[1]
Raymond, D.M.; Nilsson, B.L. Multicomponent peptide assemblies. Chem. Soc. Rev., 2018, 47, 3659-3720.
[2]
Gazit, E. Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization. Chem. Soc. Rev., 2007, 36, 1263-1269.
[3]
Knowles, T.P.J.; Mezzenga, R. Amyloid fibrils as building blocks for natural and artificial functional materials. Adv. Mater., 2016, 28, 6546-6561.
[4]
Zelzer, M.; Ulijn, R.V. Next-generation peptide nanomaterials: Molecular networks, interfaces and supramolecular functionality. Chem. Soc. Rev., 2010, 39, 3351-3357.
[5]
Konietzny, A. Bär, J.; Mikhaylova, M. Dendritic actin cytoskeleton: Structure, functions, and regulations. Front. Cell. Neurosci., 2017, 11, 147.
[6]
Stephens, R.E.; Edds, K.T. Microtubules: Structure, chemistry, and function. Physiol. Rev., 1976, 56, 709-777.
[7]
Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem., 2009, 78, 929-958.
[8]
Hauser, C.A.E.; Deng, R.; Mishra, A.; Loo, Y.; Khoe, U.; Zhuang, F.; Cheong, D.W.; Accardo, A.; Sullivan, M.B.; Riekel, C.; Ying, J.Y.; Hauser, U.A. Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc. Natl. Acad. Sci. USA, 2011, 108, 1361-1366.
[9]
Sarkar, B.; O’Leary, L.E.R.; Hartgerink, J.D. Self-Assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J. Am. Chem. Soc., 2014, 136, 14417-14424.
[10]
Bera, S.; Maity, S.K.; Haldar, D. Photoelectrochemical properties of CdSe quantum dots doped disk-like tripeptide capsule. CrystEngComm, 2014, 16, 4834-4841.
[11]
Bera, S.; Ambast, D.K.S.; Pal, B.; Haldar, D. Assembly, growth and nonlinear thermo-optical properties of nitropeptides. Phys. Chem. Chem. Phys., 2015, 17, 16983-16990.
[12]
Knowles, T.P.J.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15, 384-396.
[13]
Knowles, T.P.J.; Buehler, M.J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol., 2011, 6, 469-479.
[14]
Cherny, I.; Gazit, E. Amyloids: Not only pathological agents but also ordered nanomaterials. Angew. Chem. Int. Ed., 2008, 47, 4062-4069.
[15]
Ulijn, R.V.; Smith, A.M. Designing peptide based nanomaterials. Chem. Soc. Rev., 2008, 37, 664-675.
[16]
Yu, Z.; Cai, Z.; Chen, Q.; Liu, M.; Ye, L.; Ren, J.; Liao, W.; Liu, S. Engineering β-sheet peptide assemblies for biomedical applications. Biomater. Sci., 2016, 4, 365-374.
[17]
Lima, Y-B.; Lee, M. Nanostructures of β-sheet peptides: Steps towards bioactive functional materials. J. Mater. Chem., 2008, 18, 723-727.
[18]
Burkhard, P.; Stetefeld, J.; Strelkov, S.V. Coiled coils: A highly versatile protein folding motif. Trends Cell Biol., 2001, 11, 82-88.
[19]
Moutevelis, E.; Woolfson, D.N. A periodic table of coiled-coil protein structures. J. Mol. Biol., 2009, 385, 726-732.
[20]
Di Lullo, G.A.; Sweeney, S.M.; Korkko, J.; Ala-Kokko, L.; San Antonio, J.D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem., 2002, 277, 4223-4231.
[21]
Kadler, K.E.; Baldock, C.; Bella, J.; Boot-Handford, R.P. Collagens at a glance. J. Cell Sci., 2007, 120, 1955-1958.
[22]
Van Der Rest, M.; Garrone, R. Collagen family of proteins. FASEB J., 1991, 5, 2814-2823.
[23]
Amdursky, N. Electron transfer across helical peptides. ChemPlusChem, 2015, 80, 1075-1095.
[24]
Dong, H.; Paramonov, S.E.; Hartgerink, J.D. Self-assembly of α-helical coiled coil nanofibers. J. Am. Chem. Soc., 2008, 130, 13691-13695.
[25]
Ryadnov, M.G.; Woolfson, D.N. Nanobiotechnology II: More Concepts and Applications; Wiley, 2007, pp. 19-40.
[26]
Papapostolou, D.; Smith, A.M.; Atkins, E.D.T.; Oliver, S.J.; Ryadnov, M.G.; Serpell, L.C.; Woolfson, D.N. Engineering nanoscale order into a designed protein fiber. Proc. Natl. Acad. Sci. USA, 2007, 104, 10853-10858.
[27]
Ross, J.F.; Bridges, A.; Fletcher, J.M.; Shoemark, D.; Alibhai, D.; Bray, H.E.V.; Beesley, J.L.; Dawson, W.M.; Hodgson, L.R.; Mantell, J.; Verkade, P.; Edge, C.M.; Sessions, R.B.; Tew, D.; Woolfson, D.N. Decorating self-assembled peptide cages with proteins. ACS Nano, 2017, 11, 7901-7914.
[28]
Apostolovic, B.; Danial, M.; Klok, H-A. Coiled coils: Attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem. Soc. Rev., 2010, 39, 3541-3575.
[29]
Pechar, M.; Pola, R.; Laga, R.; Ulbrich, K.; Bednárová, L.; Maloń, P.; Sieglová, I.; Král, V.; Fábry, M.; Vanék, O. Coiled coil peptides as universal linkers for the attachment of recombinant proteins to polymer therapeutics. Biomacromolecules, 2011, 12, 3645-3655.
[30]
Jadhav, S.V.; Singh, S.K.; Reja, R.M.; Gopi, H.N. γ-Amino acid mutated α-coiled coils as mild thermal triggers for liposome delivery. Chem. Commun., 2013, 49, 11065-11067.
[31]
Reja, R.M.; Khan, M. Singh, S.K.; Misra, R.; Shiras, A.; Gopi, H.N. pH sensitive coiled coils: A strategy for enhanced liposomal drug delivery. Nanoscale, 2016, 8, 5139-5145.
[32]
Xu, C.; Liu, R.; Mehta, A.K.; Guerrero-Ferreira, R.C.; Wright, E.R.; Dunin-Horkawicz, S.; Morris, K.; Serpell, L.C.; Zuo, X.; Wall, J.S.; Conticello, V.P. Rational design of helical nanotubes from self-assembly of coiled-coil lock washers. J. Am. Chem. Soc., 2013, 135, 15565-15578.
[33]
Luo, T.; Kiick, K.L. Collagen-like peptide bioconjugates. Bioconjug. Chem., 2017, 28, 816-827.
[34]
Tanrikulu, I.C.; Raines, R.T. Optimal interstrand bridges for collagen-like biomaterials. J. Am. Chem. Soc., 2014, 136, 13490-13493.
[35]
Mondal, S.; Gazit, E. The self-assembly of helical peptide building blocks. ChemNanoMat, 2016, 2, 323-332.
[36]
Maity, S.; Jana, P.; Maity, S.K.; Haldar, D. Mesoporous vesicles from supramolecular helical peptide as drug carrier. Soft Matter, 2011, 7, 10174-10181.
[37]
Maity, S.K.; Maity, S.; Jana, P.; Haldar, D. Supramolecular double helix from capped γ-peptide. Chem. Commun., 2012, 48, 711-713.
[38]
Sarkar, R.; Debnath, M.; Maji, K.; Haldar, D. Solvent assisted structural diversity: Supramolecular sheet and double helix of a short aromatic γ-peptide. RSC Advances, 2015, 5, 76257-76262.
[39]
Mándity, I.M.; Monsignori, A.; Fülӧp, L.; Forró, E.; Fülӧp, F. Exploiting aromatic interactions for β-peptide foldamer helix stabilization: a significant design element. Chemistry, 2014, 20, 4591-4597.
[40]
Mándity, I.M.; Fülӧp, L.; Vass, E.; Tóth, G.K.; Martinek, T.A.; Fülӧp, F. Building β-Peptide H10/12 foldamer helices with six-membered cyclic side-chains: Fine-tuning of folding and self-assembly. Org. Lett., 2010, 12, 5584-5587.
[41]
Martinek, T.A.; Hetényi, A.; Fülӧp, L.; Mándity, I.M.; Tóth, G.K.; Dékány, I.; Fülӧp, F. Secondary structure dependent self-assembly of β-peptides into nanosized fibrils and membranes. Angew. Chem. Int. Ed., 2006, 45, 2396-2400.
[42]
Mondal, S.; Adler-Abramovich, L.; Lampel, A.; Bram, Y.; Lipstman, S.; Gazit, E. Formation of functional super-helical assemblies by constrained single heptad repeat. Nat. Commun., 2015, 6, 8615.
[43]
Lee, J.; Han, S.; Lee, J.; Choi, M.; Kim, C. Stimuli-responsive α-helical peptide gatekeepers for mesoporous silica nanocarriers. New J. Chem., 2017, 41, 6969-6972.
[44]
Hartgerink, J.D.; Granja, J.R.; Milligan, R.A.; Ghadiri, M.R. Self-assembling peptide nanotubes. J. Am. Chem. Soc., 1996, 118, 43-50.
[45]
Scanlon, S.; Aggeli, A. Self-assembling peptide nanotubes. Nano Today, 2008, 3, 22-30.
[46]
Seabraa, A.B.; Durán, N. Biological applications of peptides nanotubes: An overview. Peptides, 2013, 39, 47-54.
[47]
Hamley, I.W. Peptide nanotubes. Angew. Chem. Int. Ed., 2014, 53, 6866-6881.
[48]
Hamley, I.W. Peptide fibrillization. Angew. Chem. Int. Ed., 2007, 46, 8128-8147.
[49]
Jadhav, S.V.; Misra, R.; Gopi, H.N. Foldamers to nanotubes: Influence of amino acid side chains in the hierarchical assembly of α,γ4-hybrid peptide helices. Chemistry, 2014, 20, 16523-16528.
[50]
Guha, S.; Drew, M.G.B.; Banerjee, A. Construction of helical nanofibers from self-assembling pseudopeptide building blocks: Modulating the handedness and breaking the helicity. Small, 2008, 4, 1993-2005.
[51]
Mazzier, D.; Carraro, F.; Crisma, M.; Rancan, M.; Toniolo, C.; Moretto, A. A terminally protected dipeptide: From crystal structure and self-assembly, through co-assembly with carbon-based materials, to a ternary catalyst for reduction chemistry in water. Soft Matter, 2016, 12, 238-245.
[52]
Konar, A.D. The unique crystallographic signature of a β-turn mimic nucleated by N-methylated phenylalanine and Aib as corner residue: conformational and self-assembly studies. CrystEngComm, 2013, 15, 10569-10578.
[53]
Konda, M.; Kauffmann, B.; Rasalea, D.B.; Das, A.K. Structural and morphological diversity of self-assembled synthetic γ-amino acid containing peptides. Org. Biomol. Chem., 2016, 14, 4089-4102.
[54]
Banerjee, A.; Maji, S.K.; Drew, M.G.B.; Haldar, D.; Banerjee, A. Supramolecular peptide helix from a novel double turn forming peptide containing a β-amino acid. Tetrahedron Lett., 2003, 44, 699-702.
[55]
Podder, D.; Bera, S.; Debnath, M.; Das, T.; Haldar, D. Formation of toroids by self-assembly of an α–α corner mimetic: Supramolecular cyclization. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 7583-7590.
[56]
Chassaing, B.; Koren, O.; Goodrich, J.K.; Poole, A.C.; Srinivasan, S.; Ley, R.E.; Gewirtz, A.T. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 2015, 519, 92-96.
[57]
Bai, S.; Pappas, C.; Debnath, S.; Frederix, P.W.J.M.; Leckie, J.; Fleming, S.; Ulijn, R.V. Stable emulsions formed by self-assembly of interfacial networks of dipeptide derivatives. ACS Nano, 2014, 8, 7005-7013.
[58]
Scott, G.G.; McKnight, P.J.; Tuttle, T.; Ulijn, R.V. Tripeptide emulsifiers. Adv. Mater., 2016, 28, 1381-1386.
[59]
Dexter, A.F.; Malcolm, A.S.; Middelberg, A.P.J. Reversible active switching of the mechanical properties of a peptide film at a fluid-fluid interface. Nat. Mater., 2006, 5, 502-506.
[60]
Xue, Y.; He, L.; Middelberg, A.P.J.; Mark, A.E.; Poger, D. Determining the structure of interfacial peptide films: Comparing neutron reflectometry and molecular dynamics simulations. Langmuir, 2014, 30, 10080-10089.
[61]
Morikawa, M.; Yoshihara, M.; Endo, T.; Kimizuka, N. Alpha helical polypeptide microcapsules formed by emulsion-templated self-assembly. Chemistry, 2005, 11, 1574-1578.
[62]
Mondal, S.; Varenik, M.; Bloch, D.N.; Atsmon-Raz, Y.; Jacoby, G.; Adler-Abramovich, L.; Shimon, L.J.W.; Beck, R.; Miller, Y.; Regev, O.; Gazit, E. A minimal length rigid helical peptide motif allows rational design of modular surfactants. Nat. Commun., 2017, 8, 14018.
[63]
Tiwari, P.; Biswas, S.; Verma, R.; Sharma, A.; Konar, A.D. Porous biomaterials via side chain-side chain interactions of tyrosine analogue of pyridine carboxamides. Chem. Select., 2018, 3, 262-272.
[64]
Maity, S.; Jana, P.; Maity, S.K.; Kumar, P.; Haldar, D. Conformational heterogeneity, self-assembly, and gas adsorption studies of isomeric hybrid peptides. Cryst. Growth Des., 2012, 12, 422-428.
[65]
Jana, P.; Maity, S.; Maity, S.K.; Haldar, D. A new peptide motif in the formation of supramolecular double helices. Chem. Commun., 2011, 47, 2092-2094.
[66]
Lee, J.; Choe, I.R.; Kim, N-K.; Kim, W-J.; Jang, H-S.; Lee, Y-S.; Nam, K.T. Water-floating giant nanosheets from helical peptide pentamers. ACS Nano, 2016, 10, 8263-8270.
[67]
Malvankar, N.S.; Vargas, M.; Nevin, K.P.; Franks, A.E.; Leang, C.; Kim, B-C.; Inoue, K.; Mester, T.; Covalla, S.F.; Johnson, J.P.; Rotello, V.M.; Lovley, D.L. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol., 2011, 6, 573-579.
[68]
Creasey, R.C.G.; Shingaya, Y.; Nakayama, T. Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers. Mater. Chem. Phys., 2015, 158, 52-59.
[69]
Creasey, R.C.G.; Shingaya, Y.; Nakayama, T. Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers. Mater. Chem. Phys., 2015, 158, 52-59.
[70]
Ing, N.L.; Spencer, R.K.; Luong, S.H.; Nguyen, H.D.; Hochbaum, A.I. Electronic conductivity in biomimetic α-helical peptide nanofibers and gels. ACS Nano, 2018, 12, 2652-2661.