Review Article

作用于单胺转运体药物的最新进展和挑战

卷 27, 期 23, 2020

页: [3830 - 3876] 页: 47

弟呕挨: 10.2174/0929867325666181009123218

价格: $65

摘要

背景:人类单胺转运蛋白(hMATs)主要包括hSERT、hNET和hDAT,是治疗抑郁症和其他行为障碍的重要靶点,目前批准的药物超过30种。 目的:本文综述近年来hMATs抑制剂与中心或变构结合位点的结合模式及抑制机制的研究进展,为今后hMATs抑制剂的设计和发现提供参考。结构-活性关系(SAR)和命中/先导化合物对hMATs的选择性将在体外和体内实验中得到评价。方法:检索PubMed和Web of Science数据库,检索与hMATs相关的蛋白-配体相互作用、新型抑制剂设计和合成研究。 结果:文献数据表明,自从首次测定与氯丙咪嗪复合的同源细菌亮氨酸转运体(LeuT)的晶体结构以来,已经积累了一个包含100多个实验结构或计算模型的庞大数据库,现在定义了hMATs配体识别的结构变异性的实质性程度。与此同时,在计算模型的帮助下,药物化学已经发现一些新的hMATs抑制剂。 结论:通过实验或计算模型报道的作用于hMATs以及与不同配体复合的转运体结构的新化合物,为药物对转运体的多药理学、多模态和变构调节提供了线索。这些研究都将极大地促进对hMATs具有高活性和高选择性的新型结构支架的结构药物设计(SBDD)。

关键词: 单胺转运蛋白,变构调节,多靶向药物,常见的结合模式,药物选择性,计算模型,结构活性分析。

[1]
Kristensen, A.S.; Andersen, J.; Jørgensen, T.N.; Sørensen, L.; Eriksen, J.; Loland, C.J.; Strømgaard, K.; Gether, U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev., 2011, 63(3), 585-640.
[http://dx.doi.org/10.1124/pr.108.000869] [PMID: 21752877]
[2]
Zhu, F.; Han, B.; Kumar, P.; Liu, X.; Ma, X.; Wei, X.; Huang, L.; Guo, Y.; Han, L.; Zheng, C.; Chen, Y. Update of TTD: therapeutic target database. Nucleic Acids Res., 2010, 38(Database issue), D787-D791.
[http://dx.doi.org/10.1093/nar/gkp1014] [PMID: 19933260]
[3]
Pramod, A.B.; Foster, J.; Carvelli, L.; Henry, L.K. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol. Aspects Med., 2013, 34(2-3), 197-219.
[http://dx.doi.org/10.1016/j.mam.2012.07.002] [PMID: 23506866]
[4]
Manepalli, S.; Surratt, C.K.; Madura, J.D.; Nolan, T.L. Monoamine transporter structure, function, dynamics, and drug discovery: a computational perspective. AAPS J., 2012, 14(4), 820-831.
[http://dx.doi.org/10.1208/s12248-012-9391-0] [PMID: 22918625]
[5]
Zhu, F.; Shi, Z.; Qin, C.; Tao, L.; Liu, X.; Xu, F.; Zhang, L.; Song, Y.; Liu, X.; Zhang, J.; Han, B.; Zhang, P.; Chen, Y. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1128-D1136.
[http://dx.doi.org/10.1093/nar/gkr797] [PMID: 21948793]
[6]
Andersen, J.; Stuhr-Hansen, N.; Zachariassen, L.G.; Koldsø, H.; Schiøtt, B.; Strømgaard, K.; Kristensen, A.S. Molecular basis for selective serotonin reuptake inhibition by the antidepressant agent fluoxetine (Prozac). Mol. Pharmacol., 2014, 85(5), 703-714.
[http://dx.doi.org/10.1124/mol.113.091249] [PMID: 24516100]
[7]
Andersen, J.; Stuhr-Hansen, N.; Zachariassen, L.; Toubro, S.; Hansen, S.M.; Eildal, J.N.; Bond, A.D.; Bøgesø, K.P.; Bang-Andersen, B.; Kristensen, A.S.; Strømgaard, K. Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proc. Natl. Acad. Sci. USA, 2011, 108(29), 12137-12142.
[http://dx.doi.org/10.1073/pnas.1103060108] [PMID: 21730142]
[8]
Grouleff, J.; Ladefoged, L.K.; Koldsø, H.; Schiøtt, B. Monoamine transporters: insights from molecular dynamics simulations. Front. Pharmacol., 2015, 6, 235.
[http://dx.doi.org/10.3389/fphar.2015.00235] [PMID: 26528185]
[9]
Huot, P.; Fox, S.H.; Brotchie, J.M. Monoamine reuptake inhibitors in Parkinson’s disease. Parkinsons Dis., 2015, 2015, 609428
[http://dx.doi.org/10.1155/2015/609428] [PMID: 25810948]
[10]
Fu, T.; Zheng, G.; Tu, G.; Yang, F.; Chen, Y.; Yao, X.; Li, X.; Xue, W.; Zhu, F. Exploring the binding mechanism of metabotropic glutamate receptor 5 negative allosteric modulators in clinical trials by molecular dynamics simulations. ACS Chem. Neurosci., 2018, 9(6), 1492-1502.
[http://dx.doi.org/10.1021/acschemneuro.8b00059] [PMID: 29522307]
[11]
Xu, J.; Wang, P.; Yang, H.; Zhou, J.; Li, Y.; Li, X.; Xue, W.; Yu, C.; Tian, Y.; Zhu, F. Comparison of fda approved kinase targets to clinical trial ones: insights from their system profiles and drug-target interaction networks. BioMed Res. Int., 2016, 2016, 2509385
[http://dx.doi.org/10.1155/2016/2509385] [PMID: 27547755]
[12]
Aggarwal, S.; Mortensen, O.V. Overview of monoamine transporters. Curr. Protoc. Pharmacol, 2017, 79, 12.16.11-12.16.17.
[http://dx.doi.org/10.1002/cpph.32] [PMID: 29261228]
[13]
Caron, M.G.; Gether, U. Structural biology: Antidepressants at work. Nature, 2016, 532(7599), 320-321.
[http://dx.doi.org/10.1038/nature17883] [PMID: 27049942]
[14]
Hopkins, C.R. ACS chemical neuroscience molecule spotlight on viibryd (Vilazodone). ACS Chem. Neurosci., 2011, 2(10), 554.
[http://dx.doi.org/10.1021/cn200084v] [PMID: 22860155]
[15]
de Bartolomeis, A.; Fagiolini, A.; Maina, G. [Vortioxetine in the treatment of major depression]. Riv. Psichiatr., 2016, 51(6), 215-230.
[http://dx.doi.org/10.1708/2596.26720] [PMID: 27996982]
[16]
Nemeroff, C.B.; Entsuah, R.; Benattia, I.; Demitrack, M.; Sloan, D.M.; Thase, M.E. Comprehensive analysis of remission (COMPARE) with venlafaxine versus SSRIs. Biol. Psychiatry, 2008, 63(4), 424-434.
[http://dx.doi.org/10.1016/j.biopsych.2007.06.027] [PMID: 17888885]
[17]
Papakostas, G.I. Initial treatment approaches for patients with major depressive disorder. J. Clin. Psychiatry, 2009, 70(6) e18
[http://dx.doi.org/10.4088/JCP.8001tx7c] [PMID: 19573474]
[18]
Artigas, F. Future directions for serotonin and antidepressants. ACS Chem. Neurosci., 2013, 4(1), 5-8.
[http://dx.doi.org/10.1021/cn3001125] [PMID: 23336036]
[19]
Shao, L.; Li, W.; Xie, Q.; Yin, H. Triple reuptake inhibitors: a patent review (2006 - 2012). Expert Opin. Ther. Pat., 2014, 24(2), 131-154.
[http://dx.doi.org/10.1517/13543776.2014.859676] [PMID: 24289044]
[20]
Yu, G.; Zhang, M.; Saha, M.L.; Mao, Z.; Chen, J.; Yao, Y.; Zhou, Z.; Liu, Y.; Gao, C.; Huang, F.; Chen, X.; Stang, P.J. Antitumor activity of a unique polymer that incorporates a fluorescent self-assembled metallacycle. J. Am. Chem. Soc., 2017, 139(44), 15940-15949.
[http://dx.doi.org/10.1021/jacs.7b09224] [PMID: 29019660]
[21]
Liu, L.J.; Wang, W.; Huang, S.Y.; Hong, Y.; Li, G.; Lin, S.; Tian, J.; Cai, Z.; Wang, H.D.; Ma, D.L.; Leung, C.H. Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium(iii) metal-based compound. Chem. Sci. (Camb.), 2017, 8(7), 4756-4763.
[http://dx.doi.org/10.1039/C7SC00311K] [PMID: 28959398]
[22]
Yang, G.J.; Wang, W.; Mok, S.W.F.; Wu, C.; Law, B.Y.K.; Miao, X.M.; Wu, K.J.; Zhong, H.J.; Wong, C.Y.; Wong, V.K.W.; Ma, D.L.; Leung, C.H. Selective inhibition of lysine-specific demethylase 5a (kdm5a) using a rhodium(iii) complex for triple-negative breast cancer therapy. Angew. Chem. Int. Ed. Engl., 2018, 57(40), 13091-13095.
[http://dx.doi.org/10.1002/anie.201807305] [PMID: 29968419]
[23]
Fu, J.; Tang, J.; Wang, Y.; Cui, X.; Yang, Q.; Hong, J.; Li, X.; Li, S.; Chen, Y.; Xue, W.; Zhu, F. Discovery of the consistently well-performed analysis chain for SWATH-MS Based pharmacoproteomic quantification. Front. Pharmacol., 2018, 9, 681.
[http://dx.doi.org/10.3389/fphar.2018.00681] [PMID: 29997509]
[24]
Han, Z.J.; Xue, W.W.; Tao, L.; Zhu, F. Identification of novel immune-relevant drug target genes for Alzheimer’s Disease by combining ontology inference with network analysis. CNS Neurosci. Ther., 2018, 24(12), 1253-1263.
[http://dx.doi.org/10.1111/cns.13051] [PMID: 30106219]
[25]
Piscitelli, C.L.; Krishnamurthy, H.; Gouaux, E. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature, 2010, 468(7327), 1129-1132.
[http://dx.doi.org/10.1038/nature09581] [PMID: 21179170]
[26]
Wang, H.; Goehring, A.; Wang, K.H.; Penmatsa, A.; Ressler, R.; Gouaux, E. Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature, 2013, 503(7474), 141-145.
[http://dx.doi.org/10.1038/nature12648] [PMID: 24121440]
[27]
Penmatsa, A.; Wang, K.H.; Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature, 2013, 503(7474), 85-90.
[http://dx.doi.org/10.1038/nature12533] [PMID: 24037379]
[28]
Penmatsa, A.; Wang, K.H.; Gouaux, E. X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat. Struct. Mol. Biol., 2015, 22(6), 506-508.
[http://dx.doi.org/10.1038/nsmb.3029] [PMID: 25961798]
[29]
Wang, K.H.; Penmatsa, A.; Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature, 2015, 521(7552), 322-327.
[http://dx.doi.org/10.1038/nature14431] [PMID: 25970245]
[30]
Yu, C.Y.; Li, X.X.; Yang, H.; Li, Y.H.; Xue, W.W.; Chen, Y.Z.; Tao, L.; Zhu, F. Assessing the performances of protein function prediction algorithms from the perspectives of identification accuracy and false discovery rate. Int. J. Mol. Sci., 2018, 19(1) E183
[http://dx.doi.org/10.3390/ijms19010183] [PMID: 29316706]
[31]
Pratuangdejkul, J.; Schneider, B.; Launay, J.M.; Kellermann, O.; Manivet, P. Computational approaches for the study of serotonin and its membrane transporter SERT: implications for drug design in neurological sciences. Curr. Med. Chem., 2008, 15(30), 3214-3227.
[http://dx.doi.org/10.2174/092986708786848523] [PMID: 19075665]
[32]
Koldsø, H.; Grouleff, J.; Schiøtt, B. Insights to ligand binding to the monoamine transporters-from homology modeling to LeuBAT and dDAT. Front. Pharmacol., 2015, 6, 208.
[http://dx.doi.org/10.3389/fphar.2015.00208] [PMID: 26441663]
[33]
Celik, L.; Sinning, S.; Severinsen, K.; Hansen, C.G.; Møller, M.S.; Bols, M.; Wiborg, O.; Schiøtt, B. Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. J. Am. Chem. Soc., 2008, 130(12), 3853-3865.
[http://dx.doi.org/10.1021/ja076403h] [PMID: 18314975]
[34]
Koldsø, H.; Christiansen, A.B.; Sinning, S.; Schiøtt, B. Comparative modeling of the human monoamine transporters: similarities in substrate binding. ACS Chem. Neurosci., 2013, 4(2), 295-309.
[http://dx.doi.org/10.1021/cn300148r] [PMID: 23421681]
[35]
Combs, S.; Kaufmann, K.; Field, J.R.; Blakely, R.D.; Meiler, J. Y95 and E444 interaction required for high-affinity S-citalopram binding in the human serotonin transporter. ACS Chem. Neurosci., 2011, 2(2), 75-81.
[http://dx.doi.org/10.1021/cn100066p] [PMID: 22778858]
[36]
Severinsen, K.; Kraft, J.F.; Koldsø, H.; Vinberg, K.A.; Rothman, R.B.; Partilla, J.S.; Wiborg, O.; Blough, B.; Schiøtt, B.; Sinning, S. Binding of the amphetamine-like 1-phenyl-piperazine to monoamine transporters. ACS Chem. Neurosci., 2012, 3(9), 693-705.
[http://dx.doi.org/10.1021/cn300040f] [PMID: 23019496]
[37]
Xue, W.; Wang, P.; Li, B.; Li, Y.; Xu, X.; Yang, F.; Yao, X.; Chen, Y.Z.; Xu, F.; Zhu, F. Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study. Phys. Chem. Chem. Phys., 2016, 18(4), 3260-3271.
[http://dx.doi.org/10.1039/C5CP05771J] [PMID: 26745505]
[38]
Xue, W.; Yang, F.; Wang, P.; Zheng, G.; Chen, Y.; Yao, X.; Zhu, F. What contributes to serotonin-norepinephrine reuptake inhibitors’ dual-targeting mechanism? the key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem. Neurosci., 2018, 9(5), 1128-1140.
[http://dx.doi.org/10.1021/acschemneuro.7b00490] [PMID: 29300091]
[39]
Yang, F.; Zheng, G.; Fu, T.; Li, X.; Tu, G.; Li, Y.H.; Yao, X.; Xue, W.; Zhu, F. Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H. Phys. Chem. Chem. Phys., 2018, 20(37), 23873-23884.
[http://dx.doi.org/10.1039/C8CP01843J] [PMID: 29947629]
[40]
Severinsen, K.; Koldsø, H.; Thorup, K.A.; Schjøth-Eskesen, C.; Møller, P.T.; Wiborg, O.; Jensen, H.H.; Sinning, S.; Schiøtt, B. Binding of mazindol and analogs to the human serotonin and dopamine transporters. Mol. Pharmacol., 2014, 85(2), 208-217.
[http://dx.doi.org/10.1124/mol.113.088922] [PMID: 24214825]
[41]
Yang, C.; Wang, W.; Chen, L.; Liang, J.; Lin, S.; Lee, M.Y.; Ma, D.L.; Leung, C.H. Discovery of a VHL and HIF1α interaction inhibitor with in vivo angiogenic activity via structure-based virtual screening. Chem. Commun. (Camb.), 2016, 52(87), 12837-12840.
[http://dx.doi.org/10.1039/C6CC04938A] [PMID: 27709157]
[42]
Davey, G.E.; Adhireksan, Z.; Ma, Z.; Riedel, T.; Sharma, D.; Padavattan, S.; Rhodes, D.; Ludwig, A.; Sandin, S.; Murray, B.S.; Dyson, P.J.; Davey, C.A. Nucleosome acidic patch-targeting binuclear ruthenium compounds induce aberrant chromatin condensation. Nat. Commun., 2017, 8(1), 1575.
[http://dx.doi.org/10.1038/s41467-017-01680-4] [PMID: 29146919]
[43]
Manepalli, S.; Geffert, L.M.; Surratt, C.K.; Madura, J.D. Discovery of novel selective serotonin reuptake inhibitors through development of a protein-based pharmacophore. J. Chem. Inf. Model., 2011, 51(9), 2417-2426.
[http://dx.doi.org/10.1021/ci200280m] [PMID: 21834587]
[44]
Schlessinger, A.; Geier, E.; Fan, H.; Irwin, J.J.; Shoichet, B.K.; Giacomini, K.M.; Sali, A. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 15810-15815.
[http://dx.doi.org/10.1073/pnas.1106030108] [PMID: 21885739]
[45]
Nolan, T.L.; Lapinsky, D.J.; Talbot, J.N.; Indarte, M.; Liu, Y.; Manepalli, S.; Geffert, L.M.; Amos, M.E.; Taylor, P.N.; Madura, J.D.; Surratt, C.K. Identification of a novel selective serotonin reuptake inhibitor by coupling monoamine transporter-based virtual screening and rational molecular hybridization. ACS Chem. Neurosci., 2011, 2(9), 544-552.
[http://dx.doi.org/10.1021/cn200044x] [PMID: 21966587]
[46]
Nolan, T.L.; Geffert, L.M.; Kolber, B.J.; Madura, J.D.; Surratt, C.K. Discovery of novel-scaffold monoamine transporter ligands via in silico screening with the S1 pocket of the serotonin transporter. ACS Chem. Neurosci., 2014, 5(9), 784-792.
[http://dx.doi.org/10.1021/cn500133b] [PMID: 25003748]
[47]
Yang, C.; Wang, W.; Liang, J.X.; Li, G.; Vellaisamy, K.; Wong, C.Y.; Ma, D.L.; Leung, C.H.A. A rhodium(iii)-based inhibitor of lysine-specific histone demethylase 1 as an epigenetic modulator in prostate cancer cells. J. Med. Chem., 2017, 60(6), 2597-2603.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00133] [PMID: 28219005]
[48]
Coleman, J.A.; Green, E.M.; Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature, 2016, 532(7599), 334-339.
[http://dx.doi.org/10.1038/nature17629] [PMID: 27049939]
[49]
Coleman, J.A.; Gouaux, E. Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat. Struct. Mol. Biol., 2018, 25(2), 170-175.
[http://dx.doi.org/10.1038/s41594-018-0026-8] [PMID: 29379174]
[50]
Zhong, H.; Haddjeri, N.; Sánchez, C. Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter--a review of current understanding of its mechanism of action. Psychopharmacology (Berl.), 2012, 219(1), 1-13.
[http://dx.doi.org/10.1007/s00213-011-2463-5] [PMID: 21901317]
[51]
Tosh, D.K.; Janowsky, A.; Eshleman, A.J.; Warnick, E.; Gao, Z.G.; Chen, Z.; Gizewski, E.; Auchampach, J.A.; Salvemini, D.; Jacobson, K.A. Scaffold repurposing of nucleosides (adenosine receptor agonists): enhanced activity at the human dopamine and norepinephrine sodium symporters. J. Med. Chem., 2017, 60(7), 3109-3123.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00141] [PMID: 28319392]
[52]
Kortagere, S.; Fontana, A.C.; Rose, D.R.; Mortensen, O.V. Identification of an allosteric modulator of the serotonin transporter with novel mechanism of action. Neuropharmacology, 2013, 72, 282-290.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.026] [PMID: 23632081]
[53]
Andersen, J.; Kristensen, A.S.; Bang-Andersen, B.; Strømgaard, K. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters. Chem. Commun. (Camb.), 2009, (25), 3677-3692.
[http://dx.doi.org/10.1039/b903035m] [PMID: 19557250]
[54]
Nyola, A.; Karpowich, N.K.; Zhen, J.; Marden, J.; Reith, M.E.; Wang, D.N. Substrate and drug binding sites in LeuT. Curr. Opin. Struct. Biol., 2010, 20(4), 415-422.
[http://dx.doi.org/10.1016/j.sbi.2010.05.007] [PMID: 20739005]
[55]
Immadisetty, K.; Madura, J.D. A review of monoamine transporter-ligand interactions. Curr Comput Aided Drug Des, 2013, 9(4), 556-568.
[http://dx.doi.org/10.2174/15734099113096660039] [PMID: 24138394]
[56]
Orsolini, L.; Tomasetti, C.; Valchera, A.; Iasevoli, F.; Buonaguro, E.F.; Fornaro, M.; Fiengo, A.L.C.; Martinotti, G.; Vellante, F.; Matarazzo, I.; Vecchiotti, R.; Perna, G.; Di Nicola, M.; Carano, A.; Di Bartolomeis, A.; De Giannantonio, M.; De Berardis, D. Current and future perspectives on the major depressive disorder: focus on the new multimodal antidepressant vortioxetine. CNS Neurol. Disord. Drug Targets, 2017, 16(1), 65-92.
[http://dx.doi.org/10.2174/1871527315666161025140111] [PMID: 27781949]
[57]
Sørensen, L.; Andersen, J.; Thomsen, M.; Hansen, S.M.; Zhao, X.; Sandelin, A.; Strømgaard, K.; Kristensen, A.S. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem., 2012, 287(52), 43694-43707.
[http://dx.doi.org/10.1074/jbc.M112.342212] [PMID: 23086945]
[58]
Plenge, P.; Mellerup, E.T. Antidepressive drugs can change the affinity of [3H]imipramine and [3H]paroxetine binding to platelet and neuronal membranes. Eur. J. Pharmacol., 1985, 119(1-2), 1-8.
[http://dx.doi.org/10.1016/0014-2999(85)90314-0] [PMID: 2935414]
[59]
Janowsky, A.; Tosh, D.K.; Eshleman, A.J.; Jacobson, K.A. Rigid adenine nucleoside derivatives as novel modulators of the human sodium symporters for dopamine and norepinephrine. J. Pharmacol. Exp. Ther., 2016, 357(1), 24-35.
[http://dx.doi.org/10.1124/jpet.115.229666] [PMID: 26813929]
[60]
Navratna, V.; Tosh, D.K.; Jacobson, K.A.; Gouaux, E. Thermostabilization and purification of the human dopamine transporter (hDAT) in an inhibitor and allosteric ligand bound conformation. PLoS One, 2018, 13(7) e0200085
[http://dx.doi.org/10.1371/journal.pone.0200085] [PMID: 29965988]
[61]
Li, Y.H.; Xu, J.Y.; Tao, L.; Li, X.F.; Li, S.; Zeng, X.; Chen, S.Y.; Zhang, P.; Qin, C.; Zhang, C.; Chen, Z.; Zhu, F.; Chen, Y.Z. Svm-prot 2016: a web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS One, 2016, 11(8) e0155290
[http://dx.doi.org/10.1371/journal.pone.0155290] [PMID: 27525735]
[62]
Orsolini, L.; Tomasetti, C.; Valchera, A.; Iasevoli, F.; Buonaguro, E.F.; Vellante, F.; Fornaro, M.; Fiengo, A.; Mazza, M.; Vecchiotti, R.; Perna, G.; de Bartolomeis, A.; Martinotti, G.; Di Giannantonio, M.; De Berardis, D. New advances in the treatment of generalized anxiety disorder: the multimodal antidepressant vortioxetine. Expert Rev. Neurother., 2016, 16(5), 483-495.
[http://dx.doi.org/10.1586/14737175.2016.1173545] [PMID: 27050932]
[63]
Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127.
[http://dx.doi.org/10.1093/nar/gkx1076] [PMID: 29140520]
[64]
Wang, P.; Zhang, X.; Fu, T.; Li, S.; Li, B.; Xue, W.; Yao, X.; Chen, Y.; Zhu, F. Differentiating physicochemical properties between addictive and nonaddictive adhd drugs revealed by molecular dynamics simulation studies. ACS Chem. Neurosci., 2017, 8(6), 1416-1428.
[http://dx.doi.org/10.1021/acschemneuro.7b00173] [PMID: 28557437]
[65]
Jing, E.; Straw-Wilson, K. Sexual dysfunction in selective serotonin reuptake inhibitors (SSRIs) and potential solutions: A narrative literature review. Ment Health Clin, 2016, 6(4), 191-196.
[http://dx.doi.org/10.9740/mhc.2016.07.191] [PMID: 29955469]
[66]
Wilson, E.; Lader, M. A review of the management of antidepressant discontinuation symptoms. Ther. Adv. Psychopharmacol., 2015, 5(6), 357-368.
[http://dx.doi.org/10.1177/2045125315612334] [PMID: 26834969]
[67]
Gordon, M.; Melvin, G. Selective serotonin re-uptake inhibitors--a review of the side effects in adolescents. Aust. Fam. Physician, 2013, 42(9), 620-623.
[PMID: 24024221]
[68]
Kasi, P.M.; Mounzer, R.; Gleeson, G.H. Cardiovascular side effects of atomoxetine and its interactions with inhibitors of the cytochrome p450 system. Case Rep. Med., 2011, 2011 952584
[http://dx.doi.org/10.1155/2011/952584] [PMID: 21765848]
[69]
Zheng, G.; Xue, W.; Yang, F.; Zhang, Y.; Chen, Y.; Yao, X.; Zhu, F. Revealing vilazodone’s binding mechanism underlying its partial agonism to the 5-HT1A receptor in the treatment of major depressive disorder. Phys. Chem. Chem. Phys., 2017, 19(42), 28885-28896.
[http://dx.doi.org/10.1039/C7CP05688E] [PMID: 29057413]
[70]
Kaplan, C.; Zhang, Y. Assessing the comparative-effectiveness of antidepressants commonly prescribed for depression in the US Medicare population. J. Ment. Health Policy Econ., 2012, 15(4), 171-178.
[PMID: 23525835]
[71]
Miyawaki, D.; Goto, A.; Iwakura, Y.; Hirai, K.; Miki, Y.; Asada, N.; Terakawa, H.; Inoue, K. Preschool-onset obsessive-compulsive disorder with complete remission. Neuropsychiatr. Dis. Treat., 2018, 14, 1747-1753.
[http://dx.doi.org/10.2147/NDT.S169797] [PMID: 30013347]
[72]
Upadhyaya, H.P.; Desaiah, D.; Schuh, K.J.; Bymaster, F.P.; Kallman, M.J.; Clarke, D.O.; Durell, T.M.; Trzepacz, P.T.; Calligaro, D.O.; Nisenbaum, E.S.; Emmerson, P.J.; Schuh, L.M.; Bickel, W.K.; Allen, A.J. A review of the abuse potential assessment of atomoxetine: a nonstimulant medication for attention-deficit/hyperactivity disorder. Psychopharmacology (Berl.), 2013, 226(2), 189-200.
[http://dx.doi.org/10.1007/s00213-013-2986-z] [PMID: 23397050]
[73]
Zheng, G.; Xue, W.; Wang, P.; Yang, F.; Li, B.; Li, X.; Li, Y.; Yao, X.; Zhu, F. Exploring the inhibitory mechanism of approved selective norepinephrine reuptake inhibitors and reboxetine enantiomers by molecular dynamics study. Sci. Rep., 2016, 6, 26883.
[http://dx.doi.org/10.1038/srep26883] [PMID: 27230580]
[74]
Thapar, A.; Cooper, M. Attention deficit hyperactivity disorder. Lancet, 2016, 387(10024), 1240-1250.
[http://dx.doi.org/10.1016/S0140-6736(15)00238-X] [PMID: 26386541]
[75]
Hannestad, J.; Gallezot, J.D.; Planeta-Wilson, B.; Lin, S.F.; Williams, W.A.; van Dyck, C.H.; Malison, R.T.; Carson, R.E.; Ding, Y.S. Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol. Psychiatry, 2010, 68(9), 854-860.
[http://dx.doi.org/10.1016/j.biopsych.2010.06.017] [PMID: 20691429]
[76]
Benson, N.; Snelder, N.; Ploeger, B.; Napier, C.; Sale, H.; Birdsall, N.J.; Butt, R.P.; van der Graaf, P.H. Estimation of binding rate constants using a simultaneous mixed-effects method: application to monoamine transporter reuptake inhibitor reboxetine. Br. J. Pharmacol., 2010, 160(2), 389-398.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00719.x] [PMID: 20423348]
[77]
Yang, H.; Qin, C.; Li, Y.H.; Tao, L.; Zhou, J.; Yu, C.Y.; Xu, F.; Chen, Z.; Zhu, F.; Chen, Y.Z. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res., 2016, 44(D1), D1069-D1074.
[http://dx.doi.org/10.1093/nar/gkv1230] [PMID: 26578601]
[78]
Volkow, N.D.; Fowler, J.S.; Wang, G.J.; Baler, R.; Telang, F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology, 2009, 56(Suppl. 1), 3-8.
[http://dx.doi.org/10.1016/j.neuropharm.2008.05.022] [PMID: 18617195]
[79]
Lambert, O.; Bourin, M. SNRIs: mechanism of action and clinical features. Expert Rev. Neurother., 2002, 2(6), 849-858.
[http://dx.doi.org/10.1586/14737175.2.6.849] [PMID: 19810918]
[80]
Wang, P.; Fu, T.; Zhang, X.; Yang, F.; Zheng, G.; Xue, W.; Chen, Y.; Yao, X.; Zhu, F. Differentiating physicochemical properties between NDRIs and sNRIs clinically important for the treatment of ADHD. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(11 Pt A), 2766-2777.
[http://dx.doi.org/10.1016/j.bbagen.2017.07.022] [PMID: 28757337]
[81]
Maneeton, B.; Maneeton, N.; Likhitsathian, S.; Suttajit, S.; Narkpongphun, A.; Srisurapanont, M.; Woottiluk, P. Comparative efficacy, acceptability, and tolerability of lisdexamfetamine in child and adolescent ADHD: a meta-analysis of randomized, controlled trials. Drug Des. Devel. Ther., 2015, 9, 1927-1936.
[http://dx.doi.org/10.2147/DDDT.S79071] [PMID: 25897203]
[82]
Sharma, H.; Santra, S.; Dutta, A. Triple reuptake inhibitors as potential next-generation antidepressants: a new hope? Future Med. Chem., 2015, 7(17), 2385-2406.
[http://dx.doi.org/10.4155/fmc.15.134] [PMID: 26619226]
[83]
Subbaiah, M.A.M. Triple reuptake inhibitors as potential therapeutics for depression and other disorders: design paradigm and developmental challenges. J. Med. Chem., 2018, 61(6), 2133-2165.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01827] [PMID: 28731336]
[84]
Lane, R.M. Antidepressant drug development: Focus on triple monoamine reuptake inhibition. J. Psychopharmacol. (Oxford), 2015, 29(5), 526-544.
[http://dx.doi.org/10.1177/0269881114553252] [PMID: 25315829]
[85]
Liu, S.; Zha, C.; Nacro, K.; Hu, M.; Cui, W.; Yang, Y.L.; Bhatt, U.; Sambandam, A.; Isherwood, M.; Yet, L.; Herr, M.T.; Ebeltoft, S.; Hassler, C.; Fleming, L.; Pechulis, A.D.; Payen-Fornicola, A.; Holman, N.; Milanowski, D.; Cotterill, I.; Mozhaev, V.; Khmelnitsky, Y.; Guzzo, P.R.; Sargent, B.J.; Molino, B.F.; Olson, R.; King, D.; Lelas, S.; Li, Y.W.; Johnson, K.; Molski, T.; Orie, A.; Ng, A.; Haskell, R.; Clarke, W.; Bertekap, R.; O’Connell, J.; Lodge, N.; Sinz, M.; Adams, S.; Zaczek, R.; Macor, J.E. Design and synthesis of 4-heteroaryl 1,2,3,4-tetrahydroisoquinolines as triple reuptake inhibitors. ACS Med. Chem. Lett., 2014, 5(7), 760-765.
[http://dx.doi.org/10.1021/ml500053b] [PMID: 25050161]
[86]
Tao, L.; Zhu, F.; Xu, F.; Chen, Z.; Jiang, Y.Y.; Chen, Y.Z. Co-targeting cancer drug escape pathways confers clinical advantage for multi-target anticancer drugs. Pharmacol. Res., 2015, 102, 123-131.
[http://dx.doi.org/10.1016/j.phrs.2015.09.019] [PMID: 26438971]
[87]
Sanchez, C.; Asin, K.E.; Artigas, F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol. Ther., 2015, 145, 43-57.
[http://dx.doi.org/10.1016/j.pharmthera.2014.07.001] [PMID: 25016186]
[88]
Connolly, K.R.; Thase, M.E. Vortioxetine: a new treatment for major depressive disorder. Expert Opin. Pharmacother., 2016, 17(3), 421-431.
[http://dx.doi.org/10.1517/14656566.2016.1133588] [PMID: 26679430]
[89]
Tao, L.; Zhu, F.; Qin, C.; Zhang, C.; Xu, F.; Tan, C.Y.; Jiang, Y.Y.; Chen, Y.Z. Nature’s contribution to today’s pharmacopeia. Nat. Biotechnol., 2014, 32(10), 979-980.
[http://dx.doi.org/10.1038/nbt.3034] [PMID: 25299914]
[90]
Mnie-Filali, O.; El Mansari, M.; Scarna, H.; Zimmer, L.; Sánchez, C.; Haddjeri, N. [Escitalopram: a selective inhibitor and allosteric modulator of the serotonin transporter]. Encephale, 2007, 33(6), 965-972.
[http://dx.doi.org/10.1016/j.encep.2007.11.001] [PMID: 18789789]
[91]
Larsen, M.A.; Plenge, P.; Andersen, J.; Eildal, J.N.; Kristensen, A.S.; Bøgesø, K.P.; Gether, U.; Strømgaard, K.; Bang-Andersen, B.; Loland, C.J. Structure-activity relationship studies of citalopram derivatives: examining substituents conferring selectivity for the allosteric site in the 5-HT transporter. Br. J. Pharmacol., 2016, 173(5), 925-936.
[http://dx.doi.org/10.1111/bph.13411] [PMID: 26699847]
[92]
Iversen, L. Neurotransmitter transporters: fruitful targets for CNS drug discovery. Mol. Psychiatry, 2000, 5(4), 357-362.
[http://dx.doi.org/10.1038/sj.mp.4000728] [PMID: 10889545]
[93]
Mortensen, O.V.; Kortagere, S. Designing modulators of monoamine transporters using virtual screening techniques. Front. Pharmacol., 2015, 6, 223.
[http://dx.doi.org/10.3389/fphar.2015.00223] [PMID: 26483692]
[94]
Indarte, M.; Liu, Y.; Madura, J.D.; Surratt, C.K. Receptor-based discovery of a plasmalemmal monoamine transporter inhibitor via high throughput docking and pharmacophore modeling. ACS Chem. Neurosci., 2010, 1(3), 223-233.
[http://dx.doi.org/10.1021/cn900032u] [PMID: 20352074]
[95]
Erol, I.; Aksoydan, B.; Kantarcioglu, I.; Salmas, R.E.; Durdagi, S. Identification of novel serotonin reuptake inhibitors targeting central and allosteric binding sites: A virtual screening and molecular dynamics simulations study. J. Mol. Graph. Model., 2017, 74, 193-202.
[http://dx.doi.org/10.1016/j.jmgm.2017.02.001] [PMID: 28499269]
[96]
Topiol, S.; Bang-Andersen, B.; Sanchez, C.; Bøgesø, K.P. Exploration of insights, opportunities and caveats provided by the X-ray structures of hSERT. Bioorg. Med. Chem. Lett., 2016, 26(20), 5058-5064.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.087] [PMID: 27624075]
[97]
Andersen, J.; Ladefoged, L.K.; Wang, D.; Kristensen, T.N.; Bang-Andersen, B.; Kristensen, A.S.; Schiøtt, B.; Strømgaard, K. Binding of the multimodal antidepressant drug vortioxetine to the human serotonin transporter. ACS Chem. Neurosci., 2015, 6(11), 1892-1900.
[http://dx.doi.org/10.1021/acschemneuro.5b00225] [PMID: 26389667]
[98]
Xue, W.; Wang, P.; Tu, G.; Yang, F.; Zheng, G.; Li, X.; Li, X.; Chen, Y.; Yao, X.; Zhu, F. Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys. Chem. Chem. Phys., 2018, 20(9), 6606-6616.
[http://dx.doi.org/10.1039/C7CP07869B] [PMID: 29451287]
[99]
Zhu, F.; Li, X.X.; Yang, S.Y.; Chen, Y.Z. Clinical success of drug targets prospectively predicted by in silico study. Trends Pharmacol. Sci., 2018, 39(3), 229-231.
[http://dx.doi.org/10.1016/j.tips.2017.12.002] [PMID: 29295742]
[100]
Zhu, F.; Ma, X.H.; Qin, C.; Tao, L.; Liu, X.; Shi, Z.; Zhang, C.L.; Tan, C.Y.; Chen, Y.Z.; Jiang, Y.Y. Drug discovery prospect from untapped species: indications from approved natural product drugs. PLoS One, 2012, 7(7) e39782
[http://dx.doi.org/10.1371/journal.pone.0039782] [PMID: 22808057]
[101]
Zhu, F.; Qin, C.; Tao, L.; Liu, X.; Shi, Z.; Ma, X.; Jia, J.; Tan, Y.; Cui, C.; Lin, J.; Tan, C.; Jiang, Y.; Chen, Y. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc. Natl. Acad. Sci. USA, 2011, 108(31), 12943-12948.
[http://dx.doi.org/10.1073/pnas.1107336108] [PMID: 21768386]
[102]
Wang, P.; Yang, F.; Yang, H.; Xu, X.; Liu, D.; Xue, W.; Zhu, F. Identification of dual active agents targeting 5-HT1A and SERT by combinatorial virtual screening methods. Biomed. Mater. Eng., 2015, 26(Suppl. 1), S2233-S2239.
[http://dx.doi.org/10.3233/BME-151529] [PMID: 26406003]
[103]
Yang, F.Y.; Fu, T.T.; Zhang, X.Y.; Hu, J.; Xue, W.W.; Zheng, G.X.; Li, B.; Li, Y.H.; Yao, X.J.; Zhu, F. Comparison of computational model and X-ray crystal structure of human serotonin transporter: potential application for the pharmacology of human monoamine transporters. Mol. Simul., 2017, 43(13-16), 1089-1098.
[http://dx.doi.org/10.1080/08927022.2017.1309653]
[104]
Seddik, A.; Geerke, D.P.; Stockner, T.; Holy, M.; Kudlacek, O.; Cozzi, N.V.; Ruoho, A.E.; Sitte, H.H.; Ecker, G.F. Combined simulation and mutation studies to elucidate selectivity of unsubstituted amphetamine-like cathinones at the dopamine transporter. Mol. Inform., 2017, 36(5-6)
[http://dx.doi.org/10.1002/minf.201600094] [PMID: 27860344]
[105]
Seddik, A.; Holy, M.; Weissensteiner, R.; Zdrazil, B.; Sitte, H.H.; Ecker, G.F. Probing the selectivity of monoamine transporter substrates by means of molecular modeling. Mol. Inform., 2013, 32(5-6), 409-413.
[http://dx.doi.org/10.1002/minf.201300013] [PMID: 23956802]
[106]
Koldsø, H.; Severinsen, K.; Tran, T.T.; Celik, L.; Jensen, H.H.; Wiborg, O.; Schiøtt, B.; Sinning, S. The two enantiomers of citalopram bind to the human serotonin transporter in reversed orientations. J. Am. Chem. Soc., 2010, 132(4), 1311-1322.
[http://dx.doi.org/10.1021/ja906923j] [PMID: 20055463]
[107]
Bisagno, V.; González, B.; Urbano, F.J. Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits. Pharmacol. Res., 2016, 109, 108-118.
[http://dx.doi.org/10.1016/j.phrs.2016.01.013] [PMID: 26826399]
[108]
Schmeichel, B.E.; Zemlan, F.P.; Berridge, C.W. A selective dopamine reuptake inhibitor improves prefrontal cortex-dependent cognitive function: potential relevance to attention deficit hyperactivity disorder. Neuropharmacology, 2013, 64, 321-328.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.005] [PMID: 22796428]
[109]
Heal, D.J.; Gosden, J.; Smith, S.L. Dopamine reuptake transporter (DAT) “inverse agonism”--a novel hypothesis to explain the enigmatic pharmacology of cocaine. Neuropharmacology, 2014, 87, 19-40.
[http://dx.doi.org/10.1016/j.neuropharm.2014.06.012] [PMID: 24953830]
[110]
Mavel, S.; Meheux, N.; Guilloteau, D.; Emond, P. Synthesis and in vitro evaluation of fluorinated diphenyloxide derivatives and sulfur analogs as serotonin transporter ligands. Bioorg. Med. Chem., 2010, 18(1), 236-241.
[http://dx.doi.org/10.1016/j.bmc.2009.10.062] [PMID: 19926484]
[111]
Gu, X.; Izenwasser, S.; Wade, D.; Housman, A.; Gulasey, G.; Rhoden, J.B.; Savoie, C.D.; Mobley, D.L.; Lomenzo, S.A.; Trudell, M.L. Synthesis and structure-activity studies of benzyl ester meperidine and normeperidine derivatives as selective serotonin transporter ligands. Bioorg. Med. Chem., 2010, 18(23), 8356-8364.
[http://dx.doi.org/10.1016/j.bmc.2010.09.060] [PMID: 20980153]
[112]
Nencetti, S.; Mazzoni, M.R.; Ortore, G.; Lapucci, A.; Giuntini, J.; Orlandini, E.; Banti, I.; Nuti, E.; Lucacchini, A.; Giannaccini, G.; Rossello, A. Synthesis, molecular docking and binding studies of selective serotonin transporter inhibitors. Eur. J. Med. Chem., 2011, 46(3), 825-834.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.018] [PMID: 21272963]
[113]
Vu, A.T.; Cohn, S.T.; Zhang, P.; Kim, C.Y.; Mahaney, P.E.; Bray, J.A.; Johnston, G.H.; Koury, E.J.; Cosmi, S.A.; Deecher, D.C.; Smith, V.A.; Harrison, J.E.; Leventhal, L.; Whiteside, G.T.; Kennedy, J.D.; Trybulski, E.J. 1-(Indolin-1-yl)-1-phenyl-3-propan-2-olamines as potent and selective norepinephrine reuptake inhibitors. J. Med. Chem., 2010, 53(5), 2051-2062.
[http://dx.doi.org/10.1021/jm901559e] [PMID: 20131864]
[114]
O’Neill, D.J.; Adedoyin, A.; Alfinito, P.D.; Bray, J.A.; Cosmi, S.; Deecher, D.C.; Fensome, A.; Harrison, J.; Leventhal, L.; Mann, C.; McComas, C.C.; Sullivan, N.R.; Spangler, T.B.; Uveges, A.J.; Trybulski, E.J.; Whiteside, G.T.; Zhang, P. Discovery of novel selective norepinephrine reuptake inhibitors: 4-[3-aryl-2,2-dioxido-2,1,3-benzothiadiazol-1(3H)-yl]-1-(methylamino)butan-2-ols (WYE-103231). J. Med. Chem., 2010, 53(11), 4511-4521.
[http://dx.doi.org/10.1021/jm100053t] [PMID: 20462211]
[115]
Banister, S.D.; Moussa, I.A.; Jordan, M.J.; Coster, M.J.; Kassiou, M. Oxo-bridged isomers of aza-trishomocubane sigma (sigma) receptor ligands: Synthesis, in vitro binding, and molecular modeling. Bioorg. Med. Chem. Lett., 2010, 20(1), 145-148.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.019] [PMID: 19954972]
[116]
Kaushal, N.; Seminerio, M.J.; Robson, M.J.; McCurdy, C.R.; Matsumoto, R.R. Pharmacological evaluation of SN79, a sigma (σ) receptor ligand, against methamphetamine-induced neurotoxicity in vivo. Eur. Neuropsychopharmacol., 2013, 23(8), 960-971.
[http://dx.doi.org/10.1016/j.euroneuro.2012.08.005] [PMID: 22921523]
[117]
Banister, S.D.; Moussa, I.A.; Beinat, C.; Reynolds, A.J.; Schiavini, P.; Jorgensen, W.T.; Kassiou, M. Trishomocubane as a scaffold for the development of selective dopamine transporter (DAT) ligands. Bioorg. Med. Chem. Lett., 2011, 21(1), 38-41.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.075] [PMID: 21146989]
[118]
Motel, W.C.; Healy, J.R.; Viard, E.; Pouw, B.; Martin, K.; Matsumoto, R.R.; Coop, A. Chlorophenylpiperazine analogues as high affinity dopamine transporter ligands. Bioorg. Med. Chem. Lett., 2013, 23(24), 6920-6922.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.038] [PMID: 24211020]
[119]
Negus, S.S.; Banks, M.L. Decoding the structure of abuse potential for new psychoactive substances: structure-activity relationships for abuse-related effects of 4-substituted methcathinone analogs. Curr. Top. Behav. Neurosci., 2017, 32, 119-131.
[http://dx.doi.org/10.1007/7854_2016_18] [PMID: 27696217]
[120]
Eshleman, A.J.; Wolfrum, K.M.; Reed, J.F.; Kim, S.O.; Swanson, T.; Johnson, R.A.; Janowsky, A. Structure-activity relationships of substituted cathinones, with transporter binding, uptake, and release. J. Pharmacol. Exp. Ther., 2017, 360(1), 33-47.
[http://dx.doi.org/10.1124/jpet.116.236349] [PMID: 27799294]
[121]
Glennon, R.A.; Dukat, M. Structure-activity relationships of synthetic cathinones. Curr. Top. Behav. Neurosci., 2017, 32, 19-47.
[http://dx.doi.org/10.1007/7854_2016_41] [PMID: 27830576]
[122]
Zhu, F.; Han, L.; Zheng, C.; Xie, B.; Tammi, M.T.; Yang, S.; Wei, Y.; Chen, Y. What are next generation innovative therapeutic targets? Clues from genetic, structural, physicochemical, and systems profiles of successful targets. J. Pharmacol. Exp. Ther., 2009, 330(1), 304-315.
[http://dx.doi.org/10.1124/jpet.108.149955] [PMID: 19357322]
[123]
Angus, D.; Bingham, M.; Buchanan, D.; Dunbar, N.; Gibson, L.; Goodwin, R.; Haunsø, A.; Houghton, A.; Huggett, M.; Morphy, R.; Napier, S.; Nimz, O.; Passmore, J.; Walker, G. The identification, and optimisation of hERG selectivity, of a mixed NET/SERT re-uptake inhibitor for the treatment of pain. Bioorg. Med. Chem. Lett., 2011, 21(1), 271-275.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.021] [PMID: 21112782]
[124]
Tsuruda, P.R.; Yung, J.; Martin, W.J.; Chang, R.; Mai, N.; Smith, J.A. Influence of ligand binding kinetics on functional inhibition of human recombinant serotonin and norepinephrine transporters. J. Pharmacol. Toxicol. Methods, 2010, 61(2), 192-204.
[http://dx.doi.org/10.1016/j.vascn.2009.12.003] [PMID: 20036748]
[125]
Shen, F.; Tsuruda, P.R.; Smith, J.A.; Obedencio, G.P.; Martin, W.J. Relative contributions of norepinephrine and serotonin transporters to antinociceptive synergy between monoamine reuptake inhibitors and morphine in the rat formalin model. PLoS One, 2013, 8(9) e74891
[http://dx.doi.org/10.1371/journal.pone.0074891] [PMID: 24098676]
[126]
Li, B.; Tang, J.; Yang, Q.; Li, S.; Cui, X.; Li, Y.; Chen, Y.; Xue, W.; Li, X.; Zhu, F. NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res., 2017, 45(W1), W162-W170.
[http://dx.doi.org/10.1093/nar/gkx449] [PMID: 28525573]
[127]
Li, B.; Tang, J.; Yang, Q.; Cui, X.; Li, S.; Chen, S.; Cao, Q.; Xue, W.; Chen, N.; Zhu, F. Performance evaluation and online realization of data-driven normalization methods used in lc/ms based untargeted metabolomics analysis. Sci. Rep., 2016, 6, 38881.
[http://dx.doi.org/10.1038/srep38881] [PMID: 27958387]
[128]
Zhu, F.; Han, L.Y.; Chen, X.; Lin, H.H.; Ong, S.; Xie, B.; Zhang, H.L.; Chen, Y.Z. Homology-free prediction of functional class of proteins and peptides by support vector machines. Curr. Protein Pept. Sci., 2008, 9(1), 70-95.
[http://dx.doi.org/10.2174/138920308783565697] [PMID: 18336324]
[129]
Zhu, F.; Zheng, C.J.; Han, L.Y.; Xie, B.; Jia, J.; Liu, X.; Tammi, M.T.; Yang, S.Y.; Wei, Y.Q.; Chen, Y.Z. Trends in the exploration of anticancer targets and strategies in enhancing the efficacy of drug targeting. Curr. Mol. Pharmacol., 2008, 1(3), 213-232.
[http://dx.doi.org/10.2174/1874467210801030213] [PMID: 20021435]
[130]
Rao, H.B.; Zhu, F.; Yang, G.B.; Li, Z.R.; Chen, Y.Z. Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence.Nucleic Acids Res., 2011, 39(Web Server issue), W385-W390.
[http://dx.doi.org/10.1093/nar/gkr284] [PMID: 29609959]
[131]
Li, Y.H.; Wang, P.P.; Li, X.X.; Yu, C.Y.; Yang, H.; Zhou, J.; Xue, W.W.; Tan, J.; Zhu, F. The human kinome targeted by fda approved multi-target drugs and combination products: a comparative study from the drug-target interaction network perspective. PLoS One, 2016, 11(11) e0165737
[http://dx.doi.org/10.1371/journal.pone.0165737] [PMID: 27828998]
[132]
Smith, J.A.; Bourdet, D.L.; Daniels, O.T.; Ding, Y.S.; Gallezot, J.D.; Henry, S.; Kim, K.H.; Kshirsagar, S.; Martin, W.J.; Obedencio, G.P.; Stangeland, E.; Tsuruda, P.R.; Williams, W.; Carson, R.E.; Patil, S.T. Preclinical to clinical translation of CNS transporter occupancy of TD-9855, a novel norepinephrine and serotonin reuptake inhibitor. Int. J. Neuropsychopharmacol., 2014, 18(2) pyu027
[http://dx.doi.org/10.1093/ijnp/pyu027] [PMID: 25522383]
[133]
Vanderzee, P.; Koger, H.S.; Gootjes, J.; Hespe, W. Aryl 1,4-dialk(en)ylpiperazines as selective and very potent inhibitors of dopamine uptake. Eur. J. Med. Chem., 1980, 15(4), 363-370.
[134]
Hsin, L.W.; Chang, L.T.; Rothman, R.B.; Dersch, C.M.; Jacobson, A.E.; Rice, K.C. Design and synthesis of 2- and 3-substituted-3-phenylpropyl analogs of 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine and 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine: role of amino, fluoro, hydroxyl, methoxyl, methyl, methylene, and oxo substituents on affinity for the dopamine and serotonin transporters. J. Med. Chem., 2008, 51(9), 2795-2806.
[http://dx.doi.org/10.1021/jm701270n] [PMID: 18393401]
[135]
Torun, L.; Madras, B.K.; Meltzer, P.C. Synthesis and structure-activity relationship studies of 3-biaryl-8-oxabicyclo[3.2.1]octane-2-carboxylic acid methyl esters. Bioorg. Med. Chem., 2012, 20(8), 2762-2772.
[http://dx.doi.org/10.1016/j.bmc.2012.01.053] [PMID: 22398259]
[136]
Micheli, F.; Cavanni, P.; Arban, R.; Benedetti, R.; Bertani, B.; Bettati, M.; Bettelini, L.; Bonanomi, G.; Braggio, S.; Checchia, A.; Davalli, S.; Di Fabio, R.; Fazzolari, E.; Fontana, S.; Marchioro, C.; Minick, D.; Negri, M.; Oliosi, B.; Read, K.D.; Sartori, I.; Tedesco, G.; Tarsi, L.; Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L. 1-(Aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes and 6-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes: a new series of potent and selective triple reuptake inhibitors. J. Med. Chem., 2010, 53(6), 2534-2551.
[http://dx.doi.org/10.1021/jm901818u] [PMID: 20170186]
[137]
Micheli, F.; Cavanni, P.; Andreotti, D.; Arban, R.; Benedetti, R.; Bertani, B.; Bettati, M.; Bettelini, L.; Bonanomi, G.; Braggio, S.; Carletti, R.; Checchia, A.; Corsi, M.; Fazzolari, E.; Fontana, S.; Marchioro, C.; Merlo-Pich, E.; Negri, M.; Oliosi, B.; Ratti, E.; Read, K.D.; Roscic, M.; Sartori, I.; Spada, S.; Tedesco, G.; Tarsi, L.; Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L.; Di Fabio, R. 6-(3,4-dichlorophenyl)-1-[(methyloxy)methyl]-3-azabicyclo[4.1.0]heptane: a new potent and selective triple reuptake inhibitor. J. Med. Chem., 2010, 53(13), 4989-5001.
[http://dx.doi.org/10.1021/jm100481d] [PMID: 20527970]
[138]
Zhang, F.; Shao, J.; Tian, J.; Zhong, Y.; Ye, L.; Meng, X.; Liu, Q.; Wang, H. Antidepressant-like effects of lpm580153, a novel potent triple reuptake inhibitor. Sci. Rep., 2016, 6, 24233.
[http://dx.doi.org/10.1038/srep24233] [PMID: 27052887]
[139]
Paudel, S.; Acharya, S.; Yoon, G.; Kim, K.M.; Cheon, S.H. Design, synthesis and in vitro activity of 1,4-disubstituted piperazines and piperidines as triple reuptake inhibitors. Bioorg. Med. Chem., 2017, 25(7), 2266-2276.
[http://dx.doi.org/10.1016/j.bmc.2017.02.051] [PMID: 28274674]
[140]
Paudel, S.; Min, X.; Acharya, S.; Khadka, D.B.; Yoon, G.; Kim, K.M.; Cheon, S.H. Triple reuptake inhibitors: Design, synthesis and structure-activity relationship of benzylpiperidine-tetrazoles. Bioorg. Med. Chem., 2017, 25(20), 5278-5289.
[http://dx.doi.org/10.1016/j.bmc.2017.07.046] [PMID: 28807575]
[141]
Zhu, X.Y.; Etukala, J.R.; Eyunni, S.V.; Setola, V.; Roth, B.L.; Ablordeppey, S.Y. Benzothiazoles as probes for the 5HT1A receptor and the serotonin transporter (SERT): a search for new dual-acting agents as potential antidepressants. Eur. J. Med. Chem., 2012, 53, 124-132.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.042] [PMID: 22520153]
[142]
Czopek, A.; Kołaczkowski, M.; Bucki, A.; Byrtus, H.; Pawłowski, M.; Siwek, A.; Bojarski, A.J.; Bednarski, M.; Wróbel, D.; Wesołowska, A. Novel mannich bases, 5-arylimidazolidine-2,4-dione derivatives with dual 5-HT(1A) receptor and serotonin transporter affinity. Arch. Pharm. (Weinheim), 2013, 346(2), 98-109.
[http://dx.doi.org/10.1002/ardp.201200378] [PMID: 23288448]
[143]
Brinkø, A.; Larsen, M.T.; Koldsø, H.; Besenbacher, L.; Kolind, A.; Schiøtt, B.; Sinning, S.; Jensen, H.H. Synthesis and inhibitory evaluation of 3-linked imipramines for the exploration of the S2 site of the human serotonin transporter. Bioorg. Med. Chem., 2016, 24(12), 2725-2738.
[http://dx.doi.org/10.1016/j.bmc.2016.04.039] [PMID: 27160055]
[144]
Topiol, S.; Bang-Andersen, B.; Sanchez, C.; Plenge, P.; Loland, C.J.; Juhl, K.; Larsen, K.; Bregnedal, P.; Bøgesø, K.P. X-ray structure based evaluation of analogs of citalopram: Compounds with increased affinity and selectivity compared with R-citalopram for the allosteric site (S2) on hSERT. Bioorg. Med. Chem. Lett., 2017, 27(3), 470-478.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.037] [PMID: 28041833]
[145]
Kumar, V.; Rahbek-Clemmensen, T.; Billesbølle, C.B.; Jorgensen, T.N.; Gether, U.; Newman, A.H. Novel and high affinity fluorescent ligands for the serotonin transporter based on (s)-citalopram. ACS Med. Chem. Lett., 2014, 5(6), 696-699.
[http://dx.doi.org/10.1021/ml5000806] [PMID: 24944746]
[146]
Tomlinson, I.D.; Iwamoto, H.; Blakely, R.D.; Rosenthal, S.J. Biotin tethered homotryptamine derivatives: high affinity probes of the human serotonin transporter (hSERT). Bioorg. Med. Chem. Lett., 2011, 21(6), 1678-1682.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.102] [PMID: 21334895]
[147]
Liu, J.; Zhu, L.; Plössl, K.; Lieberman, B.P.; Kung, H.F. Synthesis and evaluation of novel N-fluoropyridyl derivatives of tropane as potential PET imaging agents for the dopamine transporter. Bioorg. Med. Chem. Lett., 2011, 21(10), 2962-2965.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.051] [PMID: 21458259]
[148]
Zhou, Z.L.; Liu, H.L.; Wu, J.W.; Tsao, C.W.; Chen, W.H.; Liu, K.T.; Ho, Y. Combining structure-based pharmacophore and in silico approaches to discover novel selective serotonin reuptake inhibitors. Chem. Biol. Drug Des., 2013, 82(6), 705-717.
[http://dx.doi.org/10.1111/cbdd.12192] [PMID: 23865625]
[149]
Freyberg, Z.; Sonders, M.S.; Aguilar, J.I.; Hiranita, T.; Karam, C.S.; Flores, J.; Pizzo, A.B.; Zhang, Y.; Farino, Z.J.; Chen, A.; Martin, C.A.; Kopajtic, T.A.; Fei, H.; Hu, G.; Lin, Y.Y.; Mosharov, E.V.; McCabe, B.D.; Freyberg, R.; Wimalasena, K.; Hsin, L.W.; Sames, D.; Krantz, D.E.; Katz, J.L.; Sulzer, D.; Javitch, J.A. Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nat. Commun., 2016, 7, 10652.
[http://dx.doi.org/10.1038/ncomms10652] [PMID: 26879809]
[150]
Comley, R.A.; Salinas, C.A.; Slifstein, M.; Petrone, M.; Marzano, C.; Bennacef, I.; Shotbolt, P.; Van der Aart, J.; Neve, M.; Iavarone, L.; Gomeni, R.; Laruelle, M.; Gray, F.A.; Gunn, R.N.; Rabiner, E.A. Monoamine transporter occupancy of a novel triple reuptake inhibitor in baboons and humans using positron emission tomography. J. Pharmacol. Exp. Ther., 2013, 346(2), 311-317.
[http://dx.doi.org/10.1124/jpet.112.202895] [PMID: 23685546]
[151]
Owens, M.J.; Knight, D.L.; Nemeroff, C.B. Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol. Psychiatry, 2001, 50(5), 345-350.
[http://dx.doi.org/10.1016/S0006-3223(01)01145-3] [PMID: 11543737]
[152]
Uguz, F. Gastrointestinal side effects in the baby of a breastfeeding woman treated with low-dose fluvoxamine. J. Hum. Lact., 2015, 31(3), 371-373.
[http://dx.doi.org/10.1177/0890334415582207] [PMID: 25896469]
[153]
Tatsumi, M.; Groshan, K.; Blakely, R.D.; Richelson, E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur. J. Pharmacol., 1997, 340(2-3), 249-258.
[http://dx.doi.org/10.1016/S0014-2999(97)01393-9] [PMID: 9537821]
[154]
Owens, M.J.; Morgan, W.N.; Plott, S.J.; Nemeroff, C.B. Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J. Pharmacol. Exp. Ther., 1997, 283(3), 1305-1322.
[PMID: 9400006]
[155]
Sanchez, C.; Reines, E.H.; Montgomery, S.A. A comparative review of escitalopram, paroxetine, and sertraline: Are they all alike? Int. Clin. Psychopharmacol., 2014, 29(4), 185-196.
[http://dx.doi.org/10.1097/YIC.0000000000000023] [PMID: 24424469]
[156]
Edwards, J.G.; Glen-Bott, M. Does viloxazine have epileptogenic properties? J. Neurol. Neurosurg. Psychiatry, 1984, 47(9), 960-964.
[http://dx.doi.org/10.1136/jnnp.47.9.960] [PMID: 6434699]
[157]
Chebili, S.; Abaoub, A.; Mezouane, B.; Le Goff, J.F. [Antidepressants and sexual stimulation: the correlation]. Encephale, 1998, 24(3), 180-184.
[PMID: 9696909]
[158]
Grupper, C. [New iatrogenic acne: acne caused by amineptin (Survector)]. Ann. Dermatol. Venereol., 1988, 115(11), 1174-1176.
[PMID: 2977079]
[159]
Castot, A.; Benzaken, C.; Wagniart, F.; Efthymiou, M.L. [Amineptin abuse. Analysis of 155 cases. An evaluation of the official cooperative survey of the Regional Centers of Pharmacovigilance]. Therapie, 1990, 45(5), 399-405.
[PMID: 2260032]
[160]
Loland, C.J.; Mereu, M.; Okunola, O.M.; Cao, J.; Prisinzano, T.E.; Mazier, S.; Kopajtic, T.; Shi, L.; Katz, J.L.; Tanda, G.; Newman, A.H. R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol. Psychiatry, 2012, 72(5), 405-413.
[http://dx.doi.org/10.1016/j.biopsych.2012.03.022] [PMID: 22537794]
[161]
Battleday, R.M.; Brem, A.K. Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: A systematic review. Eur. Neuropsychopharmacol., 2015, 25(11), 1865-1881.
[http://dx.doi.org/10.1016/j.euroneuro.2015.07.028] [PMID: 26381811]
[162]
Deecher, D.C.; Beyer, C.E.; Johnston, G.; Bray, J.; Shah, S.; Abou-Gharbia, M.; Andree, T.H. Desvenlafaxine succinate: A new serotonin and norepinephrine reuptake inhibitor. J. Pharmacol. Exp. Ther., 2006, 318(2), 657-665.
[http://dx.doi.org/10.1124/jpet.106.103382] [PMID: 16675639]
[163]
Bymaster, F.P.; Dreshfield-Ahmad, L.J.; Threlkeld, P.G.; Shaw, J.L.; Thompson, L.; Nelson, D.L.; Hemrick-Luecke, S.K.; Wong, D.T. Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacology, 2001, 25(6), 871-880.
[http://dx.doi.org/10.1016/S0893-133X(01)00298-6] [PMID: 11750180]
[164]
Wong, M.C.; Chung, J.W.; Wong, T.K. Effects of treatments for symptoms of painful diabetic neuropathy: systematic review. BMJ, 2007, 335(7610), 87.
[http://dx.doi.org/10.1136/bmj.39213.565972.AE] [PMID: 17562735]
[165]
Citrome, L. Levomilnacipran for major depressive disorder: a systematic review of the efficacy and safety profile for this newly approved antidepressant--what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int. J. Clin. Pract., 2013, 67(11), 1089-1104.
[http://dx.doi.org/10.1111/ijcp.12298] [PMID: 24016209]
[166]
Sabatucci, J.P.; Mahaney, P.E.; Leiter, J.; Johnston, G.; Burroughs, K.; Cosmi, S.; Zhang, Y.; Ho, D.; Deecher, D.C.; Trybulski, E. Heterocyclic cycloalkanol ethylamines as norepinephrine reuptake inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(9), 2809-2812.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.059] [PMID: 20378347]
[167]
Cipriani, A.; Furukawa, T.A.; Salanti, G.; Geddes, J.R.; Higgins, J.P.; Churchill, R.; Watanabe, N.; Nakagawa, A.; Omori, I.M.; McGuire, H.; Tansella, M.; Barbui, C. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet, 2009, 373(9665), 746-758.
[http://dx.doi.org/10.1016/S0140-6736(09)60046-5] [PMID: 19185342]
[168]
Simmler, L.D.; Buser, T.A.; Donzelli, M.; Schramm, Y.; Dieu, L.H.; Huwyler, J.; Chaboz, S.; Hoener, M.C.; Liechti, M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol., 2013, 168(2), 458-470.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02145.x] [PMID: 22897747]
[169]
Vitiello, B. Understanding the risk of using medications for attention deficit hyperactivity disorder with respect to physical growth and cardiovascular function. Child Adolesc. Psychiatr. Clin. N. Am., 2008, 17(2), 459-474.
[http://dx.doi.org/10.1016/j.chc.2007.11.010] [PMID: 18295156]
[170]
Williard, R.L.; Middaugh, L.D.; Zhu, H.J.; Patrick, K.S. Methylphenidate and its ethanol transesterification metabolite ethylphenidate: brain disposition, monoamine transporters and motor activity. Behav. Pharmacol., 2007, 18(1), 39-51.
[http://dx.doi.org/10.1097/FBP.0b013e3280143226] [PMID: 17218796]
[171]
Cascade, E.; Kalali, A.H.; Wigal, S.B. Real-world data on: attention deficit hyperactivity disorder medication side effects. Psychiatry (Edgmont Pa.), 2010, 7(4), 13-15.
[PMID: 20508803]
[172]
Wynchank, D.; Bijlenga, D.; Beekman, A.T.; Kooij, J.J.S.; Penninx, B.W. Adult attention-deficit/hyperactivity disorder (ADHD) and insomnia: an update of the literature. Curr. Psychiatry Rep., 2017, 19(12), 98.
[http://dx.doi.org/10.1007/s11920-017-0860-0] [PMID: 29086065]
[173]
Markowitz, J.S.; Patrick, K.S. Differential pharmacokinetics and pharmacodynamics of methylphenidate enantiomers: does chirality matter? J. Clin. Psychopharmacol., 2008, 28(3)(Suppl. 2), S54-S61.
[http://dx.doi.org/10.1097/JCP.0b013e3181733560] [PMID: 18480678]
[174]
Markowitz, J.S.; DeVane, C.L.; Pestreich, L.K.; Patrick, K.S.; Muniz, R. A comprehensive in vitro screening of d-, l-, and dl-threo-methylphenidate: an exploratory study. J. Child Adolesc. Psychopharmacol., 2006, 16(6), 687-698.
[http://dx.doi.org/10.1089/cap.2006.16.687] [PMID: 17201613]
[175]
Hussain, F.; Frare, R.W.; Py Berrios, K.L. Drug abuse identification and pain management in dental patients: a case study and literature review. Gen. Dent., 2012, 60(4), 334-345.
[PMID: 22782046]
[176]
Fava, M.; Rush, A.J.; Thase, M.E.; Clayton, A.; Stahl, S.M.; Pradko, J.F.; Johnston, J.A. 15 years of clinical experience with bupropion HCl: from bupropion to bupropion SR to bupropion XL. Prim. Care Companion J. Clin. Psychiatry, 2005, 7(3), 106-113.
[http://dx.doi.org/10.4088/PCC.v07n0305] [PMID: 16027765]
[177]
Skolnick, P.; Popik, P.; Janowsky, A.; Beer, B.; Lippa, A.S. Antidepressant-like actions of DOV 21,947: a “triple” reuptake inhibitor. Eur. J. Pharmacol., 2003, 461(2-3), 99-104.
[http://dx.doi.org/10.1016/S0014-2999(03)01310-4] [PMID: 12586204]
[178]
Zhang, R.; Li, X.; Shi, Y.; Shao, Y.; Sun, K.; Wang, A.; Sun, F.; Liu, W.; Wang, D.; Jin, J.; Li, Y. The effects of LPM570065, a novel triple reuptake inhibitor, on extracellular serotonin, dopamine and norepinephrine levels in rats. PLoS One, 2014, 9(3) e91775
[http://dx.doi.org/10.1371/journal.pone.0091775] [PMID: 24614602]
[179]
Skolnick, P.; Krieter, P.; Tizzano, J.; Basile, A.; Popik, P.; Czobor, P.; Lippa, A. Preclinical and clinical pharmacology of DOV 216,303, a “triple” reuptake inhibitor. CNS Drug Rev., 2006, 12(2), 123-134.
[http://dx.doi.org/10.1111/j.1527-3458.2006.00123.x] [PMID: 16958986]
[180]
Learned, S.; Graff, O.; Roychowdhury, S.; Moate, R.; Krishnan, K.R.; Archer, G.; Modell, J.G.; Alexander, R.; Zamuner, S.; Lavergne, A.; Evoniuk, G.; Ratti, E. Efficacy, safety, and tolerability of a triple reuptake inhibitor GSK372475 in the treatment of patients with major depressive disorder: two randomized, placebo- and active-controlled clinical trials. J. Psychopharmacol. (Oxford), 2012, 26(5), 653-662.
[http://dx.doi.org/10.1177/0269881111424931] [PMID: 22048884]
[181]
Koblan, K.S.; Hopkins, S.C.; Sarma, K.; Jin, F.; Goldman, R.; Kollins, S.H.; Loebel, A. Dasotraline for the treatment of attention-deficit/hyperactivity disorder: a randomized, double-blind, placebo-controlled, proof-of-concept trial in adults.neuropsychopharmacology, 2015, 40(12), 2745-2752.
[http://dx.doi.org/10.1038/npp.2015.124] [PMID: 25948101]
[182]
Heinrich, T.; Böttcher, H.; Gericke, R.; Bartoszyk, G.D.; Anzali, S.; Seyfried, C.A.; Greiner, H.E.; Van Amsterdam, C. Synthesis and structure--activity relationship in a class of indolebutylpiperazines as dual 5-HT(1A) receptor agonists and serotonin reuptake inhibitors. J. Med. Chem., 2004, 47(19), 4684-4692.
[http://dx.doi.org/10.1021/jm040793q] [PMID: 15341484]
[183]
Bang-Andersen, B.; Ruhland, T.; Jørgensen, M.; Smith, G.; Frederiksen, K.; Jensen, K.G.; Zhong, H.; Nielsen, S.M.; Hogg, S.; Mørk, A.; Stensbøl, T.B. Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J. Med. Chem., 2011, 54(9), 3206-3221.
[http://dx.doi.org/10.1021/jm101459g] [PMID: 21486038]
[184]
Yamashita, A.; Singh, S.K.; Kawate, T.; Jin, Y.; Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature, 2005, 437(7056), 215-223.
[http://dx.doi.org/10.1038/nature03978] [PMID: 16041361]
[185]
Singh, S.K.; Yamashita, A.; Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature, 2007, 448(7156), 952-956.
[http://dx.doi.org/10.1038/nature06038] [PMID: 17687333]
[186]
Singh, S.K.; Piscitelli, C.L.; Yamashita, A.; Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science, 2008, 322(5908), 1655-1661.
[http://dx.doi.org/10.1126/science.1166777] [PMID: 19074341]
[187]
Quick, M.; Winther, A.M.; Shi, L.; Nissen, P.; Weinstein, H.; Javitch, J.A. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5563-5568.
[http://dx.doi.org/10.1073/pnas.0811322106] [PMID: 19307590]
[188]
Kroncke, B.M.; Horanyi, P.S.; Columbus, L. Structural origins of nitroxide side chain dynamics on membrane protein α-helical sites. Biochemistry, 2010, 49(47), 10045-10060.
[http://dx.doi.org/10.1021/bi101148w] [PMID: 20964375]
[189]
Piscitelli, C.L.; Gouaux, E. Insights into transport mechanism from LeuT engineered to transport tryptophan. EMBO J., 2012, 31(1), 228-235.
[http://dx.doi.org/10.1038/emboj.2011.353] [PMID: 21952050]
[190]
Krishnamurthy, H.; Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature, 2012, 481(7382), 469-474.
[http://dx.doi.org/10.1038/nature10737] [PMID: 22230955]
[191]
Wang, H.; Elferich, J.; Gouaux, E. Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nat. Struct. Mol. Biol., 2012, 19(2), 212-219.
[http://dx.doi.org/10.1038/nsmb.2215] [PMID: 22245965]
[192]
Kantcheva, A.K.; Quick, M.; Shi, L.; Winther, A.M.; Stolzenberg, S.; Weinstein, H.; Javitch, J.A.; Nissen, P. Chloride binding site of neurotransmitter sodium symporters. Proc. Natl. Acad. Sci. USA, 2013, 110(21), 8489-8494.
[http://dx.doi.org/10.1073/pnas.1221279110] [PMID: 23641004]
[193]
Malinauskaite, L.; Said, S.; Sahin, C.; Grouleff, J.; Shahsavar, A.; Bjerregaard, H.; Noer, P.; Severinsen, K.; Boesen, T.; Schiøtt, B.; Sinning, S.; Nissen, P. A conserved leucine occupies the empty substrate site of LeuT in the Na(+)-free return state. Nat. Commun., 2016, 7, 11673.
[http://dx.doi.org/10.1038/ncomms11673] [PMID: 27221344]
[194]
Indarte, M.; Madura, J.D.; Surratt, C.K. Dopamine transporter comparative molecular modeling and binding site prediction using the LeuT(Aa) leucine transporter as a template. Proteins, 2008, 70(3), 1033-1046.
[http://dx.doi.org/10.1002/prot.21598] [PMID: 17847094]
[195]
Xhaard, H.; Backström, V.; Denessiouk, K.; Johnson, M.S. Coordination of Na(+) by monoamine ligands in dopamine, norepinephrine, and serotonin transporters. J. Chem. Inf. Model., 2008, 48(7), 1423-1437.
[http://dx.doi.org/10.1021/ci700255d] [PMID: 18543980]
[196]
Beuming, T.; Kniazeff, J.; Bergmann, M.L.; Shi, L.; Gracia, L.; Raniszewska, K.; Newman, A.H.; Javitch, J.A.; Weinstein, H.; Gether, U.; Loland, C.J. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci., 2008, 11(7), 780-789.
[http://dx.doi.org/10.1038/nn.2146] [PMID: 18568020]
[197]
Kaufmann, K.W.; Dawson, E.S.; Henry, L.K.; Field, J.R.; Blakely, R.D.; Meiler, J. Structural determinants of species-selective substrate recognition in human and Drosophila serotonin transporters revealed through computational docking studies. Proteins, 2009, 74(3), 630-642.
[http://dx.doi.org/10.1002/prot.22178] [PMID: 18704946]
[198]
Guptaroy, B.; Zhang, M.; Bowton, E.; Binda, F.; Shi, L.; Weinstein, H.; Galli, A.; Javitch, J.A.; Neubig, R.R.; Gnegy, M.E. A juxtamembrane mutation in the N terminus of the dopamine transporter induces preference for an inward-facing conformation. Mol. Pharmacol., 2009, 75(3), 514-524.
[http://dx.doi.org/10.1124/mol.108.048744] [PMID: 19098122]
[199]
Andersen, J.; Taboureau, O.; Hansen, K.B.; Olsen, L.; Egebjerg, J.; Strømgaard, K.; Kristensen, A.S. Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J. Biol. Chem., 2009, 284(15), 10276-10284.
[http://dx.doi.org/10.1074/jbc.M806907200] [PMID: 19213730]
[200]
Ravna, A.W.; Sylte, I.; Dahl, S.G. Structure and localisation of drug binding sites on neurotransmitter transporters. J. Mol. Model., 2009, 15(10), 1155-1164.
[http://dx.doi.org/10.1007/s00894-009-0478-1] [PMID: 19238460]
[201]
Zhou, Z.; Zhen, J.; Karpowich, N.K.; Law, C.J.; Reith, M.E.; Wang, D.N. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat. Struct. Mol. Biol., 2009, 16(6), 652-657.
[http://dx.doi.org/10.1038/nsmb.1602] [PMID: 19430461]
[202]
Tavoulari, S.; Forrest, L.R.; Rudnick, G. Fluoxetine (Prozac) binding to serotonin transporter is modulated by chloride and conformational changes. J. Neurosci., 2009, 29(30), 9635-9643.
[http://dx.doi.org/10.1523/JNEUROSCI.0440-09.2009] [PMID: 19641126]
[203]
Huang, X.; Gu, H.H.; Zhan, C.G. Mechanism for cocaine blocking the transport of dopamine: insights from molecular modeling and dynamics simulations. J. Phys. Chem. B, 2009, 113(45), 15057-15066.
[http://dx.doi.org/10.1021/jp900963n] [PMID: 19831380]
[204]
Andersen, J.; Olsen, L.; Hansen, K.B.; Taboureau, O.; Jørgensen, F.S.; Jørgensen, A.M.; Bang-Andersen, B.; Egebjerg, J.; Strømgaard, K.; Kristensen, A.S. Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J. Biol. Chem., 2010, 285(3), 2051-2063.
[http://dx.doi.org/10.1074/jbc.M109.072587] [PMID: 19892699]
[205]
Gedeon, P.C.; Indarte, M.; Surratt, C.K.; Madura, J.D. Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid bilayer. Proteins, 2010, 78(4), 797-811.
[http://dx.doi.org/10.1002/prot.22601] [PMID: 19899168]
[206]
Sinning, S.; Musgaard, M.; Jensen, M.; Severinsen, K.; Celik, L.; Koldsø, H.; Meyer, T.; Bols, M.; Jensen, H.H.; Schiøtt, B.; Wiborg, O. Binding and orientation of tricyclic antidepressants within the central substrate site of the human serotonin transporter. J. Biol. Chem., 2010, 285(11), 8363-8374.
[http://dx.doi.org/10.1074/jbc.M109.045401] [PMID: 19948720]
[207]
Schmitt, K.C.; Mamidyala, S.; Biswas, S.; Dutta, A.K.; Reith, M.E. Bivalent phenethylamines as novel dopamine transporter inhibitors: evidence for multiple substrate-binding sites in a single transporter. J. Neurochem., 2010, 112(6), 1605-1618.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06583.x] [PMID: 20067583]
[208]
Sucic, S.; Dallinger, S.; Zdrazil, B.; Weissensteiner, R.; Jørgensen, T.N.; Holy, M.; Kudlacek, O.; Seidel, S.; Cha, J.H.; Gether, U.; Newman, A.H.; Ecker, G.F.; Freissmuth, M.; Sitte, H.H. The N terminus of monoamine transporters is a lever required for the action of amphetamines. J. Biol. Chem., 2010, 285(14), 10924-10938.
[http://dx.doi.org/10.1074/jbc.M109.083154] [PMID: 20118234]
[209]
Field, J.R.; Henry, L.K.; Blakely, R.D. Transmembrane domain 6 of the human serotonin transporter contributes to an aqueously accessible binding pocket for serotonin and the psychostimulant 3,4-methylene dioxymethamphetamine. J. Biol. Chem., 2010, 285(15), 11270-11280.
[http://dx.doi.org/10.1074/jbc.M109.093658] [PMID: 20159976]
[210]
Torres-Altoro, M.I.; Kuntz, C.P.; Nichols, D.E.; Barker, E.L. Structural analysis of the extracellular entrance to the serotonin transporter permeation pathway. J. Biol. Chem., 2010, 285(20), 15369-15379.
[http://dx.doi.org/10.1074/jbc.M109.088138] [PMID: 20304925]
[211]
Wenthur, C.J.; Rodríguez, G.J.; Kuntz, C.P.; Barker, E.L. Conformational flexibility of transmembrane helix VII of the human serotonin transporter impacts ion dependence and transport. Biochem. Pharmacol., 2010, 80(9), 1418-1426.
[http://dx.doi.org/10.1016/j.bcp.2010.07.005] [PMID: 20637736]
[212]
Bisgaard, H.; Larsen, M.A.; Mazier, S.; Beuming, T.; Newman, A.H.; Weinstein, H.; Shi, L.; Loland, C.J.; Gether, U. The binding sites for benztropines and dopamine in the dopamine transporter overlap. Neuropharmacology, 2011, 60(1), 182-190.
[http://dx.doi.org/10.1016/j.neuropharm.2010.08.021] [PMID: 20816875]
[213]
Sarker, S.; Weissensteiner, R.; Steiner, I.; Sitte, H.H.; Ecker, G.F.; Freissmuth, M.; Sucic, S. The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol. Pharmacol., 2010, 78(6), 1026-1035.
[http://dx.doi.org/10.1124/mol.110.067538] [PMID: 20829432]
[214]
Tavoulari, S.; Rizwan, A.N.; Forrest, L.R.; Rudnick, G. Reconstructing a chloride-binding site in a bacterial neurotransmitter transporter homologue. J. Biol. Chem., 2011, 286(4), 2834-2842.
[http://dx.doi.org/10.1074/jbc.M110.186064] [PMID: 21115480]
[215]
Shan, J.; Javitch, J.A.; Shi, L.; Weinstein, H. The substrate-driven transition to an inward-facing conformation in the functional mechanism of the dopamine transporter. PLoS One, 2011, 6(1) e16350
[http://dx.doi.org/10.1371/journal.pone.0016350] [PMID: 21298009]
[216]
Hill, E.R.; Huang, X.; Zhan, C.G.; Ivy Carroll, F.; Gu, H.H. Interaction of tyrosine 151 in norepinephrine transporter with the 2β group of cocaine analog RTI-113. Neuropharmacology, 2011, 61(1-2), 112-120.
[http://dx.doi.org/10.1016/j.neuropharm.2011.03.014] [PMID: 21420984]
[217]
Gabrielsen, M.; Ravna, A.W.; Kristiansen, K.; Sylte, I. Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations. J. Mol. Model., 2012, 18(3), 1073-1085.
[http://dx.doi.org/10.1007/s00894-011-1133-1] [PMID: 21670993]
[218]
Koldsø, H.; Noer, P.; Grouleff, J.; Autzen, H.E.; Sinning, S.; Schiøtt, B. Unbiased simulations reveal the inwardfacing conformation of the human serotonin transporter and Na(+) ion release.PLOS Comput. Biol; , 2011, 7, . (10) e1002246
[http://dx.doi.org/10.1371/journal.pcbi.1002246] [PMID: 22046120]
[219]
Gabrielsen, M.; Kurczab, R.; Ravna, A.W.; Kufareva, I.; Abagyan, R.; Chilmonczyk, Z.; Bojarski, A.J.; Sylte, I. Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol. Eur. J. Med. Chem., 2012, 47(1), 24-37.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.056] [PMID: 22071255]
[220]
Jarończyk, M.; Wołosewicz, K.; Gabrielsen, M.; Nowak, G.; Kufareva, I.; Mazurek, A.P.; Ravna, A.W.; Abagyan, R.; Bojarski, A.J.; Sylte, I.; Chilmonczyk, Z. Synthesis, in vitro binding studies and docking of long-chain arylpiperazine nitroquipazine analogues, as potential serotonin transporter inhibitors. Eur. J. Med. Chem., 2012, 49, 200-210.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.012] [PMID: 22309909]
[221]
Wang, C.I.; Shaikh, N.H.; Ramu, S.; Lewis, R.J. A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter. Mol. Pharmacol., 2012, 82(5), 898-909.
[http://dx.doi.org/10.1124/mol.112.080630] [PMID: 22874414]
[222]
Reith, M.E.; Ali, S.; Hashim, A.; Sheikh, I.S.; Theddu, N.; Gaddiraju, N.V.; Mehrotra, S.; Schmitt, K.C.; Murray, T.F.; Sershen, H.; Unterwald, E.M.; Davis, F.A. Novel C-1 substituted cocaine analogs unlike cocaine or benztropine. J. Pharmacol. Exp. Ther., 2012, 343(2), 413-425.
[http://dx.doi.org/10.1124/jpet.112.193771] [PMID: 22895898]
[223]
Plenge, P.; Shi, L.; Beuming, T.; Te, J.; Newman, A.H.; Weinstein, H.; Gether, U.; Loland, C.J. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter. J. Biol. Chem., 2012, 287(47), 39316-39326.
[http://dx.doi.org/10.1074/jbc.M112.371765] [PMID: 23007398]
[224]
Merchant, B.A.; Madura, J.D. Insights from molecular dynamics: the binding site of cocaine in the dopamine transporter and permeation pathways of substrates in the leucine and dopamine transporters. J. Mol. Graph. Model., 2012, 38, 1-12.
[http://dx.doi.org/10.1016/j.jmgm.2012.05.007] [PMID: 23079638]
[225]
Stockner, T.; Montgomery, T.R.; Kudlacek, O.; Weissensteiner, R.; Ecker, G.F.; Freissmuth, M.; Sitte, H.H. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model. PLOS Comput. Biol., 2013, 9(2) e1002909
[http://dx.doi.org/10.1371/journal.pcbi.1002909] [PMID: 23436987]
[226]
Koldsø, H.; Autzen, H.E.; Grouleff, J.; Schiøtt, B. Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations. PLoS One, 2013, 8(6) e63635
[http://dx.doi.org/10.1371/journal.pone.0063635] [PMID: 23776432]
[227]
Beckman, M.L.; Pramod, A.B.; Perley, D.; Henry, L.K. Stereoselective inhibition of serotonin transporters by antimalarial compounds. Neurochem. Int., 2014, 73, 98-106.
[http://dx.doi.org/10.1016/j.neuint.2013.10.009] [PMID: 24161619]
[228]
Wilson, J.N.; Ladefoged, L.K.; Babinchak, W.M.; Schiøtt, B. Binding-induced fluorescence of serotonin transporter ligands: A spectroscopic and structural study of 4-(4-(dimethylamino)phenyl)-1-methylpyridinium (APP(+)) and APP(+) analogues. ACS Chem. Neurosci., 2014, 5(4), 296-304.
[http://dx.doi.org/10.1021/cn400230x] [PMID: 24460204]
[229]
Okunola-Bakare, O.M.; Cao, J.; Kopajtic, T.; Katz, J.L.; Loland, C.J.; Shi, L.; Newman, A.H. Elucidation of structural elements for selectivity across monoamine transporters: novel 2-[(diphenylmethyl)sulfinyl]acetamide (modafinil) analogues. J. Med. Chem., 2014, 57(3), 1000-1013.
[http://dx.doi.org/10.1021/jm401754x] [PMID: 24494745]
[230]
Gabrielsen, M.; Kurczab, R.; Siwek, A.; Wolak, M.; Ravna, A.W.; Kristiansen, K.; Kufareva, I.; Abagyan, R.; Nowak, G.; Chilmonczyk, Z.; Sylte, I.; Bojarski, A.J. Identification of novel serotonin transporter compounds by virtual screening. J. Chem. Inf. Model., 2014, 54(3), 933-943.
[http://dx.doi.org/10.1021/ci400742s] [PMID: 24521202]
[231]
Dahal, R.A.; Pramod, A.B.; Sharma, B.; Krout, D.; Foster, J.D.; Cha, J.H.; Cao, J.; Newman, A.H.; Lever, J.R.; Vaughan, R.A.; Henry, L.K. Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site. J. Biol. Chem., 2014, 289(43), 29712-29727.
[http://dx.doi.org/10.1074/jbc.M114.571521] [PMID: 25179220]
[232]
Sakloth, F.; Kolanos, R.; Mosier, P.D.; Bonano, J.S.; Banks, M.L.; Partilla, J.S.; Baumann, M.H.; Negus, S.S.; Glennon, R.A. Steric parameters, molecular modeling and hydropathic interaction analysis of the pharmacology of para-substituted methcathinone analogues. Br. J. Pharmacol., 2015, 172(9), 2210-2218.
[http://dx.doi.org/10.1111/bph.13043] [PMID: 25522019]
[233]
Cheng, M.H.; Block, E.; Hu, F.; Cobanoglu, M.C.; Sorkin, A.; Bahar, I. Insights into the modulation of dopamine transporter function by amphetamine, orphenadrine, and cocaine binding. Front. Neurol., 2015, 6, 134.
[http://dx.doi.org/10.3389/fneur.2015.00134] [PMID: 26106364]
[234]
Cheng, M.H.; Bahar, I. Molecular mechanism of dopamine transport by human dopamine transporter. Structure, 2015, 23(11), 2171-2181.
[http://dx.doi.org/10.1016/j.str.2015.09.001] [PMID: 26481814]
[235]
Davis, B.A.; Nagarajan, A.; Forrest, L.R.; Singh, S.K. Mechanism of paroxetine (paxil) inhibition of the serotonin transporter. Sci. Rep., 2016, 6, 23789.
[http://dx.doi.org/10.1038/srep23789] [PMID: 27032980]
[236]
Andersen, J.; Ladefoged, L.K.; Kristensen, T.N.; Munro, L.; Grouleff, J.; Stuhr-Hansen, N.; Kristensen, A.S.; Schiøtt, B.; Strømgaard, K. Interrogating the molecular basis for substrate recognition in serotonin and dopamine transporters with high-affinity substrate-based bivalent ligands. ACS Chem. Neurosci., 2016, 7(10), 1406-1417.
[http://dx.doi.org/10.1021/acschemneuro.6b00164] [PMID: 27425420]
[237]
Talbot, J.N.; Geffert, L.M.; Jorvig, J.E.; Goldstein, R.I.; Nielsen, C.L.; Wolters, N.E.; Amos, M.E.; Munro, C.A.; Dallman, E.; Mereu, M.; Tanda, G.; Katz, J.L.; Indarte, M.; Madura, J.D.; Choi, H.; Leak, R.K.; Surratt, C.K. Rapid and sustained antidepressant properties of an NMDA antagonist/monoamine reuptake inhibitor identified via transporter-based virtual screening. Pharmacol. Biochem. Behav., 2016, 150-151, 22-30.
[http://dx.doi.org/10.1016/j.pbb.2016.08.007] [PMID: 27569602]
[238]
Haddad, Y.; Heger, Z.; Adam, V. Guidelines for homology modeling of dopamine, norepinephrine, and serotonin transporters. ACS Chem. Neurosci., 2016, 7(11), 1607-1613.
[http://dx.doi.org/10.1021/acschemneuro.6b00242] [PMID: 27596073]
[239]
Djikic, T.; Martí, Y.; Spyrakis, F.; Lau, T.; Benedetti, P.; Davey, G.; Schloss, P.; Yelekci, K. Human dopamine transporter: the first implementation of a combined in silico/in vitro approach revealing the substrate and inhibitor specificities. J. Biomol. Struct. Dyn., 2019, 37(2), 291-306.
[http://dx.doi.org/10.1080/07391102.2018.1426044] [PMID: 29334320]
[240]
Mena-Avila, E.; Márquez-Gómez, R.; Aquino-Miranda, G.; Nieto-Alamilla, G.; Arias-Montaño, J.A. Clobenpropit, a histamine H3 receptor antagonist/inverse agonist, inhibits [3H]-dopamine uptake by human neuroblastoma SH-SY5Y cells and rat brain synaptosomes. Pharmacol. Rep., 2018, 70(1), 146-155.
[http://dx.doi.org/10.1016/j.pharep.2017.08.007] [PMID: 29414147]
[241]
Macdougall, I.J.; Griffith, R. Pharmacophore design and database searching for selective monoamine neurotransmitter transporter ligands. J. Mol. Graph. Model., 2008, 26(7), 1113-1124.
[http://dx.doi.org/10.1016/j.jmgm.2007.10.003] [PMID: 18023378]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy