Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Key Advances in MIP-based Sensors Applied for Cancer and Cardiovascular Biomarkers Detection

Author(s): Abderrahman Lamaoui and Aziz Amine*

Volume 22, Issue 7, 2022

Published on: 01 April, 2022

Page: [529 - 548] Pages: 20

DOI: 10.2174/1568026622666220307124003

Abstract

Cancer and cardiovascular diseases have become one of the leading causes of death worldwide. Therefore, early detection of these diseases and rapid intervention by medical staff remain a great challenge for clinicians and healthcare providers worldwide. Cancer and cardiovascular disease biomarkers are promising tools for early diagnosis before it becomes incurable at an advanced stage. They also contribute to monitoring the progress of therapy and surgical treatment. Indeed, sensors have shown great importance for detecting cancer and cardiovascular biomarkers. Sensors usually require a recognition element for the selective detection of targets. Molecularly imprinted polymer (MIP), as an artificial antibody, has been proposed as an alternative recognition element in sensing fields to overcome the main drawbacks of natural antibodies. With the high need for sensors providing results quicklyand making the early diagnosis of these diseases easier, MIP-based sensors are attracting considerable interest recently, which will undoubtedly be increased in the future due to the sustainability trend. The key aim of this review is to emphasize the recent applications of sensors based on MIP for the detection of cancer and cardiovascular biomarkers and to highlight the key advances related to MIP-based sensors. Furthermore, several key future trends about the applications of MIP-based sensors for detecting cardiovascular and cancer biomarkers are presented.

Keywords: Molecularly imprinted polymer, Cancer biomarkers, Cardiovascular biomarkers, Sensor, Cardiovascular disease, Antibody.

Next »
Graphical Abstract

[1]
Rauf, S.; Lahcen, A.A.; Aljedaibi, A.; Beduk, T.; Ilton de Oliveira Filho, J.; Salama, K.N. Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens. Bioelectron., 2021, 180, 113116.
[http://dx.doi.org/10.1016/j.bios.2021.113116] [PMID: 33662847]
[2]
Regan, B.; Boyle, F.; O’Kennedy, R.; Collins, D. Evaluation of molecularly imprinted polymers for point-of-care testing for cardiovascular disease. Sensors (Basel), 2019, 19(16), 3485.
[http://dx.doi.org/10.3390/s19163485] [PMID: 31395843]
[3]
BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev., 2019, 119(1), 94-119.
[http://dx.doi.org/10.1021/acs.chemrev.8b00171] [PMID: 30246529]
[4]
Karrat, A.; Lamaoui, A.; Amine, A.; Palacios-Santander, J.M.; Cubillana-Aguilera, L. Applications of chitosan in molecularly and ion imprinted polymers. Chem. Afr., 2020, 3(3), 513-533.
[http://dx.doi.org/10.1007/s42250-020-00177-w]
[5]
Lamaoui, A.; García-Guzmán, J.J.; Amine, A.; Palacios-Santander, J.M.; Cubillana-Aguilera, L. Chapter 4 - Synthesis techniques of molecularly imprinted polymer composites. In: Molecularly Imprinted Polymer Composites; Woodhead Publishing Series in Composites Science and Engineering, 2021; pp. 49-91.
[6]
Lamaoui, A.; Cubillana-Aguilera, L.; Gil, M.L.A.; Amine, A.; Palacios-Santander, J.M. Chapter 16: analytical applications of molecularly imprinted polymer-decorated magnetic nanoparticles. In: Analytical Applications of Functionalized Magnetic Nanoparticles; , 2021; pp. 397-428.
[7]
Ben Messaoud, N.; Ait Lahcen, A.; Dridi, C.; Amine, A. Ultrasound assisted magnetic imprinted polymer combined sensor based on carbon black and gold nanoparticles for selective and sensitive electrochemical detection of bisphenol A. Sens. Actuators B Chem., 2018, 276, 304-312.
[http://dx.doi.org/10.1016/j.snb.2018.08.092]
[8]
Lamaoui, A.; Lahcen, A.A.; García-Guzmán, J.J.; Palacios-Santander, J.M.; Cubillana-Aguilera, L.; Amine, A. Study of solvent effect on the synthesis of magnetic molecularly imprinted polymers based on ultrasound probe: Application for sulfonamide detection. Ultrason. Sonochem., 2019, 58, 104670.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104670] [PMID: 31450357]
[9]
Karrat, A.; Amine, A. Solid-phase extraction combined with a spectrophotometric method for determination of bisphenol-A in water samples using magnetic molecularly imprinted polymer. Microchem. J., 2021, 168, 106496.
[http://dx.doi.org/10.1016/j.microc.2021.106496]
[10]
Lahcen, A.A.; Baleg, A.A.; Baker, P.; Iwuoha, E.; Amine, A. Synthesis and electrochemical characterization of nanostructured magnetic molecularly imprinted polymers for 17-β-estradiol determination. Sens. Actuators B Chem., 2017, 241, 698-705.
[http://dx.doi.org/10.1016/j.snb.2016.10.132]
[11]
Beduk, T.; Ait Lahcen, A.; Tashkandi, N.; Salama, K.N. One-step electrosynthesized molecularly imprinted polymer on laser scribed graphene bisphenol a sensor. Sens. Actuators B Chem., 2020, 314, 128026.
[http://dx.doi.org/10.1016/j.snb.2020.128026]
[12]
Elfadil, D.; Lamaoui, A.; Della Pelle, F.; Amine, A.; Compagnone, D. Molecularly imprinted polymers combined with electrochemical sensors for food contaminants analysis. Molecules, 2021, 26(15), 4607.
[http://dx.doi.org/10.3390/molecules26154607] [PMID: 34361757]
[13]
Bossi, A.M. Plastic antibodies for cancer therapy? Nat. Chem., 2020, 12(2), 111-112.
[http://dx.doi.org/10.1038/s41557-019-0415-6] [PMID: 31996809]
[14]
Solhi, E.; Hasanzadeh, M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay. Biomed. Pharmacother., 2020, 132, 110849.
[http://dx.doi.org/10.1016/j.biopha.2020.110849] [PMID: 33068928]
[15]
Gold, P.; Freedman, S.O. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J. Exp. Med., 1965, 121(3), 439-462.
[http://dx.doi.org/10.1084/jem.121.3.439] [PMID: 14270243]
[16]
Tanaka, T.; Tanaka, M.; Tanaka, T.; Ishigamori, R. Biomarkers for colorectal cancer. Int. J. Mol. Sci., 2010, 11(9), 3209-3225.
[http://dx.doi.org/10.3390/ijms11093209] [PMID: 20957089]
[17]
Thomas, P.; Gangopadhyay, A.; Steele, G., Jr; Andrews, C.; Nakazato, H.; Oikawa, S.; Jessup, J.M. The effect of transfection of the CEA gene on the metastatic behavior of the human colorectal cancer cell line MIP-101. Cancer Lett., 1995, 92(1), 59-66.
[http://dx.doi.org/10.1016/0304-3835(95)03764-N] [PMID: 7757961]
[18]
Raikwar, S.P.; Kao, C.H.; Gardner, T.A. 10 - targeted adenoviral vectors III: Transcriptional targeting. Adenoviral Vectors for Gene Therapy, 2nd ed.; Curiel, D.T., Ed.; Academic Press: San Diego, 2016, pp. 259-292.
[http://dx.doi.org/10.1016/B978-0-12-800276-6.00010-3]
[19]
Omar, A.; Abdullah, H. Electron transport analysis in zinc oxide-based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev., 2014, 31, 149-157.
[http://dx.doi.org/10.1016/j.rser.2013.11.031]
[20]
Moreira, F.T.C.; Truta, L.A.A.N.A.; Sales, M.G.F. Biomimetic materials assembled on a photovoltaic cell as a novel biosensing approach to cancer biomarker detection. Sci. Rep., 2018, 8(1), 10205.
[http://dx.doi.org/10.1038/s41598-018-27884-2] [PMID: 29977025]
[21]
Moreira, F.T.C.; Sales, M.G.F. Autonomous biosensing device merged with photovoltaic technology for cancer biomarker detection. J. Electroanal. Chem. (Lausanne), 2019, 855, 113611.
[http://dx.doi.org/10.1016/j.jelechem.2019.113611]
[22]
Tavares, A.P.M.; Truta, L.A.A.N.A.; Moreira, F.T.C.; Carneiro, L.P.T.; Sales, M.G.F. Self-powered and self-signalled autonomous electrochemical biosensor applied to cancinoembryonic antigen determination. Biosens. Bioelectron., 2019, 140, 111320.
[http://dx.doi.org/10.1016/j.bios.2019.111320] [PMID: 31150987]
[23]
Carneiro, L.P.T.; Ferreira, N.S.; Tavares, A.P.M.; Pinto, A.M.F.R.; Mendes, A.; Sales, M.G.F. A passive direct methanol fuel cell as transducer of an electrochemical sensor, applied to the detection of carcinoembryonic antigen. Biosens. Bioelectron., 2021, 175, 112877.
[http://dx.doi.org/10.1016/j.bios.2020.112877] [PMID: 33309216]
[24]
Wang, C.; Wang, Y.; Zhang, H.; Deng, H.; Xiong, X.; Li, C.; Li, W. Molecularly imprinted photoelectrochemical sensor for carcinoembryonic antigen based on polymerized ionic liquid hydrogel and hollow gold nanoballs/MoSe2 nanosheets. Anal. Chim. Acta, 2019, 1090, 64-71.
[http://dx.doi.org/10.1016/j.aca.2019.09.029] [PMID: 31655647]
[25]
Qi, J.; Li, B.; Zhou, N.; Wang, X.; Deng, D.; Luo, L.; Chen, L. The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosens. Bioelectron., 2019, 142, 111533.
[http://dx.doi.org/10.1016/j.bios.2019.111533] [PMID: 31377573]
[26]
Lin, X.; Wang, Y.; Wang, L.; Lu, Y.; Li, J.; Lu, D.; Zhou, T.; Huang, Z.; Huang, J.; Huang, H.; Qiu, S.; Chen, R.; Lin, D.; Feng, S. Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood. Biosens. Bioelectron., 2019, 143, 111599.
[http://dx.doi.org/10.1016/j.bios.2019.111599] [PMID: 31476600]
[27]
Lai, Y.; Deng, Y.; Yang, G.; Li, S.; Zhang, C.; Liu, X. Molecular imprinting polymers electrochemical sensor based on aunps/pth modified gce for highly sensitive detection of carcinomaembryonic antigen. J. Biomed. Nanotechnol., 2018, 14(10), 1688-1694.
[http://dx.doi.org/10.1166/jbn.2018.2617] [PMID: 30041716]
[28]
Lamaoui, A.; Palacios-Santander, J.M.; Amine, A.; Cubillana-Aguilera, L. Molecularly imprinted polymers based on polydopamine: Assessment of non-specific adsorption. Microchem. J., 2021, 164, 106043.
[http://dx.doi.org/10.1016/j.microc.2021.106043]
[29]
Yu, Y.; Zhang, Q.; Buscaglia, J.; Chang, C-C.; Liu, Y.; Yang, Z.; Guo, Y.; Wang, Y.; Levon, K.; Rafailovich, M. Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting. Analyst (Lond.), 2016, 141(14), 4424-4431.
[http://dx.doi.org/10.1039/C6AN00375C] [PMID: 27193921]
[30]
Moreira, F.T.C.; Ferreira, M.J.M.S.; Puga, J.R.T.; Sales, M.G.F. Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material. Sens. Actuators B Chem., 2016, 223, 927-935.
[http://dx.doi.org/10.1016/j.snb.2015.09.157] [PMID: 30740000]
[31]
Cernei, N.; Heger, Z.; Gumulec, J.; Zitka, O.; Masarik, M.; Babula, P.; Eckschlager, T.; Stiborova, M.; Kizek, R.; Adam, V. Sarcosine as a potential prostate cancer biomarker--a review. Int. J. Mol. Sci., 2013, 14(7), 13893-13908.
[http://dx.doi.org/10.3390/ijms140713893] [PMID: 23880848]
[32]
Yazdani, Z.; Yadegari, H.; Heli, H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal. Biochem., 2019, 566, 116-125.
[http://dx.doi.org/10.1016/j.ab.2018.11.020] [PMID: 30472220]
[33]
Matsumoto, H.; Sunayama, H.; Kitayama, Y.; Takano, E.; Takeuchi, T. Site-specific post-imprinting modification of molecularly imprinted polymer nanocavities with a modifiable functional monomer for prostate cancer biomarker recognition. Sci. Technol. Adv. Mater., 2019, 20(1), 305-312.
[http://dx.doi.org/10.1080/14686996.2019.1583495] [PMID: 30988832]
[34]
Saeki, T.; Takano, E.; Sunayama, H.; Kamon, Y.; Horikawa, R.; Kitayama, Y.; Takeuchi, T. Signalling molecular recognition nanocavities with multiple functional groups prepared by molecular imprinting and sequential post-imprinting modifications for prostate cancer biomarker glycoprotein detection. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(35), 7987-7993.
[http://dx.doi.org/10.1039/D0TB00685H] [PMID: 32760956]
[35]
Ertürk, G.; Özen, H.; Tümer, M.A.; Mattiasson, B.; Denizli, A. Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sens. Actuators B Chem., 2016, 224, 823-832.
[http://dx.doi.org/10.1016/j.snb.2015.10.093]
[36]
Mazouz, Z.; Mokni, M.; Fourati, N.; Zerrouki, C.; Barbault, F.; Seydou, M.; Kalfat, R.; Yaakoubi, N.; Omezzine, A.; Bouslema, A.; Othmane, A. Computational approach and electrochemical measurements for protein detection with MIP-based sensor. Biosens. Bioelectron., 2020, 151, 111978.
[http://dx.doi.org/10.1016/j.bios.2019.111978] [PMID: 31999585]
[37]
Jolly, P.; Tamboli, V.; Harniman, R.L.; Estrela, P.; Allender, C.J.; Bowen, J.L. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens. Bioelectron., 2016, 75, 188-195.
[http://dx.doi.org/10.1016/j.bios.2015.08.043] [PMID: 26318788]
[38]
Karami, P.; Bagheri, H.; Johari-Ahar, M.; Khoshsafar, H.; Arduini, F.; Afkhami, A. Dual-modality impedimetric immunosensor for early detection of prostate-specific antigen and myoglobin markers based on antibody-molecularly imprinted polymer. Talanta, 2019, 202, 111-122.
[http://dx.doi.org/10.1016/j.talanta.2019.04.061] [PMID: 31171159]
[39]
Rebelo, T.S.C.R.; Santos, C.; Costa-Rodrigues, J.; Fernandes, M.H.; Noronha, J.P.; Sales, M.G.F. Novel prostate specific antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction. Electrochim. Acta, 2014, 132, 142-150.
[http://dx.doi.org/10.1016/j.electacta.2014.03.108]
[40]
Rebelo, T.S.C.R.; Noronha, J.P.; Galésio, M.; Santos, H.; Diniz, M.; Sales, M.G.F.; Fernandes, M.H.; Costa-Rodrigues, J. Testing the variability of PSA expression by different human prostate cancer cell lines by means of a new potentiometric device employing molecularly antibody assembled on graphene surface. Mater. Sci. Eng. C, 2016, 59, 1069-1078.
[http://dx.doi.org/10.1016/j.msec.2015.11.032] [PMID: 26652466]
[41]
McGlynn, K.A.; Cook, M.B. The Epidemiology of Testicular Cancer. In: Male Reproductive Cancers: Epidemiology, Pathology and Genetics; Foulkes, W.D.; Cooney, K.A., Eds.; Springer: New York, NY, 2010; pp. 51-83.
[http://dx.doi.org/10.1007/978-1-4419-0449-2_2]
[42]
Tang, P.; Wang, Y.; Huo, J.; Lin, X. Love wave sensor for prostate-specific membrane antigen detection based on hydrophilic molecularly-imprinted polymer. Polymers (Basel), 2018, 10(5), 10.
[http://dx.doi.org/10.3390/polym10050563] [PMID: 30966597]
[43]
Nguy, T.P.; Van Phi, T.; Tram, D.T.N.; Eersels, K.; Wagner, P.; Lien, T.T.N. Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sens. Actuators B Chem., 2017, 246, 461-470.
[http://dx.doi.org/10.1016/j.snb.2017.02.101]
[44]
Tang, P.; Wang, Y.; He, F. Electrochemical sensor based on super-magnetic metal-organic framework@molecularly imprinted polymer for sarcosine detection in urine. J. Saudi Chem. Soc., 2020, 24(8), 620-630.
[http://dx.doi.org/10.1016/j.jscs.2020.06.004]
[45]
Sheydaei, O.; Khajehsharifi, H.; Rajabi, H.R. Rapid and selective diagnose of sarcosine in urine samples as prostate cancer biomarker by mesoporous imprinted polymeric nanobeads modified electrode. Sens. Actuators B Chem., 2020, 309, 127559.
[http://dx.doi.org/10.1016/j.snb.2019.127559]
[46]
de Cássia Mendonça, J.; da Rocha, L.R.; Capelari, T.B.; Prete, M.C.; Angelis, P.N.; Segatelli, M.G.; Tarley, C.R.T. Design and performance of novel molecularly imprinted biomimetic adsorbent for preconcentration of prostate cancer biomarker coupled to electrochemical determination by using multi-walled carbon nanotubes/Nafion®/Ni(OH)2-modified screen-printed electrode. J. Electroanal. Chem. (Lausanne), 2020, 878, 114582.
[http://dx.doi.org/10.1016/j.jelechem.2020.114582]
[47]
Diltemiz, S.E.; Uslu, O. A reflectometric interferometric nanosensor for sarcosine. Biotechnol. Prog., 2015, 31(1), 55-61.
[http://dx.doi.org/10.1002/btpr.1955] [PMID: 25079110]
[48]
Özkütük, E.B.; Diltemiz, S.E.; Avcı, Ş.; Uğurağ, D.; Aykanat, R.B.; Ersöz, A.; Say, R. Potentiometric sensor fabrication having 2D sarcosine memories and analytical features. Mater. Sci. Eng. C, 2016, 69, 231-235.
[http://dx.doi.org/10.1016/j.msec.2016.06.057] [PMID: 27612708]
[49]
Wang, X.; Wang, Y.; Ye, X.; Wu, T.; Deng, H.; Wu, P.; Li, C. Sensing platform for neuron specific enolase based on molecularly imprinted polymerized ionic liquids in between gold nanoarrays. Biosens. Bioelectron., 2018, 99, 34-39.
[http://dx.doi.org/10.1016/j.bios.2017.07.037] [PMID: 28735044]
[50]
Tchinda, R.; Tutsch, A.; Schmid, B.; Süssmuth, R.D.; Altintas, Z. Recognition of protein biomarkers using epitope-mediated molecularly imprinted films: Histidine or cysteine modified epitopes? Biosens. Bioelectron., 2019, 123, 260-268.
[http://dx.doi.org/10.1016/j.bios.2018.09.010] [PMID: 30243846]
[51]
Drzazgowska, J.; Schmid, B.; Süssmuth, R.D.; Altintas, Z. Self-assembled monolayer epitope bridges for molecular imprinting and cancer biomarker sensing. Anal. Chem., 2020, 92(7), 4798-4806.
[http://dx.doi.org/10.1021/acs.analchem.9b03813] [PMID: 32167737]
[52]
Pirzada, M.; Sehit, E.; Altintas, Z. Cancer biomarker detection in human serum samples using nanoparticle decorated epitope-mediated hybrid MIP. Biosens. Bioelectron., 2020, 166, 112464.
[http://dx.doi.org/10.1016/j.bios.2020.112464] [PMID: 32771854]
[53]
McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; Etemadi, M.; Garcia-Vicente, F.; Gilbert, F.J.; Halling-Brown, M.; Hassabis, D.; Jansen, S.; Karthikesalingam, A.; Kelly, C.J.; King, D.; Ledsam, J.R.; Melnick, D.; Mostofi, H.; Peng, L.; Reicher, J.J.; Romera-Paredes, B.; Sidebottom, R.; Suleyman, M.; Tse, D.; Young, K.C.; De Fauw, J.; Shetty, S. International evaluation of an AI system for breast cancer screening. Nature, 2020, 577(7788), 89-94.
[http://dx.doi.org/10.1038/s41586-019-1799-6] [PMID: 31894144]
[54]
Marques, R.C.B.; Viswanathan, S.; Nouws, H.P.A.; Delerue-Matos, C.; González-García, M.B. Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta, 2014, 129, 594-599.
[http://dx.doi.org/10.1016/j.talanta.2014.06.035] [PMID: 25127638]
[55]
Pacheco, J.G.; Rebelo, P.; Freitas, M.; Nouws, H.P.A.; Delerue-Matos, C. Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sens. Actuators B Chem., 2018, 273, 1008-1014.
[http://dx.doi.org/10.1016/j.snb.2018.06.113]
[56]
Santos, A.R.T.; Moreira, F.T.C.; Helguero, L.A.; Sales, M.G.F. Antibody biomimetic material made of pyrrole for CA 15-3 and its application as sensing material in ion-selective electrodes for potentiometric detection. Biosensors (Basel), 2018, 8(1), 8.
[http://dx.doi.org/10.3390/bios8010008] [PMID: 29351206]
[57]
Ribeiro, J.A.; Pereira, C.M.; Silva, A.F.; Sales, M.G.F. Disposable electrochemical detection of breast cancer tumour marker CA 15-3 using poly(Toluidine Blue) as imprinted polymer receptor. Biosens. Bioelectron., 2018, 109, 246-254.
[http://dx.doi.org/10.1016/j.bios.2018.03.011] [PMID: 29571161]
[58]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[59]
Bast, R.C., Jr; Feeney, M.; Lazarus, H.; Nadler, L.M.; Colvin, R.B.; Knapp, R.C. Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Invest., 1981, 68(5), 1331-1337.
[http://dx.doi.org/10.1172/JCI110380] [PMID: 7028788]
[60]
Rebelo, T.S.C.R.; Costa, R.; Brandão, A.T.S.C.; Silva, A.F.; Sales, M.G.F.; Pereira, C.M. Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum. Anal. Chim. Acta, 2019, 1082, 126-135.
[http://dx.doi.org/10.1016/j.aca.2019.07.050] [PMID: 31472701]
[61]
Büyüktiryaki, S.; Say, R.; Denizli, A.; Ersöz, A. Phosphoserine imprinted nanosensor for detection of Cancer Antigen 125. Talanta, 2017, 167, 172-180.
[http://dx.doi.org/10.1016/j.talanta.2017.01.093] [PMID: 28340708]
[62]
Bhat, M.A.; Prasad, K.; Trivedi, D.; Rajeev, B.R.; Battur, H. Pyruvic acid levels in serum and saliva: A new course for oral cancer screening? J. Oral Maxillofac. Pathol., 2016, 20(1), 102-105.
[http://dx.doi.org/10.4103/0973-029X.180955] [PMID: 27194870]
[63]
Alizadeh, T.; Nayeri, S. An enzyme-free sensing platform based on molecularly imprinted polymer/MWCNT composite for sub-micromolar-level determination of pyruvic acid as a cancer biomarker. Anal. Bioanal. Chem., 2020, 412(3), 657-667.
[http://dx.doi.org/10.1007/s00216-019-02273-4] [PMID: 31828373]
[64]
Mo, G.; He, X.; Zhou, C.; Ya, D.; Feng, J.; Yu, C.; Deng, B. A novel ECL sensor based on a boronate affinity molecular imprinting technique and functionalized SiO2@CQDs/AuNPs/MPBA nanocomposites for sensitive determination of alpha-fetoprotein. Biosens. Bioelectron., 2019, 126, 558-564.
[http://dx.doi.org/10.1016/j.bios.2018.11.013] [PMID: 30497022]
[65]
Morishige, T.; Takano, E.; Sunayama, H.; Kitayama, Y.; Takeuchi, T. Post-imprinting-modified molecularly imprinted nanocavities with two synergetic, orthogonal, glycoprotein-binding sites to transduce binding events into fluorescence changes. ChemNanoMat, 2019, 5(2), 224-229.
[http://dx.doi.org/10.1002/cnma.201800519]
[66]
Tan, L.; Chen, K.; Huang, C.; Peng, R.; Luo, X.; Yang, R.; Cheng, Y.; Tang, Y. A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins. Mikrochim. Acta, 2015, 182(15-16), 2615-2622.
[http://dx.doi.org/10.1007/s00604-015-1642-1]
[67]
Sun, C.; Pan, L.; Zhang, L.; Huang, J.; Yao, D.; Wang, C-Z.; Zhang, Y.; Jiang, N.; Chen, L.; Yuan, C.S. A biomimetic fluorescent nanosensor based on imprinted polymers modified with carbon dots for sensitive detection of alpha-fetoprotein in clinical samples. Analyst (Lond.), 2019, 144(22), 6760-6772.
[http://dx.doi.org/10.1039/C9AN01065C] [PMID: 31617507]
[68]
Tawfik, S.M.; Elmasry, M.R.; Sharipov, M.; Azizov, S.; Lee, C.H.; Lee, Y-I. Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection. Biosens. Bioelectron., 2020, 160, 112211.
[http://dx.doi.org/10.1016/j.bios.2020.112211] [PMID: 32339149]
[69]
Truta, L.A.A.N.A.; Sales, M.G.F. Carcinoembryonic antigen imprinting by electropolymerization on a common conductive glass support and its determination in serum samples. Sens. Actuators B Chem., 2019, 287, 53-63.
[http://dx.doi.org/10.1016/j.snb.2019.02.033]
[70]
Liu, J.; Wang, Y.; Liu, X.; Yuan, Q.; Zhang, Y.; Li, Y. Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis. Talanta, 2019, 199, 573-580.
[http://dx.doi.org/10.1016/j.talanta.2019.03.018] [PMID: 30952300]
[71]
Pacheco, J.G.; Silva, M.S.V.; Freitas, M.; Nouws, H.P.A.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3). Sens. Actuators B Chem., 2018, 256, 905-912.
[http://dx.doi.org/10.1016/j.snb.2017.10.027]
[72]
Cerqueira, S.M.V.; Fernandes, R.; Moreira, F.T.C.; Sales, M.G.F. Development of an electrochemical biosensor for galectin-3 detection in point-of-care. Microchem. J., 2021, 164, 105992.
[http://dx.doi.org/10.1016/j.microc.2021.105992]
[73]
Baldoneschi, V.; Palladino, P.; Banchini, M.; Minunni, M.; Scarano, S. Norepinephrine as new functional monomer for molecular imprinting: An applicative study for the optical sensing of cardiac biomarkers. Biosens. Bioelectron., 2020, 157, 112161.
[http://dx.doi.org/10.1016/j.bios.2020.112161] [PMID: 32250934]
[74]
Phonklam, K.; Wannapob, R.; Sriwimol, W.; Thavarungkul, P.; Phairatana, T. A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection. Sens. Actuators B Chem., 2020, 308, 127630.
[http://dx.doi.org/10.1016/j.snb.2019.127630]
[75]
Silva, B.V.M.; Rodríguez, B.A.G.; Sales, G.F.; Sotomayor, M.P.; Dutra, R.F. An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer. Biosens. Bioelectron., 2016, 77, 978-985.
[http://dx.doi.org/10.1016/j.bios.2015.10.068] [PMID: 26544873]
[76]
Palladino, P.; Minunni, M.; Scarano, S. Cardiac troponin T capture and detection in real-time via epitope-imprinted polymer and optical biosensing. Biosens. Bioelectron., 2018, 106, 93-98.
[http://dx.doi.org/10.1016/j.bios.2018.01.068] [PMID: 29414095]
[77]
Lin, Y-T.; Wang, L-K.; Cheng, Y-T.; Lee, C-K.; Tsai, H-E. Molecularly imprinted polymer/anodic aluminum oxide nanocomposite sensing electrode for low-concentration troponin T detection for patient monitoring applications. ACS Sens., 2021, 6(6), 2429-2435.
[http://dx.doi.org/10.1021/acssensors.1c00738] [PMID: 34101435]
[78]
Chen, P-S.; Lin, Y-T.; Cheng, Y-T.; Lee, C-K.; Tsai, H-E. Characterization and clinical serum test of a molecular imprinted polymer (MIP)-based cardiac troponin T sensing electrode for patient monitoring applications. J. Microelectromech. Syst., 2020, 29(5), 930-935.
[http://dx.doi.org/10.1109/JMEMS.2020.3014397]
[79]
Moreira, F.T.C.; Sharma, S.; Dutra, R.A.F.; Noronha, J.P.C.; Cass, A.E.G.; Sales, M.G.F. Protein-responsive polymers for point-of-care detection of cardiac biomarker. Sens. Actuators B Chem., 2014, 196, 123-132.
[http://dx.doi.org/10.1016/j.snb.2014.01.038]
[80]
Moreira, F.T.C.; Sharma, S.; Dutra, R.A.F.; Noronha, J.P.C.; Cass, A.E.G.; Sales, M.G.F. Detection of cardiac biomarker proteins using a disposable based on a molecularly imprinted polymer grafted onto graphite. Mikrochim. Acta, 2015, 182(5-6), 975-983.
[http://dx.doi.org/10.1007/s00604-014-1409-0]
[81]
Ribeiro, J.A.; Pereira, C.M.; Silva, A.F.; Sales, M.G.F. Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptor. Anal. Chim. Acta, 2017, 981, 41-52.
[http://dx.doi.org/10.1016/j.aca.2017.05.017] [PMID: 28693728]
[82]
Piloto, A.M.; Ribeiro, D.S.M.; Rodrigues, S.S.M.; Santos, C.; Santos, J.L.M.; Sales, M.G.F. Plastic antibodies tailored on quantum dots for an optical detection of myoglobin down to the femtomolar range. Sci. Rep., 2018, 8(1), 4944.
[http://dx.doi.org/10.1038/s41598-018-23271-z] [PMID: 29563532]
[83]
Piloto, A.M.L.; Ribeiro, D.S.M.; Rodrigues, S.S.M.; Santos, J.L.M.; Sampaio, P.; Sales, G. Imprinted fluorescent cellulose membranes for the on-site detection of myoglobin in biological media. ACS Appl. Bio Mater., 2021, 4(5), 4224-4235.
[http://dx.doi.org/10.1021/acsabm.1c00039] [PMID: 35006835]
[84]
Chunta, S.; Suedee, R.; Boonsriwong, W.; Lieberzeit, P.A. Biomimetic sensors targeting oxidized-low-density lipoprotein with molecularly imprinted polymers. Anal. Chim. Acta, 2020, 1116, 27-35.
[http://dx.doi.org/10.1016/j.aca.2020.04.017] [PMID: 32389186]
[85]
Chunta, S.; Suedee, R.; Singsanan, S.; Lieberzeit, P.A. Sensing array based on molecularly imprinted polymers for simultaneous assessment of lipoproteins. Sens. Actuators B Chem., 2019, 298, 126828.
[http://dx.doi.org/10.1016/j.snb.2019.126828]
[86]
Chunta, S.; Boonsriwong, W.; Wattanasin, P.; Naklua, W.; Lieberzeit, P.A. Direct assessment of very-low-density lipoprotein by mass sensitive sensor with molecularly imprinted polymers. Talanta, 2021, 221, 121549.
[http://dx.doi.org/10.1016/j.talanta.2020.121549] [PMID: 33076107]
[87]
Zuo, J.; Zhao, X.; Ju, X.; Qiu, S.; Hu, W.; Fan, T.; Zhang, J. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring cardiac troponin I (CTnI) in the Serum. Electroanalysis, 2016, 28(9), 2044-2049.
[http://dx.doi.org/10.1002/elan.201600059]
[88]
Crapnell, R.D.; Canfarotta, F.; Czulak, J.; Johnson, R.; Betlem, K.; Mecozzi, F.; Down, M.P.; Eersels, K.; van Grinsven, B.; Cleij, T.J.; Law, R.; Banks, C.E.; Peeters, M. Thermal detection of cardiac biomarkers heart-fatty acid binding protein and ST2 using a molecularly imprinted nanoparticle-based multiplex sensor platform. ACS Sens., 2019, 4(10), 2838-2845.
[http://dx.doi.org/10.1021/acssensors.9b01666] [PMID: 31571480]
[89]
Shumyantseva, V.V.; Bulko, T.V.; Sigolaeva, L.V.; Kuzikov, A.V.; Pogodin, P.V.; Archakov, A.I. Molecular imprinting coupled with electrochemical analysis for plasma samples classification in acute myocardial infarction diagnostic. Biosens. Bioelectron., 2018, 99, 216-222.
[http://dx.doi.org/10.1016/j.bios.2017.07.026] [PMID: 28763782]
[90]
Stojanovic, Z.; Erdőssy, J.; Keltai, K.; Scheller, F.W.; Gyurcsányi, R.E. Electrosynthesized molecularly imprinted polyscopoletin nanofilms for human serum albumin detection. Anal. Chim. Acta, 2017, 977, 1-9.
[http://dx.doi.org/10.1016/j.aca.2017.04.043] [PMID: 28577592]
[91]
Yao, G.; Yin, C.; Wang, Q.; Zhang, T.; Chen, S.; Lu, C.; Zhao, K.; Xu, W.; Pan, T.; Gao, M.; Lin, Y. Flexible bioelectronics for physiological signals sensing and disease treatment. J. Materiomics, 2020, 6(2), 397-413.
[http://dx.doi.org/10.1016/j.jmat.2019.12.005]
[92]
Wearable and autonomous biomedical devices and systems for smart environment: Issues and characterization.Lay-Ekuakille, A., Ed.; Lecture Notes in Electrical Engineering; Springer-Verlag, 2010.
[93]
Truta, L.A.A.N.A.; Moreira, F.T.C.; Sales, M.G.F. A dye-sensitized solar cell acting as the electrical reading box of an immunosensor: Application to CEA determination. Biosens. Bioelectron., 2018, 107, 94-102.
[http://dx.doi.org/10.1016/j.bios.2018.02.011] [PMID: 29448225]
[94]
Narayanan, T.S.N.S.; Park, I-S.; Lee, M-H. 2 - Surface modification of magnesium and its alloys for biomedical applications: opportunities and challenges.Surface Modification of Magnesium and its Alloys for Biomedical Applications; Narayanan, T.S.N.S.; Park, I-S.; Lee, M-H., Eds.; Woodhead Publishing: Oxford, 2015, pp. 29-87.
[http://dx.doi.org/10.1016/B978-1-78242-077-4.00002-4]
[95]
Yavir, K.; Marcinkowski, Ł.; Marcinkowska, R.; Namieśnik, J.; Kloskowski, A. Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: A review. Anal. Chim. Acta, 2019, 1054, 1-16.
[http://dx.doi.org/10.1016/j.aca.2018.10.061] [PMID: 30712579]
[96]
Tarnacka, M.; Chrobok, A.; Matuszek, K.; Neugebauer, D.; Bielas, R.; Golba, S.; Wolnica, K.; Dulski, M.; Kaminski, K.; Paluch, M. Studies on the radical polymerization of monomeric ionic liquids: Nanostructure ordering as a key factor controlling the reaction and properties of nascent polymers. Polym. Chem., 2016, 7(41), 6363-6374.
[http://dx.doi.org/10.1039/C6PY01274D]
[97]
Guo, L.; Deng, Q.; Fang, G.; Gao, W.; Wang, S. Preparation and evaluation of molecularly imprinted ionic liquids polymer as sorbent for on-line solid-phase extraction of chlorsulfuron in environmental water samples. J. Chromatogr. A, 2011, 1218(37), 6271-6277.
[http://dx.doi.org/10.1016/j.chroma.2011.07.016] [PMID: 21807367]
[98]
Yuan, S.; Deng, Q.; Fang, G.; Wu, J.; Li, W.; Wang, S. Protein imprinted ionic liquid polymer on the surface of multiwall carbon nanotubes with high binding capacity for lysozyme. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 960, 239-246.
[http://dx.doi.org/10.1016/j.jchromb.2014.04.021] [PMID: 24835511]
[99]
Yuan, S.; Deng, Q.; Fang, G.; Pan, M.; Zhai, X.; Wang, S. A novel ionic liquid polymer material with high binding capacity for proteins. J. Mater. Chem., 2012, 22(9), 3965-3972.
[http://dx.doi.org/10.1039/c2jm14577d]
[100]
Censi, R.; Di Martino, P.; Vermonden, T.; Hennink, W.E. Hydrogels for protein delivery in tissue engineering. J. Control. Release, 2012, 161(2), 680-692.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.002] [PMID: 22421425]
[101]
Ran, D.; Wang, Y.; Jia, X.; Nie, C. Bovine serum albumin recognition via thermosensitive molecular imprinted macroporous hydrogels prepared at two different temperatures. Anal. Chim. Acta, 2012, 723, 45-53.
[http://dx.doi.org/10.1016/j.aca.2012.02.020] [PMID: 22444572]
[102]
Vermonden, T.; Censi, R.; Hennink, W.E. Hydrogels for protein delivery. Chem. Rev., 2012, 112(5), 2853-2888.
[http://dx.doi.org/10.1021/cr200157d] [PMID: 22360637]
[103]
Ding, F.; Gao, X.; Huang, X.; Ge, H.; Xie, M.; Qian, J.; Song, J.; Li, Y.; Zhu, X.; Zhang, C. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials, 2020, 245, 119976.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119976] [PMID: 32213362]
[104]
Liu, C.; Yao, W.; Tian, M.; Wei, J.; Song, Q.; Qiao, W. Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis. Biomaterials, 2018, 179, 83-95.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.037] [PMID: 29980077]
[105]
Seddaoui, N.; Amine, A. A sensitive colorimetric immunoassay based on poly(dopamine) modified magnetic nanoparticles for meat authentication. Lebensm. Wiss. Technol., 2020, 122, 109045.
[http://dx.doi.org/10.1016/j.lwt.2020.109045]
[106]
Yarman, A.; Jetzschmann, K.J.; Neumann, B.; Zhang, X.; Wollenberger, U.; Cordin, A.; Haupt, K.; Scheller, F.W. Enzymes as tools in MIP-sensors. Chemosensors (Basel), 2017, 5(2), 11.
[http://dx.doi.org/10.3390/chemosensors5020011]
[107]
Oikonomopoulou, K.; Li, L.; Zheng, Y.; Simon, I.; Wolfert, R.L.; Valik, D.; Nekulova, M.; Simickova, M.; Frgala, T.; Diamandis, E.P. Prediction of ovarian cancer prognosis and response to chemotherapy by a serum-based multiparametric biomarker panel. Br. J. Cancer, 2008, 99(7), 1103-1113.
[http://dx.doi.org/10.1038/sj.bjc.6604630] [PMID: 18766180]
[108]
Wei, F.; Patel, P.; Liao, W.; Chaudhry, K.; Zhang, L.; Arellano-Garcia, M.; Hu, S.; Elashoff, D.; Zhou, H.; Shukla, S.; Shah, F.; Ho, C-M.; Wong, D.T. Electrochemical sensor for multiplex biomarkers detection. Clin. Cancer Res., 2009, 15(13), 4446-4452.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0050] [PMID: 19509137]
[109]
Lee, J.U.; Nguyen, A.H.; Sim, S.J. A nanoplasmonic biosensor for label-free multiplex detection of cancer biomarkers. Biosens. Bioelectron., 2015, 74, 341-346.
[http://dx.doi.org/10.1016/j.bios.2015.06.059] [PMID: 26159154]
[110]
Tang, C.K.; Vaze, A.; Shen, M.; Rusling, J.F. High-throughput electrochemical microfluidic immunoarray for multiplexed detection of cancer biomarker proteins. ACS Sens., 2016, 1(8), 1036-1043.
[http://dx.doi.org/10.1021/acssensors.6b00256] [PMID: 27747294]
[111]
Mastromatteo, U.; Villa, F.F. High sensitivity acoustic wave aln/si mass detectors arrays for artificial olfactory and biosensing applications: A review. Sens. Actuators B Chem., 2013, 179, 319-327.
[http://dx.doi.org/10.1016/j.snb.2012.10.033]
[112]
Luo, J-T.; Quan, A-J.; Liang, G-X.; Zheng, Z-H.; Ramadan, S.; Fu, C.; Li, H-L.; Fu, Y-Q. Love-mode surface acoustic wave devices based on multilayers of TeO2/ZnO(112¯0)/Si(100) with high sensitivity and temperature stability. Ultrasonics, 2017, 75, 63-70.
[http://dx.doi.org/10.1016/j.ultras.2016.11.017] [PMID: 27930917]
[113]
Venkatanarayanan, A.; Keyes, T.E.; Forster, R.J. Label-free impedance detection of cancer cells. Anal. Chem., 2013, 85(4), 2216-2222.
[http://dx.doi.org/10.1021/ac302943q] [PMID: 23331159]
[114]
Chernikova, V.; Yassine, O.; Shekhah, O.; Eddaoudi, M.; Salama, K.N. Highly sensitive and selective SO2 MOF sensor: The integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(14), 5550-5554.
[http://dx.doi.org/10.1039/C7TA10538J]
[115]
Tchalala, M.R.; Belmabkhout, Y.; Adil, K.; Chappanda, K.N.; Cadiau, A.; Bhatt, P.M.; Salama, K.N.; Eddaoudi, M. Concurrent sensing of CO2 and H2O from air using ultramicroporous fluorinated metal-organic frameworks: effect of transduction mechanism on the sensing performance. ACS Appl. Mater. Interfaces, 2019, 11(1), 1706-1712.
[http://dx.doi.org/10.1021/acsami.8b18327] [PMID: 30525415]
[116]
Mohammad, M.; Razmjou, A.; Liang, K.; Asadnia, M.; Chen, V. Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization. ACS Appl. Mater. Interfaces, 2019, 11(2), 1807-1820.
[http://dx.doi.org/10.1021/acsami.8b16837] [PMID: 30525376]
[117]
Chang, J.; Wang, X.; Wang, J.; Li, H.; Li, F. Nucleic acid-functionalized metal-organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal. Chem., 2019, 91(5), 3604-3610.
[http://dx.doi.org/10.1021/acs.analchem.8b05599] [PMID: 30757896]
[118]
Hou, J.; Sutrisna, P.D.; Zhang, Y.; Chen, V. Formation of ultrathin, continuous metal-organic framework membranes on flexible polymer substrates. Angew. Chem. Int. Ed. Engl., 2016, 55(12), 3947-3951.
[http://dx.doi.org/10.1002/anie.201511340] [PMID: 26913988]
[119]
Qiu, S.; Xue, M.; Zhu, G. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev., 2014, 43(16), 6116-6140.
[http://dx.doi.org/10.1039/C4CS00159A] [PMID: 24967810]
[120]
Shekhah, O.; Belmabkhout, Y.; Chen, Z.; Guillerm, V.; Cairns, A.; Adil, K.; Eddaoudi, M. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat. Commun., 2014, 5(1), 4228.
[http://dx.doi.org/10.1038/ncomms5228] [PMID: 24964404]
[121]
Bhatt, P.M.; Belmabkhout, Y.; Cadiau, A.; Adil, K.; Shekhah, O.; Shkurenko, A.; Barbour, L.J.; Eddaoudi, M. A fine-tuned fluorinated MOF addresses the needs for trace co2 removal and air capture using physisorption. J. Am. Chem. Soc., 2016, 138(29), 9301-9307.
[http://dx.doi.org/10.1021/jacs.6b05345] [PMID: 27388208]
[122]
Wu, M-X.; Yang, Y-W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater., 2017, 29(23), 1606134.
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[123]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J-S.; Hwang, Y.K.; Marsaud, V.; Bories, P-N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[124]
Coudert, F-X.; Fuchs, A.H. Computational characterization and prediction of metal-organic framework properties. Coord. Chem. Rev., 2016, 307, 211-236.
[http://dx.doi.org/10.1016/j.ccr.2015.08.001]
[125]
Takeuchi, T.; Sunayama, H. Beyond natural antibodies - a new generation of synthetic antibodies created by post-imprinting modification of molecularly imprinted polymers. Chem. Commun. (Camb.), 2018, 54(49), 6243-6251.
[http://dx.doi.org/10.1039/C8CC02923G] [PMID: 29808851]
[126]
Yane, T.; Shinmori, H.; Takeuchi, T. Atrazine transforming polymer prepared by molecular imprinting with post-imprinting process. Org. Biomol. Chem., 2006, 4(24), 4469-4473.
[http://dx.doi.org/10.1039/b612407k] [PMID: 17268641]
[127]
Takeda, K.; Kuwahara, A.; Ohmori, K.; Takeuchi, T. Molecularly imprinted tunable binding sites based on conjugated prosthetic groups and ion-paired cofactors. J. Am. Chem. Soc., 2009, 131(25), 8833-8838.
[http://dx.doi.org/10.1021/ja9004317] [PMID: 19496538]
[128]
Sunayama, H.; Ooya, T.; Takeuchi, T. Fluorescent protein recognition polymer thin films capable of selective signal transduction of target binding events prepared by molecular imprinting with a post-imprinting treatment. Biosens. Bioelectron., 2010, 26(2), 458-462.
[http://dx.doi.org/10.1016/j.bios.2010.07.091] [PMID: 20727730]
[129]
Takeuchi, T.; Sunayama, H.; Takano, E.; Kitayama, Y. Post-Imprinting and in-cavity functionalization. In: Molecularly imprinted polymers in biotechnology. Advances in Biochemical Engineering/Biotechnology; Mattiasson, B.; Ye, L., Eds.; Springer International Publishing: Cham, 2015; pp. 95-106.
[http://dx.doi.org/10.1007/10_2015_314]
[130]
Sunayama, H.; Kitayama, Y.; Takeuchi, T. Regulation of protein-binding activities of molecularly imprinted polymers via post-imprinting modifications to exchange functional groups within the imprinted cavity. J Mol. Recog., 2018, 31(3), e2633.
[131]
Sunayama, H.; Takamiya, K.; Takano, E.; Horikawa, R.; Kitayama, Y.; Takeuchi, T. Simultaneous detection of two tumor marker proteins using dual-colored signaling molecularly imprinted polymers prepared via multi-step post-imprinting modifications. Bull. Chem. Soc. Jpn., 2021, 94(2), 525-531.
[http://dx.doi.org/10.1246/bcsj.20200254]
[132]
Verheyen, E.; Schillemans, J.P.; van Wijk, M.; Demeniex, M-A.; Hennink, W.E.; van Nostrum, C.F. Challenges for the effective molecular imprinting of proteins. Biomaterials, 2011, 32(11), 3008-3020.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.007] [PMID: 21288565]
[133]
Viswanathan, S.; Rani, C.; Ribeiro, S.; Delerue-Matos, C. Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens. Bioelectron., 2012, 33(1), 179-183.
[http://dx.doi.org/10.1016/j.bios.2011.12.049] [PMID: 22265879]
[134]
Moreira, F.T.C.; Dutra, R.A.F.; Noronha, J.P.C.; Cunha, A.L.; Sales, M.G.F. Artificial antibodies for troponin T by its imprinting on the surface of multiwalled carbon nanotubes: Its use as sensory surfaces. Biosens. Bioelectron., 2011, 28(1), 243-250.
[http://dx.doi.org/10.1016/j.bios.2011.07.026] [PMID: 21816602]
[135]
Lv, Y.; Tan, T.; Svec, F. Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol. Adv., 2013, 31(8), 1172-1186.
[http://dx.doi.org/10.1016/j.biotechadv.2013.02.005] [PMID: 23466364]
[136]
Erdőssy, J.; Horváth, V.; Yarman, A.; Scheller, F.W.; Gyurcsányi, R.E. Electrosynthesized molecularly imprinted polymers for protein recognition. Trends Analyt. Chem., 2016, 79, 179-190.
[http://dx.doi.org/10.1016/j.trac.2015.12.018]
[137]
Zhang, X.; Yarman, A.; Erdossy, J.; Katz, S.; Zebger, I.; Jetzschmann, K.J.; Altintas, Z.; Wollenberger, U.; Gyurcsányi, R.E.; Scheller, F.W. Electrosynthesized MIPs for transferrin: Plastibodies or nano-filters? Biosens. Bioelectron., 2018, 105, 29-35.
[http://dx.doi.org/10.1016/j.bios.2018.01.011] [PMID: 29351867]
[138]
Bagán, H.; Zhou, T.; Eriksson, N.L.; Bülow, L.; Ye, L. Synthesis and characterization of epitope-imprinted polymers for purification of human hemoglobin. RSC Advances, 2017, 7(66), 41705-41712.
[http://dx.doi.org/10.1039/C7RA07674F]
[139]
Nishino, H.; Huang, C-S.; Shea, K.J. Selective protein capture by epitope imprinting. Angew. Chem. Int. Ed., 2006, 45(15), 2392-2396.
[http://dx.doi.org/10.1002/anie.200503760] [PMID: 16526067]
[140]
Qin, Y-P.; Jia, C.; He, X-W.; Li, W-Y.; Zhang, Y-K. Thermosensitive metal chelation dual-template epitope imprinting polymer using distillation-precipitation polymerization for simultaneous recognition of human serum albumin and transferrin. ACS Appl. Mater. Interfaces, 2018, 10(10), 9060-9068.
[http://dx.doi.org/10.1021/acsami.8b00327] [PMID: 29461037]
[141]
Yang, K.; Li, S.; Liu, J.; Liu, L.; Zhang, L.; Zhang, Y. Multiepitope templates imprinted particles for the simultaneous capture of various target proteins. Anal. Chem., 2016, 88(11), 5621-5625.
[http://dx.doi.org/10.1021/acs.analchem.6b01247] [PMID: 27186657]
[142]
Li, D-Y.; Zhang, X-M.; Yan, Y-J.; He, X-W.; Li, W-Y.; Zhang, Y-K. Thermo-sensitive imprinted polymer embedded carbon dots using epitope approach. Biosens. Bioelectron., 2016, 79, 187-192.
[http://dx.doi.org/10.1016/j.bios.2015.12.016] [PMID: 26706940]
[143]
Xing, R.; Ma, Y.; Wang, Y.; Wen, Y.; Liu, Z. Specific recognition of proteins and peptides via controllable oriented surface imprinting of boronate affinity-anchored epitopes. Chem. Sci. (Camb.), 2018, 10(6), 1831-1835.
[http://dx.doi.org/10.1039/C8SC04169E] [PMID: 30842851]
[144]
Caserta, G.; Zhang, X.; Yarman, A.; Supala, E.; Wollenberger, U.; Gyurcsányi, R.E.; Zebger, I.; Scheller, F.W. Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms. Electrochim. Acta, 2021, 381, 138236.
[http://dx.doi.org/10.1016/j.electacta.2021.138236]
[145]
Jing, L.; Kershaw, S.V.; Li, Y.; Huang, X.; Li, Y.; Rogach, A.L.; Gao, M. Aqueous based semiconductor nanocrystals. Chem. Rev., 2016, 116(18), 10623-10730.
[http://dx.doi.org/10.1021/acs.chemrev.6b00041] [PMID: 27586892]
[146]
Jimenez, M.J.M.; Oliveira, R.F.; Almeida, T.P.; Ferreira, R.C.H.; Bufon, C.C.B.; Rodrigues, V.; Pereira-da-Silva, M.A.; Gobbi, Â.L.; Piazzetta, M.H.O.; Riul, A., Jr Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films. Nanotechnology, 2017, 28(49), 495711.
[http://dx.doi.org/10.1088/1361-6528/aa91c2] [PMID: 28985189]
[147]
Zheng, L.; Zheng, Y.; Liu, Y.; Long, S.; Du, L.; Liang, J.; Huang, C.; Swihart, M.T.; Tan, K. Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid. Talanta, 2019, 194, 1-6.
[http://dx.doi.org/10.1016/j.talanta.2018.09.106] [PMID: 30609506]
[148]
Piloto, A.M.L.; Ribeiro, D.S.M.; Rodrigues, S.S.M.; Santos, J.L.M.; Ferreira Sales, M.G. Label-free quantum dot conjugates for human protein IL-2 based on molecularly imprinted polymers. Sens. Actuators B Chem., 2020, 304, 127343.
[http://dx.doi.org/10.1016/j.snb.2019.127343]
[149]
Lamaoui, A.; Palacios-Santander, J.M.; Amine, A.; Cubillana-Aguilera, L. Fast microwave-assisted synthesis of magnetic molecularly imprinted polymer for sulfamethoxazole. Talanta, 2021, 232, 122430.
[http://dx.doi.org/10.1016/j.talanta.2021.122430] [PMID: 34074416]
[150]
Lamaoui, A.; María Palacios-Santander, J.; Amine, A.; Cubillana-Aguilera, L. Computational approach and ultrasound probe-assisted synthesis of magnetic molecularly imprinted polymer for the electrochemical detection of bisphenol A. Mater. Sci. Eng. B, 2022, 277, 115568.
[http://dx.doi.org/10.1016/j.mseb.2021.115568]
[151]
Lahcen, A.A.; García-Guzmán, J.J.; Palacios-Santander, J.M.; Cubillana-Aguilera, L.; Amine, A. Fast route for the synthesis of decorated nanostructured magnetic molecularly imprinted polymers using an ultrasound probe. Ultrason. Sonochem., 2019, 53, 226-236.
[http://dx.doi.org/10.1016/j.ultsonch.2019.01.008] [PMID: 30686595]

© 2024 Bentham Science Publishers | Privacy Policy