Review Article

查尔酮的抗糖尿病特性的系统评价

卷 27, 期 14, 2020

页: [2257 - 2321] 页: 65

弟呕挨: 10.2174/0929867325666181001112226

价格: $65

摘要

在世界范围内,抗糖尿病药物的使用在不断增加,并且治疗方法的发展也非常广泛。仍然,当前可用的抗糖尿病药仍不具有期望的功效,并且通常与严重的不良反应有关。因此,需要全新的干预措施来解决2型糖尿病的潜在病因。查耳酮,陆生植物的次生代谢产物和类黄酮生物合成的前体已在传统医学中长期使用 广泛的生物活性,其中抗糖尿病活性突出。 这篇综述系统化了文献中有关查耳酮在体外和体内的抗糖尿病特性的信息。查尔酮可以通过在不同的治疗靶标中发挥作用来发挥这些特性:二肽基肽酶4(DPP-4); 4型葡萄糖转运蛋白(GLUT4),葡萄糖共转运蛋白2(SGLT2),α-淀粉酶,α-葡萄糖苷酶,醛糖还原酶(ALR),蛋白酪氨酸磷酸酶1B(PTP1B),过氧化物酶体增殖物激活受体-γ(PPARγ)和腺苷一磷酸(AMP)激活的蛋白激酶(AMPK)。毫无疑问,查耳酮是有前途的抗糖尿病药,并且已经建立了一些关键的结构特征。从结构-活性关系分析中,通常可以说,其骨架中羟基,异戊二烯基和香叶基的存在提高了其对所评估的抗糖尿病靶标的活性。

关键词: 抗糖尿病药物,查耳酮,二肽基肽酶4(DPP-4),4型葡萄糖转运蛋白(GLUT4), 葡萄糖钠转运蛋白2(SGLT2),α-淀粉酶,α-葡萄糖苷酶,醛糖还原酶(ALR),蛋白酪氨酸 磷酸酶1B(PTP1B),过氧化物酶体增殖物激活的受体-γ(PPARγ),单磷酸腺苷 (AMP)激活的蛋白激酶(AMPK),结构-活性关系(SAR)。

[1]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: a privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[2]
Cazarolli, L.H. Kappel, V.D.; Zanatta, A.P.; Suzuki, D.O.H.; Yunes, R.A.; Nunes, R.J.; Pizzolatti, M.G.; Silva, F.R.M.B. In Studies In Natural Products Chemistry, 2013, 39, 47-89.
[3]
Chopra, G. Chalcones: a brief review. Int. J. Res. Eng. Appl. Sci., 2016, 6(5), 173-185.
[4]
Evranos Aksöz, B.; Ertan, R. Chemical and structural properties of chalcones I. Fabad. J. Pharm. Sci., 2011, 36(4), 223-242.
[5]
Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: a review. Res. Chem. Intermed., 2017, 43(11), 6043-6077.
[http://dx.doi.org/10.1007/s11164-017-2977-5]
[6]
Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol., 2010, 5(1), 1-29.
[http://dx.doi.org/10.2174/157488410790410579] [PMID: 19891604]
[7]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[8]
Winter, E.; Locatelli, C.; Di Pietro, A.; Creczynski-Pasa, T.B. Recent trends of chalcones potentialities as antiproliferative and antiresistance agents. Anticancer. Agents Med. Chem., 2015, 15(5), 592-604.
[http://dx.doi.org/10.2174/1871520615666150101130800] [PMID: 25553434]
[9]
Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: promising starting points for drug design. Molecules, 2017, 22(8)E1210
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
[10]
Helio, M.T.A.; Clementina, M.M.S.; Jose, A.S.C.; Artur, M.S.S. Chalcones as versatile synthons for the synthesis of 5- and 6-membered nitrogen heterocycles. Curr. Org. Chem., 2014, 18(21), 2750-2775.
[http://dx.doi.org/10.2174/1385272819666141013224253]
[11]
Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev., 2016, 15(1), 87-120.
[http://dx.doi.org/10.1007/s11101-014-9387-8]
[12]
Hofmann, E.; Webster, J.; Do, T.; Kline, R.; Snider, L.; Hauser, Q.; Higginbottom, G.; Campbell, A.; Ma, L.; Paula, S. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg. Med. Chem., 2016, 24(4), 578-587.
[http://dx.doi.org/10.1016/j.bmc.2015.12.024] [PMID: 26762836]
[13]
Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: a patent review (from June 2011 - 2014). Expert Opin. Ther. Pat., 2015, 25(3), 351-366.
[http://dx.doi.org/10.1517/13543776.2014.995627] [PMID: 25598152]
[14]
Zhang, E.H.; Wang, R.F.; Guo, S.Z.; Liu, B. An update on antitumor activity of naturally occurring chalcones. Evid. Based Complement. Alternat. Med., 2013, 2013815621
[http://dx.doi.org/10.1155/2013/815621] [PMID: 23690855]
[15]
Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac. J. Trop. Biomed., 2012, 2(5), 411-420.
[http://dx.doi.org/10.1016/S2221-1691(12)60067-7] [PMID: 23569941]
[16]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[17]
Baynest, H.W. Classification, pathophysiology, diagnosis and management of diabetes mellitus. J. Diabetes Metab., 2015, 6(5), 1-9.
[http://dx.doi.org/10.4172/2155-6156.1000541]
[18]
World Health Organization. Global Report On Diabetes, 2016, 88.
[19]
American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care, 2017, 40(1)(Suppl. 1), S11-S24.
[http://dx.doi.org/10.2337/dc17-S005] [PMID: 27979889]
[20]
Seuring, T.; Archangelidi, O.; Suhrcke, M. The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics, 2015, 33(8), 811-831.
[http://dx.doi.org/10.1007/s40273-015-0268-9] [PMID: 25787932]
[21]
Abiola, D.; Sathyapalan, T.; Hepburn, D. Management of type 1 and type 2 diabetes requiring insulin. Prescriber, 2016, 27(9), 50-57.
[http://dx.doi.org/10.1002/psb.1500]
[22]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[23]
Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig., 2010, 1(1-2), 8-23.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00022.x] [PMID: 24843404]
[24]
Yabe, D.; Seino, Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and β cell preservation. Prog. Biophys. Mol. Biol., 2011, 107(2), 248-256.
[http://dx.doi.org/10.1016/j.pbiomolbio.2011.07.010] [PMID: 21820006]
[25]
Kalra, S.; Baruah, M.P.; Sahay, R.K.; Unnikrishnan, A.G.; Uppal, S.; Adetunji, O. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future. Indian J. Endocrinol. Metab., 2016, 20(2), 254-267.
[http://dx.doi.org/10.4103/2230-8210.176351] [PMID: 27042424]
[26]
Capuano, A.; Sportiello, L.; Maiorino, M.I.; Rossi, F.; Giugliano, D.; Esposito, K. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin. Drug Des. Devel. Ther., 2013, 7, 989-1001.
[http://dx.doi.org/10.2147/DDDT.S37647] [PMID: 24068868]
[27]
Tiwari, N. Therapeutic targets for diabetes mellitus: an update. Clin. Pharmacol. Biopharm., 2014, 3(1), 1-10.
[http://dx.doi.org/10.4172/2167-065X.1000117]
[28]
Anishkumar, C.; Rashmi, M.; Tabassum, K. Novel therapeutic targets for management of type-2 diabetes mellitus. Immunol. Endocr. Metab. Agents Med. Chem., 2016, 16(1), 18-30.
[http://dx.doi.org/10.2174/1871522216666160216225721]
[29]
Wilding, J.P. The role of the kidneys in glucose homeostasis in type 2 diabetes: clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism, 2014, 63(10), 1228-1237.
[http://dx.doi.org/10.1016/j.metabol.2014.06.018] [PMID: 25104103]
[30]
Jesus, A.R.; Vila-Viçosa, D.; Machuqueiro, M.; Marques, A.P.; Dore, T.M.; Rauter, A.P. Targeting type 2 diabetes with C-glucosyl dihydrochalcones as selective sodium glucose co-transporter 2 (SGLT2) inhibitors: synthesis and biological evaluation. J. Med. Chem., 2017, 60(2), 568-579.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01134] [PMID: 28098449]
[31]
Norton, L.; Shannon, C.E.; Fourcaudot, M.; Hu, C.; Wang, N.; Ren, W.; Song, J.; Abdul-Ghani, M.; DeFronzo, R.A.; Ren, J.; Jia, W. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes. Metab., 2017, 19(9), 1322-1326.
[http://dx.doi.org/10.1111/dom.13003] [PMID: 28477418]
[32]
Raskin, P. Sodium-glucose cotransporter inhibition: therapeutic potential for the treatment of type 2 diabetes mellitus. Diabetes Metab. Res. Rev., 2013, 29(5), 347-356.
[http://dx.doi.org/10.1002/dmrr.2403] [PMID: 23463735]
[33]
American Diabetes Association. 6. Glycemic Targets. Diabetes Care, 2017, 40(1), 48-56.
[http://dx.doi.org/10.2337/dc17-S009]
[34]
Huang, S.; Czech, M.P. The GLUT4 glucose transporter. Cell Metab., 2007, 5(4), 237-252.
[http://dx.doi.org/10.1016/j.cmet.2007.03.006] [PMID: 17403369]
[35]
Mueckler, M.; Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med., 2013, 34(2-3), 121-138.
[http://dx.doi.org/10.1016/j.mam.2012.07.001] [PMID: 23506862]
[36]
Li, Y.; Zheng, L.; Wang, D.; Zhang, X.; Li, J.; Ali, S.; Lu, J.; Zong, H.; Xu, X. Staurosporine as an agonist for induction of GLUT4 translocation, identified by a pH-sensitive fluorescent IRAP-mOrange2 probe. Biochem. Biophys. Res. Commun., 2016, 480(4), 534-538.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.056] [PMID: 27769857]
[37]
Mahmood, N. A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comp. Clin. Pathol., 2016, 25(6), 1253-1264.
[http://dx.doi.org/10.1007/s00580-014-1967-x]
[38]
Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci., 2016, 5(4), 1-8.
[39]
Quezada-Calvillo, R.; Sim, L.; Ao, Z.; Hamaker, B.R.; Quaroni, A.; Brayer, G.D.; Sterchi, E.E.; Robayo-Torres, C.C.; Rose, D.R.; Nichols, B.L. Luminal starch substrate “brake” on maltase-glucoamylase activity is located within the glucoamylase subunit. J. Nutr., 2008, 138(4), 685-692.
[http://dx.doi.org/10.1093/jn/138.4.685] [PMID: 18356321]
[40]
Lee, M.Y.; Choi, D.S.; Lee, M.K.; Lee, H.W.; Park, T.S.; Kim, D.M.; Chung, C.H.; Kim, D.K.; Kim, I.J.; Jang, H.C.; Park, Y.S.; Kwon, H.S.; Lee, S.H.; Shin, H.K. Comparison of acarbose and voglibose in diabetes patients who are inadequately controlled with basal insulin treatment: randomized, parallel, open-label, active-controlled study. J. Korean Med. Sci., 2014, 29(1), 90-97.
[http://dx.doi.org/10.3346/jkms.2014.29.1.90] [PMID: 24431911]
[41]
Kalra, S. Alpha glucosidase inhibitors. J. Pak. Med. Assoc., 2014, 64(4), 474-476.
[PMID: 24864650]
[42]
Joshi, S.R.; Standl, E.; Tong, N.; Shah, P.; Kalra, S.; Rathod, R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin. Pharmacother., 2015, 16(13), 1959-1981.
[http://dx.doi.org/10.1517/14656566.2015.1070827] [PMID: 26255950]
[43]
El-Kabbani, O.; Podjarny, A. Selectivity determinants of the aldose and aldehyde reductase inhibitor-binding sites. Cell. Mol. Life Sci., 2007, 64(15), 1970-1978.
[http://dx.doi.org/10.1007/s00018-007-6514-3] [PMID: 17497245]
[44]
Tang, W.H.; Martin, K.A.; Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol., 2012, 3, 87.
[http://dx.doi.org/10.3389/fphar.2012.00087] [PMID: 22582044]
[45]
Maheswara, A.C.G.K.V.C.U. Polyol pathway: a review on a potential target for the prevention of diabetic complications. Int. J. Res. Pharm. Sci., 2014, 2(2), 696-711.
[46]
Chalk, C.; Benstead, T.J.; Moore, F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst. Rev., 2007, (4)CD004572
[http://dx.doi.org/10.1002/14651858.CD004572.pub2] [PMID: 17943821]
[47]
Hotta, N.; Akanuma, Y.; Kawamori, R.; Matsuoka, K.; Oka, Y.; Shichiri, M.; Toyota, T.; Nakashima, M.; Yoshimura, I.; Sakamoto, N.; Shigeta, Y. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care, 2006, 29(7), 1538-1544.
[http://dx.doi.org/10.2337/dc05-2370] [PMID: 16801576]
[48]
Proença, C.; Freitas, M.; Ribeiro, D.; Sousa, J.L.C.; Carvalho, F.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure - activity relationship study. Food Chem. Toxicol., 2018, 111, 474-481.
[http://dx.doi.org/10.1016/j.fct.2017.11.039] [PMID: 29175190]
[49]
Zabolotny, J.M.; Bence-Hanulec, K.K.; Stricker-Krongrad, A.; Haj, F.; Wang, Y.; Minokoshi, Y.; Kim, Y.B.; Elmquist, J.K.; Tartaglia, L.A.; Kahn, B.B.; Neel, B.G. PTP1B regulates leptin signal transduction in vivo. Dev. Cell, 2002, 2(4), 489-495.
[http://dx.doi.org/10.1016/S1534-5807(02)00148-X] [PMID: 11970898]
[50]
Tamrakar, A.K.; Maurya, C.K.; Rai, A.K. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011 - 2014). Expert Opin. Ther. Pat., 2014, 24(10), 1101-1115.
[http://dx.doi.org/10.1517/13543776.2014.947268] [PMID: 25120222]
[51]
Jay, M.A.; Ren, J. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr. Diabetes Rev., 2007, 3(1), 33-39.
[http://dx.doi.org/10.2174/157339907779802067] [PMID: 18220654]
[52]
Janani, C.; Ranjitha Kumari, B.D. PPAR gamma gene--a review. Diabetes Metab. Syndr., 2015, 9(1), 46-50.
[http://dx.doi.org/10.1016/j.dsx.2014.09.015] [PMID: 25450819]
[53]
Soccio, R.E.; Chen, E.R.; Lazar, M.A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab., 2014, 20(4), 573-591.
[http://dx.doi.org/10.1016/j.cmet.2014.08.005] [PMID: 25242225]
[54]
Consoli, A.; Formoso, G. Do thiazolidinediones still have a role in treatment of type 2 diabetes mellitus? Diabetes Obes. Metab., 2013, 15(11), 967-977.
[http://dx.doi.org/10.1111/dom.12101] [PMID: 23522285]
[55]
Coughlan, K.A.; Valentine, R.J.; Ruderman, N.B.; Saha, A.K. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab. Syndr. Obes., 2014, 7, 241-253.
[http://dx.doi.org/10.2147/DMSO.S43731] [PMID: 25018645]
[56]
Kim, J.; Yang, G.; Kim, Y.; Kim, J.; Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med., 2016, 48e224
[http://dx.doi.org/10.1038/emm.2016.16] [PMID: 27034026]
[57]
American Diabetes Association. 8. Pharmacologic approaches to glycemic treatment. Diabetes Care, 2017, 40(Suppl. 1), 64-74.
[http://dx.doi.org/10.2337/dc17-S011]
[58]
Bak, E.J.; Park, H.G.; Lee, C.; Lee, T.I.; Woo, G.H.; Na, Y.; Yoo, Y.J.; Cha, J.H. Effects of novel chalcone derivatives on α-glucosidase, dipeptidyl peptidase-4, and adipocyte differentiation in vitro. BMB Rep., 2011, 44(6), 410-414.
[http://dx.doi.org/10.5483/BMBRep.2011.44.6.410] [PMID: 21699755]
[59]
Morikawa, T.; Ninomiya, K.; Akaki, J.; Kakihara, N.; Kuramoto, H.; Matsumoto, Y.; Hayakawa, T.; Muraoka, O.; Wang, L.B.; Wu, L.J.; Nakamura, S.; Yoshikawa, M.; Matsuda, H. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium. J. Nat. Med., 2015, 69(4), 494-506.
[http://dx.doi.org/10.1007/s11418-015-0914-8] [PMID: 25921859]
[60]
Dudash, J., Jr; Zhang, X.; Zeck, R.E.; Johnson, S.G.; Cox, G.G.; Conway, B.R.; Rybczynski, P.J.; Demarest, K.T. Glycosylated dihydrochalcones as potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(20), 5121-5125.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.082] [PMID: 15380212]
[61]
Li, Y.; Goto, T.; Yamakuni, K.; Takahashi, H.; Takahashi, N.; Jheng, H.F.; Nomura, W.; Taniguchi, M.; Baba, K.; Murakami, S.; Kawada, T. 4-Hydroxyderricin, as a PPARγ agonist, promotes adipogenesis, adiponectin secretion, and glucose uptake in 3T3-L1 cells. Lipids, 2016, 51(7), 787-795.
[http://dx.doi.org/10.1007/s11745-016-4154-9] [PMID: 27098252]
[62]
Ohta, M.; Fujinami, A.; Kobayashi, N.; Amano, A.; Ishigami, A.; Tokuda, H.; Suzuki, N.; Ito, F.; Mori, T.; Sawada, M.; Iwasa, K.; Kitawaki, J.; Ohnishi, K.; Tsujikawa, M.; Obayashi, H. Two chalcones, 4-hydroxyderricin and xanthoangelol, stimulate GLUT4-dependent glucose uptake through the LKB1/AMP-activated protein kinase signaling pathway in 3T3-L1 adipocytes. Nutr. Res., 2015, 35(7), 618-625.
[http://dx.doi.org/10.1016/j.nutres.2015.05.010] [PMID: 26077869]
[63]
Kawabata, K.; Sawada, K.; Ikeda, K.; Fukuda, I.; Kawasaki, K.; Yamamoto, N.; Ashida, H. Prenylated chalcones 4-hydroxyderricin and xanthoangelol stimulate glucose uptake in skeletal muscle cells by inducing GLUT4 translocation. Mol. Nutr. Food Res., 2011, 55(3), 467-475.
[http://dx.doi.org/10.1002/mnfr.201000267] [PMID: 20938990]
[64]
Yamamoto, N.; Kawabata, K.; Sawada, K.; Ueda, M.; Fukuda, I.; Kawasaki, K.; Murakami, A.; Ashida, H. Cardamonin stimulates glucose uptake through translocation of glucose transporter-4 in L6 myotubes. Phytother. Res., 2011, 25(8), 1218-1224.
[http://dx.doi.org/10.1002/ptr.3416] [PMID: 21305634]
[65]
Sun, H.; Wang, D.; Song, X.; Zhang, Y.; Ding, W.; Peng, X.; Zhang, X.; Li, Y.; Ma, Y.; Wang, R.; Yu, P. Natural prenylchalconaringenins and prenylnaringenins as antidiabetic agents: alpha-glucosidase and alpha-amylase inhibition and in vivo antihyperglycemic and antihyperlipidemic effects. J. Agric. Food Chem., 2017, 65(8), 1574-1581.
[http://dx.doi.org/10.1021/acs.jafc.6b05445] [PMID: 28132506]
[66]
Seo, W.D.; Kim, J.H.; Kang, J.E.; Ryu, H.W.; Curtis-Long, M.J.; Lee, H.S.; Yang, M.S.; Park, K.H. Sulfonamide chalcone as a new class of alpha-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(24), 5514-5516.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.087] [PMID: 16202584]
[67]
Hu, Y.C.; Luo, Y.D.; Li, L.; Joshi, M.K.; Lu, Y.H. In vitro investigation of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone for glycemic control. J. Agric. Food Chem., 2012, 60(42), 10683-10688.
[http://dx.doi.org/10.1021/jf303078r] [PMID: 23013379]
[68]
Najafian, M.; Ebrahim-Habibi, A.; Hezareh, N.; Yaghmaei, P.; Parivar, K.; Larijani, B. Trans-chalcone: a novel small molecule inhibitor of mammalian alpha-amylase. Mol. Biol. Rep., 2011, 38(3), 1617-1620.
[http://dx.doi.org/10.1007/s11033-010-0271-3] [PMID: 20857221]
[69]
Kim, J.H.; Ryu, Y.B.; Kang, N.S.; Lee, B.W.; Heo, J.S.; Jeong, I.Y.; Park, K.H. Glycosidase inhibitory flavonoids from Sophora flavescens. Biol. Pharm. Bull., 2006, 29(2), 302-305.
[http://dx.doi.org/10.1248/bpb.29.302] [PMID: 16462036]
[70]
Yang, X.W.; Huang, M.Z.; Jin, Y.S.; Sun, L.N.; Song, Y.; Chen, H.S. Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia, 2012, 83(7), 1169-1175.
[http://dx.doi.org/10.1016/j.fitote.2012.07.005] [PMID: 22814126]
[71]
Jabeen, F.; Oliferenko, P.V.; Oliferenko, A.A.; Pillai, G.G.; Ansari, F.L.; Hall, C.D.; Katritzky, A.R. Dual inhibition of the α-glucosidase and butyrylcholinesterase studied by molecular field topology analysis. Eur. J. Med. Chem., 2014, 80, 228-242.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.018] [PMID: 24780600]
[72]
Cai, C.Y.; Rao, L.; Rao, Y.; Guo, J.X.; Xiao, Z.Z.; Cao, J.Y.; Huang, Z.S.; Wang, B. Analogues of xanthones--Chalcones and bis-chalcones as α-glucosidase inhibitors and anti-diabetes candidates. Eur. J. Med. Chem., 2017, 130, 51-59.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.007] [PMID: 28242551]
[73]
Ansari, F.L.; Umbreen, S.; Hussain, L.; Makhmoor, T.; Nawaz, S.A.; Lodhi, M.A.; Khan, S.N.; Shaheen, F.; Choudhary, M.I. Atta-ur-Rahman. Syntheses and biological activities of chalcone and 1,5-benzothiazepine derivatives: promising new free-radical scavengers, and esterase, urease, and alpha-glucosidase inhibitors. Chem. Biodivers., 2005, 2(4), 487-496.
[http://dx.doi.org/10.1002/cbdv.200590029] [PMID: 17191997]
[74]
Imran, S.; Taha, M.; Ismail, N.H.; Kashif, S.M.; Rahim, F.; Jamil, W.; Hariono, M.; Yusuf, M.; Wahab, H. Synthesis of novel flavone hydrazones: in-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Eur. J. Med. Chem., 2015, 105, 156-170.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.017] [PMID: 26491979]
[75]
Liu, M.; Yin, H.; Liu, G.; Dong, J.; Qian, Z.; Miao, J. Xanthohumol, a prenylated chalcone from beer hops, acts as an α-glucosidase inhibitor in vitro. J. Agric. Food Chem., 2014, 62(24), 5548-5554.
[http://dx.doi.org/10.1021/jf500426z] [PMID: 24897556]
[76]
Sun, H.; Li, Y.; Zhang, X.; Lei, Y.; Ding, W.; Zhao, X.; Wang, H.; Song, X.; Yao, Q.; Zhang, Y.; Ma, Y.; Wang, R.; Zhu, T.; Yu, P. Synthesis, α-glucosidase inhibitory and molecular docking studies of prenylated and geranylated flavones, isoflavones and chalcones. Bioorg. Med. Chem. Lett., 2015, 25(20), 4567-4571.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.059] [PMID: 26351039]
[77]
Ryu, H.W.; Lee, B.W.; Curtis-Long, M.J.; Jung, S.; Ryu, Y.B.; Lee, W.S.; Park, K.H. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition. J. Agric. Food Chem., 2010, 58(1), 202-208.
[http://dx.doi.org/10.1021/jf903068k] [PMID: 19954213]
[78]
Imran, S.; Taha, M.; Ismail, N.H.; Kashif, S.M.; Rahim, F.; Jamil, W.; Wahab, H.; Khan, K.M. Synthesis, in vitro and docking studies of new flavone ethers as alpha-glucosidase inhibitors. Chem. Biol. Drug Des., 2016, 87(3), 361-373.
[http://dx.doi.org/10.1111/cbdd.12666] [PMID: 26362113]
[79]
Han, L.; Fang, C.; Zhu, R.; Peng, Q.; Li, D.; Wang, M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking. Int. J. Biol. Macromol., 2017, 95, 520-527.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.089] [PMID: 27894824]
[80]
Chatsumpun, N.; Sritularak, B.; Likhitwitayawuid, K. New biflavonoids with alpha-glucosidase and pancreatic lipase inhibitory activities from Boesenbergia rotunda. Molecules, 2017, 22(11)E1862
[http://dx.doi.org/10.3390/molecules22111862] [PMID: 29084164]
[81]
Aida, K.; Tawata, M.; Shindo, H.; Onaya, T.; Sasaki, H.; Yamaguchi, T.; Chin, M.; Mitsuhashi, H. Isoliquiritigenin: a new aldose reductase inhibitor from glycyrrhizae radix. Planta Med., 1990, 56(3), 254-258.
[http://dx.doi.org/10.1055/s-2006-960950] [PMID: 2118267]
[82]
Shindo, H.; Tawata, M.; Aida, K.; Onaya, T. The role of cyclic adenosine 3′,5′-monophosphate and polyol metabolism in diabetic neuropathy. J. Clin. Endocrinol. Metab., 1992, 74(2), 393-398.
[http://dx.doi.org/10.1210/jcem.74.2.1370506] [PMID: 1370506]
[83]
Lim, S.S.; Jung, S.H.; Ji, J.; Shin, K.H.; Keum, S.R. Inhibitory effects of 2′-hydroxychalcones on rat lens aldose reductase and rat platelet aggregation. Chem. Pharm. Bull. (Tokyo), 2000, 48(11), 1786-1789.
[http://dx.doi.org/10.1248/cpb.48.1786] [PMID: 11086916]
[84]
Lim, S.S.; Jung, S.H.; Ji, J.; Shin, K.H.; Keum, S.R. Synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. J. Pharm. Pharmacol., 2001, 53(5), 653-668.
[http://dx.doi.org/10.1211/0022357011775983] [PMID: 11370705]
[85]
Jung, H.A.; Yoon, N.Y.; Kang, S.S.; Kim, Y.S.; Choi, J.S. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. J. Pharm. Pharmacol., 2008, 60(9), 1227-1236.
[http://dx.doi.org/10.1211/jpp.60.9.0016] [PMID: 18718128]
[86]
Lee, E.H.; Song, D.G.; Lee, J.Y.; Pan, C.H.; Um, B.H.; Jung, S.H. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biol. Pharm. Bull., 2008, 31(8), 1626-1630.
[http://dx.doi.org/10.1248/bpb.31.1626] [PMID: 18670102]
[87]
Severi, F.; Benvenuti, S.; Costantino, L.; Vampa, G.; Melegari, M.; Antolini, L. Synthesis and activity of a new series of chalcones as aldose reductase inhibitors. Eur. J. Med. Chem., 1998, 33(11), 859-866.
[http://dx.doi.org/10.1016/S0223-5234(99)80010-5]
[88]
Na, M.; Jang, J.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase-1B inhibitory activity of isoprenylated flavonoids isolated from Erythrina mildbraedii. J. Nat. Prod., 2006, 69(11), 1572-1576.
[http://dx.doi.org/10.1021/np0601861] [PMID: 17125223]
[89]
Sun, L.P.; Gao, L.X.; Ma, W.P.; Nan, F.J.; Li, J.; Piao, H.R. Synthesis and biological evaluation of 2,4,6-trihydroxychalcone derivatives as novel protein tyrosine phosphatase 1B inhibitors. Chem. Biol. Drug Des., 2012, 80(4), 584-590.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01431.x] [PMID: 22805439]
[90]
Sasaki, T.; Li, W.; Higai, K.; Quang, T.H.; Kim, Y.H.; Koike, K. Protein tyrosine phosphatase 1B inhibitory activity of lavandulyl flavonoids from roots of Sophora flavescens. Planta Med., 2014, 80(7), 557-560.
[http://dx.doi.org/10.1055/s-0034-1368400] [PMID: 24782228]
[91]
Li, J.L.; Gao, L.X.; Meng, F.W.; Tang, C.L.; Zhang, R.J.; Li, J.Y.; Luo, C.; Li, J.; Zhao, W.M. PTP1B inhibitors from stems of Angelica keiskei (Ashitaba). Bioorg. Med. Chem. Lett., 2015, 25(10), 2028-2032.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.003] [PMID: 25891102]
[92]
Zhang, L.B.; Lei, C.; Gao, L.X.; Li, J.Y.; Li, J.; Hou, A.J. Isoprenylated flavonoids with PTP1B inhibition from Macaranga denticulata. Nat. Prod. Bioprospect., 2016, 6(1), 25-30.
[http://dx.doi.org/10.1007/s13659-015-0082-2] [PMID: 26791751]
[93]
Xie, C.; Sun, Y.; Pan, C.Y.; Tang, L.M.; Guan, L.P. 2,4-Dihydroxychalcone derivatives as novel potent cell division cycle 25B phosphatase inhibitors and protein tyrosine phosphatase 1B inhibitors. Pharmazie, 2014, 69(4), 257-262.
[http://dx.doi.org/10.1691/ph.2014.3824] [PMID: 24791588]
[94]
Liu, Z.; Lee, W.; Kim, S.N.; Yoon, G.; Cheon, S.H. Design, synthesis, and evaluation of bromo-retrochalcone derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(12), 3755-3758.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.057] [PMID: 21555221]
[95]
Yoon, G.; Lee, W.; Kim, S.N.; Cheon, S.H. Inhibitory effect of chalcones and their derivatives from Glycyrrhiza inflata on protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2009, 19(17), 5155-5157.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.054] [PMID: 19632832]
[96]
Cui, L.; Ndinteh, D.T.; Na, M.; Thuong, P.T.; Silike-Muruumu, J.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Ahn, J.S.; Oh, W.K. Isoprenylated flavonoids from the stem bark of Erythrina abyssinica. J. Nat. Prod., 2007, 70(6), 1039-1042.
[http://dx.doi.org/10.1021/np060477+] [PMID: 17489632]
[97]
Matin, A.; Gavande, N.; Kim, M.S.; Yang, N.X.; Salam, N.K.; Hanrahan, J.R.; Roubin, R.H.; Hibbs, D.E. 7-Hydroxy-benzopyran-4-one derivatives: a novel pharmacophore of peroxisome proliferator-activated receptor alpha and -gamma (PPARalpha and gamma) dual agonists. J. Med. Chem., 2009, 52(21), 6835-6850.
[http://dx.doi.org/10.1021/jm900964r] [PMID: 19807106]
[98]
Jung, S.H.; Park, S.Y.; Kim-Pak, Y.; Lee, H.K.; Park, K.S.; Shin, K.H.; Ohuchi, K.; Shin, H.K.; Keum, S.R.; Lim, S.S. Synthesis and PPAR-gamma ligand-binding activity of the new series of 2′-hydroxychalcone and thiazolidinedione derivatives. Chem. Pharm. Bull. (Tokyo), 2006, 54(3), 368-371.
[http://dx.doi.org/10.1248/cpb.54.368] [PMID: 16508194]
[99]
Park, H.G.; Bak, E.J.; Woo, G.H.; Kim, J.M.; Quan, Z.; Kim, J.M.; Yoon, H.K.; Cheon, S.H.; Yoon, G.; Yoo, Y.J.; Na, Y.; Cha, J.H. Licochalcone E has an antidiabetic effect. J. Nutr. Biochem., 2012, 23(7), 759-767.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.021] [PMID: 21840191]
[100]
Enoki, T.; Ohnogi, H.; Nagamine, K.; Kudo, Y.; Sugiyama, K.; Tanabe, M.; Kobayashi, E.; Sagawa, H.; Kato, I. Antidiabetic activities of chalcones isolated from a Japanese Herb, Angelica keiskei. J. Agric. Food Chem., 2007, 55(15), 6013-6017.
[http://dx.doi.org/10.1021/jf070720q] [PMID: 17583349]
[101]
Jiang, B.; Le, L.; Zhai, W.; Wan, W.; Hu, K.; Yong, P.; He, C.; Xu, L.; Xiao, P. Protective effects of marein on high glucose-induced glucose metabolic disorder in HepG2 cells. Phytomedicine, 2016, 23(9), 891-900.
[http://dx.doi.org/10.1016/j.phymed.2016.05.004] [PMID: 27387397]
[102]
Choi, J.W.; Kim, M.; Song, H.; Lee, C.S.; Oh, W.K.; Mook-Jung, I.; Chung, S.S.; Park, K.S. DMC (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone) improves glucose tolerance as a potent AMPK activator. Metabolism, 2016, 65(4), 533-542.
[http://dx.doi.org/10.1016/j.metabol.2015.12.010] [PMID: 26975545]
[103]
Guo, H.; Zhao, H.; Kanno, Y.; Li, W.; Mu, Y.; Kuang, X.; Inouye, Y.; Koike, K.; Jiang, H.; Bai, H. A dihydrochalcone and several homoisoflavonoids from Polygonatum odoratum are activators of adenosine monophosphate-activated protein kinase. Bioorg. Med. Chem. Lett., 2013, 23(11), 3137-3139.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.027] [PMID: 23639538]
[104]
Wakasugi, M.; Noguchi, T.; Inoue, M.; Tawata, M.; Shindo, H.; Onaya, T. Effects of aldose reductase inhibitors on prostacyclin (PGI2) synthesis by aortic rings from rats with streptozotocin-induced diabetes. Prostaglandins Leukot. Essent. Fatty Acids, 1991, 44(4), 233-236.
[http://dx.doi.org/10.1016/0952-3278(91)90022-W] [PMID: 1840007]
[105]
Najafian, M.; Ebrahim-Habibi, A.; Yaghmaei, P.; Parivar, K.; Larijani, B. Core structure of flavonoids precursor as an antihyperglycemic and antihyperlipidemic agent: an in vivo study in rats. Acta Biochim. Pol., 2010, 57(4), 553-560.
[http://dx.doi.org/10.18388/abp.2010_2443] [PMID: 21060897]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy