitation by lactated Ringer’s solution alleviate the cardiac apoptosis in rats with trauma-hemorrhagic shock. PLoS One, 2016, 11(10), e0165406
[http://dx.doi.org/10.1371/journal.pone.0165406] [PMID: 27780234]
[170]
Kim, J.; Lee, S.; Choi, B.R.; Yang, H.; Hwang, Y.; Park, J.H.; LaFerla, F.M.; Han, J.S.; Lee, K.W.; Kim, J. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways. Mol. Nutr. Food Res., 2017, 61(2)
[http://dx.doi.org/10.1002/mnfr.201600194] [PMID: 27735126]
[171]
Valli, V.; Heilmann, K.; Danesi, F.; Bordoni, A.; Gerhäuser, C. Modulation of adipocyte differentiation and proadipogenic gene expression by sulforaphane, genistein, and docosahexaenoic acid as a first step to counteract obesity. Oxid. Med. Cell. Longev., 2018, 2018, 1617202
[http://dx.doi.org/10.1155/2018/1617202] [PMID: 29576843]
[172]
Wise, R.A.; Holbrook, J.T.; Criner, G.; Sethi, S.; Rayapudi, S.; Sudini, K.R.; Sugar, E.A.; Burke, A.; Thimmulappa, R.; Singh, A.; Talalay, P.; Fahey, J.W.; Berenson, C.S.; Jacobs, M.R.; Biswal, S. Broccoli sprout extract trial research group. lack of effect of oral sulforaphane administration on Nrf2 expression in COPD: a randomized, double-blind, placebo controlled trial. PLoS One, 2016, 11(11), e0163716
[http://dx.doi.org/10.1371/journal.pone.0163716] [PMID: 27832073]
[173]
Wong, K.K.; Raffel, D.M.; Koeppe, R.A.; Frey, K.A.; Bohnen, N.I.; Gilman, S. Pattern of cardiac sympathetic denervation in idiopathic Parkinson disease studied with 11C hydroxyephedrine PET. Radiology, 2012, 265(1), 240-247.
[http://dx.doi.org/10.1148/radiol.12112723] [PMID: 22843766]
[174]
Healy, Z.R.; Liu, H.; Holtzclaw, W.D.; Talalay, P. Inactivation of tautomerase activity of macrophage migration inhibitory factor by sulforaphane: a potential biomarker for anti-inflammatory intervention. Cancer Epidemiol. Biomarkers Prev., 2011, 20(7), 1516-1523.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-0279] [PMID: 21602309]
[175]
Thejass, P.; Kuttan, G. Immunomodulatory activity of Sulforaphane, a naturally occurring isothiocyanate from broccoli (Brassica oleracea). Phytomedicine, 2007, 14(7-8), 538-545.
[http://dx.doi.org/10.1016/j.phymed.2006.09.013] [PMID: 17084602]
[176]
Kim, H.J.; Barajas, B.; Wang, M. Nel, A.E. Nrf2 activation by sulforaphane restores the age-related decrease of T(H)1 immunity: role of dendritic cells. J. Allergy Clin. Immunol., 2008, 121(5), 1255-1261.e7.
[http://dx.doi.org/10.1016/j.jaci.2008.01.016] [PMID: 18325578]
[177]
Schachtele, S.J.; Hu, S.; Lokensgard, J.R. Modulation of experimental herpes encephalitis-associated neurotoxicity through sulforaphane treatment. PLoS One, 2012, 7(4), e36216
[http://dx.doi.org/10.1371/journal.pone.0036216] [PMID: 22558388]
[178]
Li, H.L.; Liu, C.; de Couto, G.; Ouzounian, M.; Sun, M.; Wang, A.B.; Huang, Y.; He, C.W.; Shi, Y.; Chen, X.; Nghiem, M.P.; Liu, Y.; Chen, M.; Dawood, F.; Fukuoka, M.; Maekawa, Y.; Zhang, L.; Leask, A.; Ghosh, A.K.; Kirshenbaum, L.A.; Liu, P.P. Curcumin prevents and reverses murine cardiac hypertrophy. J. Clin. Invest., 2008, 118(3), 879-893.
[http://dx.doi.org/10.1172/JCI32865] [PMID: 18292803]
[179]
Wang, N.P.; Wang, Z.F.; Tootle, S.; Philip, T.; Zhao, Z.Q. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br. J. Pharmacol., 2012, 167(7), 1550-1562.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02109.x] [PMID: 22823335]
[180]
Xu, P.; Yao, Y.; Guo, P.; Wang, T.; Yang, B.; Zhang, Z. Curcumin protects rat heart mitochondria against anoxia-reoxygenation induced oxidative injury. Can. J. Physiol. Pharmacol., 2013, 91(9), 715-723.
[http://dx.doi.org/10.1139/cjpp-2013-0055] [PMID: 23984717]
[181]
Ganjali, S.; Sahebkar, A.; Mahdipour, E.; Jamialahmadi, K.; Torabi, S.; Akhlaghi, S.; Ferns, G.; Parizadeh, S.M.; Ghayour-Mobarhan, M. Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. ScientificWorldJournal, 2014, 2014, 898361
[http://dx.doi.org/10.1155/2014/898361] [PMID: 24678280]
[182]
Sarker, M.R.; Franks, S.; Sumien, N.; Thangthaeng, N.; Filipetto, F.; Forster, M. Curcumin Mimics the Neurocognitive and Anti-Inflammatory Effects of Caloric Restriction in a Mouse Model of Midlife Obesity. PLoS One, 2015, 10(10), e0140431
[http://dx.doi.org/10.1371/journal.pone.0140431] [PMID: 26473740]
[183]
Hurley, L.L.; Akinfiresoye, L.; Nwulia, E.; Kamiya, A.; Kulkarni, A.A.; Tizabi, Y. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav. Brain Res., 2013, 239, 27-30.
[http://dx.doi.org/10.1016/j.bbr.2012.10.049] [PMID: 23142609]
[184]
Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[185]
Kang, S.K.; Cha, S.H.; Jeon, H.G. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev., 2006, 15(2), 165-174.
[http://dx.doi.org/10.1089/scd.2006.15.165] [PMID: 16646663]
[186]
Lu, X.; Deng, Y.; Yu, D.; Cao, H.; Wang, L.; Liu, L.; Yu, C.; Zhang, Y.; Guo, X.; Yu, G. Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer’s disease. PLoS One, 2014, 9(7), e103067
[http://dx.doi.org/10.1371/journal.pone.0103067] [PMID: 25051175]
[187]
Hrmova, M.; Fincher, G.B. Structure-function relationships of beta-D-glucan endo- and exohydrolases from higher plants. Plant Mol. Biol., 2001, 47(1-2), 73-91.
[http://dx.doi.org/10.1023/A:1010619128894] [PMID: 11554481]
[188]
Ho, H.V.; Sievenpiper, J.L.; Zurbau, A.; Blanco Mejia, S.; Jovanovski, E.; Au-Yeung, F.; Jenkins, A.L.; Vuksan, V. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br. J. Nutr., 2016, 116(8), 1369-1382.
[http://dx.doi.org/10.1017/S000711451600341X] [PMID: 27724985]
[189]
Aoe, S.; Ichinose, Y.; Kohyama, N.; Komae, K.; Takahashi, A.; Abe, D.; Yoshioka, T.; Yanagisawa, T. Effects of high β-glucan barley on visceral fat obesity in Japanese individuals: A randomized, double-blind study. Nutrition, 2017, 42, 1-6.
[http://dx.doi.org/10.1016/j.nut.2017.05.002] [PMID: 28870472]
[190]
Schneeman, B.O. Dietary fiber and gastrointestinal function. Nutr. Rev., 1987, 45(5), 129-132.
[PMID: 3037453]
[191]
Cloetens, L.; Ulmius, M.; Johansson-Persson, A.; Akesson, B.; Onning, G. Role of dietary beta-glucans in the prevention of the metabolic syndrome. Nutr. Rev., 2012, 70(8), 444-458.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00494.x] [PMID: 22835138]
[192]
Agostini, S.; Chiavacci, E.; Matteucci, M.; Torelli, M.; Pitto, L.; Lionetti, V. Barley beta-glucan promotes MnSOD expression and enhances angiogenesis under oxidative microenvironment. J. Cell. Mol. Med., 2015, 19(1), 227-238.
[http://dx.doi.org/10.1111/jcmm.12442] [PMID: 25388628]
[193]
Del Ry, S.; Cabiati, M.; Martino, A.; Cavallini, C.; Caselli, C.; Aquaro, G.D.; Battolla, B.; Prescimone, T.; Giannessi, D.; Mattii, L.; Lionetti, V. High concentration of C-type natriuretic peptide promotes VEGF-dependent vasculogenesis in the remodeled region of infarcted swine heart with preserved left ventricular ejection fraction. Int. J. Cardiol., 2013, 168(3), 2426-2434.
[http://dx.doi.org/10.1016/j.ijcard.2013.03.015] [PMID: 23561919]
[194]
Zoja, C.; Cattaneo, S.; Fiordaliso, F.; Lionetti, V.; Zambelli, V.; Salio, M.; Corna, D.; Pagani, C.; Rottoli, D.; Bisighini, C.; Remuzzi, G.; Benigni, A. Distinct cardiac and renal effects of ETA receptor antagonist and ACE inhibitor in experimental type 2 diabetes. Am. J. Physiol. Renal Physiol., 2011, 301(5), F1114-F1123.
[http://dx.doi.org/10.1152/ajprenal.00122.2011] [PMID: 21816757]
[195]
Casieri, V.; Matteucci, M.; Cavallini, C.; Torti, M.; Torelli, M.; Lionetti, V. Long-term intake of pasta containing barley (1-3)beta-d-glucan increases neovascularization-mediated cardioprotection through endothelial upregulation of vascular endothelial growth factor and parkin. Sci. Rep., 2017, 7(1), 13424.
[http://dx.doi.org/10.1038/s41598-017-13949-1] [PMID: 29044182]
[196]
Nowacka, M.; Obuchowicz, E. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies. Pharmacol. Rep., 2013, 65(3), 535-546.
[http://dx.doi.org/10.1016/S1734-1140(13)71031-4] [PMID: 23950576]
[197]
Park, M.H.; Lee, H.J.; Lee, H.L.; Son, D.J.; Ju, J.H.; Hyun, B.K.; Jung, S.H.; Song, J.K.; Lee, D.H.; Hwang, C.J.; Han, S.B.; Kim, S.; Hong, J.T. Parkin knockout inhibits neuronal development via regulation of proteasomal degradation of p21. Theranostics, 2017, 7(7), 2033-2045.
[http://dx.doi.org/10.7150/thno.19824] [PMID: 28656059]
[198]
Agrimi, J.; Spalletti, C.; Matteucci, M.; Casieri, V.; Torelli, M.; Caleo, M.; Lionetti, V. Long term intake of barley beta-D-glucan attenuates glucose intolerance, mood disorders and cognitive decline in high-fat diet-induced obese mice exposed to chronic psychosocial stress. The Faseb J., 2017, 31(Supp. 1)
[199]
Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood), 2008, 233(6), 674-688.
[http://dx.doi.org/10.3181/0711-MR-311] [PMID: 18408140]
[200]
Lorente-Cebrián, S.; Costa, A.G.; Navas-Carretero, S.; Zabala, M.; Martínez, J.A.; Moreno-Aliaga, M.J. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J. Physiol. Biochem., 2013, 69(3), 633-651.
[http://dx.doi.org/10.1007/s13105-013-0265-4] [PMID: 23794360]
[201]
Nooyens, A.C.J.; van Gelder, B.M.; Bueno-de-Mesquita, H.B.; van Boxtel, M.P.J.; Verschuren, W.M.M. Fish consumption, intake of fats and cognitive decline at middle and older age: the Doetinchem Cohort Study. Eur. J. Nutr., 2018, 57(4), 1667-1675.
[http://dx.doi.org/10.1007/s00394-017-1453-8] [PMID: 28488130]
[202]
Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 2016, 8(3), 128.
[http://dx.doi.org/10.3390/nu8030128] [PMID: 26950145]
[203]
Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willett, W.C.; Hu, F.B. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation, 2014, 130(18), 1568-1578.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010236] [PMID: 25161045]
[204]
Berger, M.E.; Smesny, S.; Kim, S.W.; Davey, C.G.; Rice, S.; Sarnyai, Z.; Schlögelhofer, M.; Schäfer, M.R.; Berk, M.; McGorry, P.D.; Amminger, G.P. Omega-6 to omega-3 polyunsaturated fatty acid ratio and subsequent mood disorders in young people with at-risk mental states: a 7-year longitudinal study. Transl. Psychiatry, 2017, 7(8), e1220
[http://dx.doi.org/10.1038/tp.2017.190] [PMID: 28850110]
[205]
Wang, L.; Manson, J.E.; Rautiainen, S.; Gaziano, J.M.; Buring, J.E.; Tsai, M.Y.; Sesso, H.D. A prospective study of erythrocyte polyunsaturated fatty acid, weight gain, and risk of becoming overweight or obese in middle-aged and older women. Eur. J. Nutr., 2016, 55(2), 687-697.
[http://dx.doi.org/10.1007/s00394-015-0889-y] [PMID: 25820817]
[206]
Itariu, B.K.; Zeyda, M.; Hochbrugger, E.E.; Neuhofer, A.; Prager, G.; Schindler, K.; Bohdjalian, A.; Mascher, D.; Vangala, S.; Schranz, M.; Krebs, M.; Bischof, M.G.; Stulnig, T.M. Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am. J. Clin. Nutr., 2012, 96(5), 1137-1149.
[http://dx.doi.org/10.3945/ajcn.112.037432] [PMID: 23034965]
[207]
O’Callaghan, N.; Parletta, N.; Milte, C.M.; Benassi-Evans, B.; Fenech, M.; Howe, P.R. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ω-3 fatty acid supplementation: a randomized controlled pilot study. Nutrition, 2014, 30(4), 489-491.
[http://dx.doi.org/10.1016/j.nut.2013.09.013] [PMID: 24342530]
[208]
Sinn, N.; Milte, C.M.; Street, S.J.; Buckley, J.D.; Coates, A.M.; Petkov, J.; Howe, P.R. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br. J. Nutr., 2012, 107(11), 1682-1693.
[http://dx.doi.org/10.1017/S0007114511004788] [PMID: 21929835]
[209]
Balk, E.M.; Lichtenstein, A.H. Omega-3 fatty acids and cardiovascular disease: summary of the 2016 agency of healthcare research and quality evidence review. Nutrients, 2017, 9(8), 865.
[http://dx.doi.org/10.3390/nu9080865] [PMID: 28800093]
[210]
de la Rocha, C.; Pérez-Mojica, J.E.; León, S.Z.; Cervantes-Paz, B.; Tristán-Flores, F.E.; Rodríguez-Ríos, D.; Molina-Torres, J.; Ramírez-Chávez, E.; Alvarado-Caudillo, Y.; Carmona, F.J.; Esteller, M.; Hernández-Rivas, R.; Wrobel, K.; Wrobel, K.; Zaina, S.; Lund, G. Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci. Rep., 2016, 6, 25867.
[http://dx.doi.org/10.1038/srep25867] [PMID: 27181711]
[211]
Hoile, S.P.; Clarke-Harris, R.; Huang, R.C.; Calder, P.C.; Mori, T.A.; Beilin, L.J.; Lillycrop, K.A.; Burdge, G.C. Supplementation with N-3 long-chain polyunsaturated fatty acids or olive oil in men and women with renal disease induces differential changes in the DNA methylation of FADS2 and ELOVL5 in peripheral blood mononuclear cells. PLoS One, 2014, 9(10), e109896
[http://dx.doi.org/10.1371/journal.pone.0109896] [PMID: 25329159]
[212]
Voisin, S.; Almén, M.S.; Moschonis, G.; Chrousos, G.P.; Manios, Y.; Schiöth, H.B. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur. J. Hum. Genet., 2015, 23(5), 654-662.
[http://dx.doi.org/10.1038/ejhg.2014.139] [PMID: 25074463]
[213]
Tyagi, E.; Zhuang, Y.; Agrawal, R.; Ying, Z.; Gomez-Pinilla, F. Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol. Dis., 2015, 73, 307-318.
[http://dx.doi.org/10.1016/j.nbd.2014.09.014] [PMID: 25283985]
[214]
Tremblay, B.L.; Guénard, F.; Rudkowska, I.; Lemieux, S.; Couture, P.; Vohl, M.C. Epigenetic changes in blood leukocytes following an omega-3 fatty acid supplementation. Clin. Epigenetics, 2017, 9(1), 43.
[http://dx.doi.org/10.1186/s13148-017-0345-3] [PMID: 28450971]
[215]
Rice, T.W. Wheeler, A.P.; Thompson, B.T.; DeBoisblanc, B.P.; Steingrub, J.; Rock, P.; NHLBI ARDS Clinical Trials Network. Enteral omega-3 fatty acid, γ-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA, 2011, 306(14), 1574.
[http://dx.doi.org/10.1001/jama.2011.1435] [PMID: 21976613]
[216]
Lu, C.; Sharma, S.; McIntyre, L.; Rhodes, A.; Evans, L.; Almenawer, S.; Leduc, L.; Angus, D.C.; Alhazzani, W. Omega-3 supplementation in patients with sepsis: a systematic review and meta-analysis of randomized trials. Ann. Intensive Care, 2017, 7(1), 58.
[http://dx.doi.org/10.1186/s13613-017-0282-5] [PMID: 28585162]
[217]
Manzanares, W.; Langlois, P.L.; Dhaliwal, R.; Lemieux, M.; Heyland, D.K. Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and meta-analysis. Crit. Care, 2015, 19, 167.
[http://dx.doi.org/10.1186/s13054-015-0888-7] [PMID: 25879776]
[218]
Feguri, G.R.; de Lima, P.R.L.; de Cerqueira Borges, D.; Toledo, L.R.; Batista, L.N.; E, Silva T.C.; Segri, N.J.; de Aguilar-Nascimento, J.E. Preoperative carbohydrate load and intraoperatively infused omega-3 polyunsaturated fatty acids positively impact nosocomial morbidity after coronary artery bypass grafting: a double-blind controlled randomized trial. Nutr. J., 2017, 16(1), 24.
[http://dx.doi.org/10.1186/s12937-017-0245-6] [PMID: 28427403]
[219]
Langlois, P.L.; Hardy, G.; Manzanares, W. Omega-3 polyunsaturated fatty acids in cardiac surgery patients: An updated systematic review and meta-analysis. Clin. Nutr., 2017, 36(3), 737-746.
[http://dx.doi.org/10.1016/j.clnu.2016.05.013] [PMID: 27293143]
[220]
Thelwall, S.; Harrington, P.; Sheridan, E.; Lamagni, T. Impact of obesity on the risk of wound infection following surgery: results from a nationwide prospective multicentre cohort study in England. Clin. Microbiol. Infect., 2015, 21(11), 1008.e1-1008.e8.
[http://dx.doi.org/10.1016/j.cmi.2015.07.003] [PMID: 26197212]
[221]
Luptak, I.; Sverdlov, A.L.; Panagia, M.; Qin, F.; Pimentel, D.R.; Croteau, D.; Siwik, D.A.; Ingwall, J.S.; Bachschmid, M.M.; Balschi, J.A.; Colucci, W.S. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J. Mol. Cell. Cardiol., 2018, 116, 106-114.
[http://dx.doi.org/10.1016/j.yjmcc.2018.01.017] [PMID: 29409987]
[222]
Stoppe, C.; Goetzenich, A.; Whitman, G.; Ohkuma, R.; Brown, T.; Hatzakorzian, R.; Kristof, A.; Meybohm, P.; Mechanick, J.; Evans, A.; Yeh, D.; McDonald, B.; Chourdakis, M.; Jones, P.; Barton, R.; Tripathi, R.; Elke, G.; Liakopoulos, O.; Agarwala, R.; Lomivorotov, V.; Nesterova, E.; Marx, G.; Benstoem, C.; Lemieux, M.; Heyland, D.K. Role of nutrition support in adult cardiac surgery: a consensus statement from an international multidisciplinary expert group on nutrition in cardiac surgery. Crit. Care, 2017, 21(1), 131.
[http://dx.doi.org/10.1186/s13054-017-1690-5] [PMID: 28583157]
[223]
West, M.A.; Wischmeyer, P.E.; Grocott, M.P.W. Prehabilitation and nutritional support to improve perioperative outcomes. Curr. Anesthesiol. Rep., 2017, 7(4), 340-349.
[http://dx.doi.org/10.1007/s40140-017-0245-2] [PMID: 29200973]
[224]
Miller, M.R.; Choban, P.S. Surgical management of obesity: current state of procedure evolution and strategies to optimize outcomes. Nutr. Clin. Pract., 2011, 26(5), 526-533.
[http://dx.doi.org/10.1177/0884533611418336] [PMID: 21947635]
[225]
Hosny, H.; Ibrahim, M.; El-Siory, W.; Abdel-Monem, A. Comparative study between conventional fasting versus overnight infusion of lipid or carbohydrate on insulin and free fatty acids in obese patients undergoing elective on-pump coronary artery bypass grafting. a prospective randomized trial. J. Cardiothorac. Vasc. Anesth., 2018, 32(3), 1248-1253.
[http://dx.doi.org/10.1053/j.jvca.2017.11.020] [PMID: 29306619]
[226]
Shimazu, T.; Hirschey, M.D.; Newman, J.; He, W.; Shirakawa, K.; Le Moan, N.; Grueter, C.A.; Lim, H.; Saunders, L.R.; Stevens, R.D.; Newgard, C.B.; Farese, R.V., Jr; de Cabo, R.; Ulrich, S.; Akassoglou, K.; Verdin, E. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science, 2013, 339(6116), 211-214.
[http://dx.doi.org/10.1126/science.1227166] [PMID: 23223453]
[227]
Martin, S.L.; Hardy, T.M.; Tollefsbol, T.O. Medicinal chemistry of the epigenetic diet and caloric restriction. Curr. Med. Chem., 2013, 20(32), 4050-4059.
[http://dx.doi.org/10.2174/09298673113209990189] [PMID: 23895687]
[228]
Huang, Y.T.; Maccani, J.Z.J.; Hawley, N.L.; Wing, R.R.; Kelsey, K.T.; McCaffery, J.M. Epigenetic patterns in successful weight loss maintainers: a pilot study. Int. J. Obes., 2015, 39(5), 865-868.
[http://dx.doi.org/10.1038/ijo.2014.213] [PMID: 25520250]
[229]
Pösö, T.; Kesek, D.; Aroch, R.; Winsö, O. Rapid weight loss is associated with preoperative hypovolemia in morbidly obese patients. Obes. Surg., 2013, 23(3), 306-313.
[http://dx.doi.org/10.1007/s11695-012-0790-1] [PMID: 23086524]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy