Abstract
Objective: ShenQi compound (SQC) is a traditional herbal formula, which has been used to treat Type 2 diabetes mellitus (T2DM) and complications for years. The aim of this study was to explore the preventive and protective effects of SQC recipe on the skeletal muscle of diabetic macrovasculopathy mice, which provides a theoretical basis for the clinical use of this formula.
Methods: We evaluated the effect of SQC in a diabetic vasculopathy mouse model by detecting a series of blood indicators (blood glucose, lipids and insulin) and performing histological observations. Meanwhile, we explored the molecular mechanism of SQC treatment on skeletal muscle by genome expression profiles.
Results: The results indicated that SQC could effectively improve blood glucose, serum lipids (total cholesterol (TC), Triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C)) and insulin (INS) levels in diabetic vasculopathy mice, as well as alleviating skeletal muscle tissue damage for diabetic macrovasculopathy. Meanwhile, compared with rosiglitazone, SQC showed a better effect on blood glucose fluctuation. Moreover, the gene microarray analysis indicated that SQC might improve T2DM by affecting biological functions related to cell death and cell adhesion. Moreover, 7 genes (Celsr2, Rilpl1, Dlx6as, 2010004M13Rik, Anapc13, Gm6097, Ddx39b) might be potential therapeutic targets of SQC.
Conclusion: All these results indicate that SQC is an effective preventive and protective drug for skeletal muscle in diabetic macrovasculopathy, and could alleviate skeletal muscle tissue damage through affecting biological functions related to cell death and cell adhesion.
Keywords: Type 2 Diabetes Mellitus, diabetic macrovasculopathy, skeletal muscle, traditional Chinese medicine, gene microarray, ShenQi compound.
Graphical Abstract
[http://dx.doi.org/10.1089/met.2018.0057] [PMID: 30183523]
[http://dx.doi.org/10.2174/1871530319666190101130300] [PMID: 30621567]
[http://dx.doi.org/10.1111/jcmm.13711] [PMID: 29981194]
[http://dx.doi.org/10.1053/meta.2001.24202] [PMID: 11436180]
[http://dx.doi.org/10.1006/jsre.2002.6416] [PMID: 12020124]
[http://dx.doi.org/10.1016/j.jdiacomp.2019.107412] [PMID: 31575461]
[http://dx.doi.org/10.1152/advan.00080.2014] [PMID: 25434013]
[http://dx.doi.org/10.1016/j.clinph.2008.02.003] [PMID: 18387339]
[PMID: 27543076]
[http://dx.doi.org/10.1371/journal.pone.0207683] [PMID: 30521536]
[http://dx.doi.org/10.2174/1871530319666190225113859] [PMID: 30799801]
[http://dx.doi.org/10.1016/S0254-6272(08)60032-1] [PMID: 18652122]
[http://dx.doi.org/10.1093/bioinformatics/btz044] [PMID: 30668649]
[http://dx.doi.org/10.1111/cns.13201] [PMID: 31401815]
[http://dx.doi.org/10.5812/numonthly.1954] [PMID: 23573479]
[http://dx.doi.org/10.1016/S0026-0495(98)90304-3] [PMID: 9826212]
[http://dx.doi.org/10.2337/diacare.19.10.1138] [PMID: 8886564]
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[http://dx.doi.org/10.1056/NEJMoa0808431] [PMID: 19092145]
[http://dx.doi.org/10.1515/folmed-2017-0048] [PMID: 28976897]
[http://dx.doi.org/10.5551/jat.RV17023] [PMID: 29998913]
[http://dx.doi.org/10.1210/jc.2003-030519] [PMID: 14557464]
[PMID: 25335332]
[http://dx.doi.org/10.3390/ijms20112751] [PMID: 31195596]
[http://dx.doi.org/10.1006/geno.1997.4892] [PMID: 9339365]
[PMID: 29106639]
[http://dx.doi.org/10.1007/s11883-011-0173-4] [PMID: 21369780]
[http://dx.doi.org/10.1016/j.bbrc.2010.01.093] [PMID: 20116367]
[http://dx.doi.org/10.1016/j.bbrc.2012.03.022] [PMID: 22446327]
[http://dx.doi.org/10.1146/annurev.biochem.78.101807.093809] [PMID: 19489725]
[http://dx.doi.org/10.1126/science.306.5695.400b] [PMID: 15486272]
[http://dx.doi.org/10.1083/jcb.201501053] [PMID: 26304725]
[http://dx.doi.org/10.1016/j.cell.2004.11.028] [PMID: 15550251]