Abstract
The epidermis is a model particularly well suited to the study of cell proliferation and differentiation, and of alterations of these processes such as carcinogenesis. Compartmentalization exists in this tissue, with the proliferative, less differentiated cells confined to the basal layer and the terminally differentiating, non-proliferative cells moving upwards to the surface through distinct layers. Different genes are expressed throughout this process in a stage-of-differentiationspecific manner, and their promoters have been very useful in directing precise gene expression in transgenic mice. Other attractive characteristics of the epidermis include its external localization, which facilitates manipulation and observation, the possibility of obtaining primary keratinocytes that can be easily cultured and manipulated in vitro, and the existence of well-established protocols for chemical and UV carcinogenesis. The latter are invaluable tools for assessing the in vivo functions of the genes targeted in transgenic mice. These characteristics have made the epidermis a widely used model system in recent years for the study of molecular mechanisms of carcinogenesis. A wealth of transgenic mice generated using epidermal-specific promoters, as well as knockout animals, have been used to examine the role of genes involved in processes such as cell cycle control, cell signaling, cell growth and differentiation, and angiogenesis in tumor and metastasis growth. Cre / loxP technology will allow a new generation of mice that allows the study of cancer genetics in a cell type-and time-controlled manner, more closely resembling the conditions found in the development of neoplasms.
Keywords: skin carcinogenesis, uv carcinogenesis, cre/loxp
Current Genomics
Title: Understanding Mouse Skin Carcinogenesis through Transgenic Approaches
Volume: 3 Issue: 4
Author(s): Fernando Larcher, Angel Ramirez, M. Llanos Casanova, Manuel Navarro, Jesus M. Paramio, Paloma Perez, Angustias Page, Mirentxu Santos and Jose L. Jorcano
Affiliation:
Keywords: skin carcinogenesis, uv carcinogenesis, cre/loxp
Abstract: The epidermis is a model particularly well suited to the study of cell proliferation and differentiation, and of alterations of these processes such as carcinogenesis. Compartmentalization exists in this tissue, with the proliferative, less differentiated cells confined to the basal layer and the terminally differentiating, non-proliferative cells moving upwards to the surface through distinct layers. Different genes are expressed throughout this process in a stage-of-differentiationspecific manner, and their promoters have been very useful in directing precise gene expression in transgenic mice. Other attractive characteristics of the epidermis include its external localization, which facilitates manipulation and observation, the possibility of obtaining primary keratinocytes that can be easily cultured and manipulated in vitro, and the existence of well-established protocols for chemical and UV carcinogenesis. The latter are invaluable tools for assessing the in vivo functions of the genes targeted in transgenic mice. These characteristics have made the epidermis a widely used model system in recent years for the study of molecular mechanisms of carcinogenesis. A wealth of transgenic mice generated using epidermal-specific promoters, as well as knockout animals, have been used to examine the role of genes involved in processes such as cell cycle control, cell signaling, cell growth and differentiation, and angiogenesis in tumor and metastasis growth. Cre / loxP technology will allow a new generation of mice that allows the study of cancer genetics in a cell type-and time-controlled manner, more closely resembling the conditions found in the development of neoplasms.
Export Options
About this article
Cite this article as:
Larcher Fernando, Ramirez Angel, Casanova Llanos M., Navarro Manuel, Paramio M. Jesus, Perez Paloma, Page Angustias, Santos Mirentxu and Jorcano L. Jose, Understanding Mouse Skin Carcinogenesis through Transgenic Approaches, Current Genomics 2002; 3 (4) . https://dx.doi.org/10.2174/1389202023350345
DOI https://dx.doi.org/10.2174/1389202023350345 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Cancer Preventive Phytochemicals as Speed Breakers in Inflammatory Signaling Involved in Aberrant COX-2 Expression
Current Cancer Drug Targets Synthesis of Arylpiperazine Derivatives as Protease Activated Receptor 1 Antagonists and Their Evaluation as Antiproliferative Agents
Anti-Cancer Agents in Medicinal Chemistry Integrated, Molecular Engineering Approaches to Develop Prostate Cancer Gene Therapy
Current Gene Therapy Is the Epithelial-to-Mesenchymal Transition Clinically Relevant for the Cancer Patient?
Current Pharmaceutical Biotechnology Synthesis and Biological Evaluation of Estradiol-Core Derivatives Bearing a Fused γ-Lactone as Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1
Current Enzyme Inhibition Neuregulin Signaling in Pieces-Evolution of the Gene Family
Current Pharmaceutical Design The Facilitatory Effect of Casearia sylvestris Sw. (guaçatonga) Fractions on the Contractile Activity of Mammalian and Avian Neuromuscular Apparatus
Current Pharmaceutical Biotechnology Epigenetic Therapies of Cancer
Current Cancer Therapy Reviews Signalling Pathways Activated by Ultraviolet Radiation: Role in Ocular and Cutaneous Health
Current Pharmaceutical Design Glucose Transporters in Sex Steroid Hormone Related Cancer
Current Vascular Pharmacology Targeting Myc in Pediatric Malignancies of the Central and Peripheral Nervous System
Current Cancer Drug Targets Targeting CD147 is a Novel Strategy for Antitumor Therapy
Current Pharmaceutical Design Induction of Nuclear Receptors and Drug Resistance in the Brain Microvascular Endothelial Cells Treated with Antiepileptic Drugs
Current Neurovascular Research Isolation, Purification and Characterization of a Novel Steroidal Saponin Cholestanol Glucoside from Lasiodiplodia theobromae that Induces Apoptosis in A549 Cells
Anti-Cancer Agents in Medicinal Chemistry The Use of Intravenous Aminobisphosphonates for the Treatment of Pagets Disease of Bone
Mini-Reviews in Medicinal Chemistry Interplay of β-Catenin with Xenobiotic-Sensing Receptors and its Role in Glutathione S-Transferase Expression
Current Drug Metabolism New Molecular Targets of Anticancer Therapy – Current Status and Perspectives
Current Medicinal Chemistry Histone Deacetylase Inhibitors and Colorectal Cancer: what is new?
Anti-Cancer Agents in Medicinal Chemistry Novel Rational Drug Design Strategies with Potential to Revolutionize Malaria Chemotherapy
Current Medicinal Chemistry Amyloid-β Peptides, Alzheimer's Disease and the Blood-brain Barrier
Current Alzheimer Research