[1]
Zeldes, B.M.; Keller, M.W.; Loder, A.J.; Straub, C.T.; Adams, M.W.W.; Kelly, R.M. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front. Microbiol., 2015, 6, 1209.
[2]
Rezanka, T.; Kambourova, M.; Derekova, A.; Kolouchova, I.; Sigler, K. LC-ESI-MS/MS identification of polar lipids of two thermophilic anoxybacillus bacteria containing a unique lipid pattern. Lipids, 2012, 47(7), 729-739.
[3]
Bruins, M.E.; Janssen, A.E.M.; Boom, R.M. Thermozymes and their applications. A review of recent literature and patents. Appl. Biochem. Biotechnol., 2001, 90(2), 155-186.
[4]
Singh, B.; Bulusu, G.; Mitre, A. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: Insights from molecular dynamics simulations. J. Phys. Chem. B, 2015, 119(2), 392-409.
[5]
Janecek, S. Alpha-amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Biol., 1997, 67(1), 67-97.
[6]
Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J., 1991, 280(Pt 2), 309-316.
[7]
Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res., 2009, 37, D233-D238.
[8]
van der Maarel, M.; van der Veen, B.; Uitdehaag, J.C.M.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol., 2002, 94(2), 137-155.
[9]
Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial alpha-amylases: A biotechnological perspective. Process Biochem., 2003, 38(11), 1599-1616.
[10]
Aguloglu, S.; Ensari, N.Y.; Uyar, F.; Otludil, B. The effects of amino acids on production and transport of alpha-amylase through bacterial membranes. Starch-Starke, 2000, 52 (8-9), 290-295.
[11]
Pikuta, E.; Lysenko, A.; Chuvilskaya, N.; Mendrock, U.; Hippe, H.; Suzina, N.; Nikitin, D.; Osipov, G.; Laurinavichius, K. Anoxybacillus pushchinensis gen. nov., sp nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus falvithermus comb. nov. Int. J. Syst. Evol. Microbiol., 2000, 50, 2109-2117.
[12]
Goh, K.M.; Kahar, U.M.; Chai, Y.Y.; Chong, C.S.; Chai, K.P.; Ranjani, V.; Illias, R.M.; Chan, K.G. Recent discoveries and applications of Anoxybacillus. Appl. Microbiol. Biotechnol., 2013, 97(4), 1475-1488.
[13]
Declerck, N.; Machius, M.; Joyet, P.; Wiegand, G.; Huber, R.; Gaillardin, C. Hyperthermostabilization of Bacillus licheniformis alpha-amylase and modulation of its stability over a 50 degrees C temperature range. Protein Eng., 2003, 16(4), 287-293.
[14]
Torrance, J.W.; MacArthur, M.W.; Thornton, J.M. Evolution of binding sites for zinc and calcium ions playing structural roles. Proteins, 2008, 71(2), 813-830.
[15]
Goyal, N.; Gupta, J.K.; Soni, S.K. A novel raw starch digesting thermostable alpha-amylase from Bacillus sp I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb. Technol., 2005, 37(7), 723-734.
[16]
Khajeh, K.; Ranjbar, B.; Naderi-Manesh, H.; Habibi, A.E.; Nemat-Gorgani, M. Chemical modification of bacterial alpha-amylases:
Changes in tertiary structures and the effect of additional calcium Bba-Protein Struct. M., 2001, 1548 (2), 229-237.
[17]
Bush, D.S.; Sticher, L.; Vanhuystee, R.; Wagner, D.; Jones, R.L. The calcium requirement for stability and enzymatic-activity of 2 isoforms of barley aleurone alpha-amylase. J. Biol. Chem., 1989, 264(32), 19392-19398.
[18]
Larson, S.B.; Greenwood, A.; Cascio, D.; Day, J.; McPherson, A. Refined molecular-structure of pig pancreatic alpha-amylase at 2-center-dot-1 angstrom resolution. J. Mol. Biol., 1994, 235(5), 1560-1584.
[19]
Buisson, G.; Duee, E.; Haser, R.; Payan, F. 3 dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution-role of calcium in structure and activity. EMBO J., 1987, 6(13), 3909-3916.
[20]
Hmidet, N.; Bayoudh, A.; Berrin, J.G.; Kanoun, S.; Juge, N.; Nasri, M. Purification and biochemical characterization of a novel alpha-amylase from Bacillus licheniformis NH1 - Cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochem., 2008, 43(5), 499-510.
[21]
Asoodeh, A.; Chamani, J.; Lagzian, M. A novel thermostable, acidophilic alpha-amylase from a new thermophilic “Bacillus sp Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: Purification and biochemical characterization. Int. J. Biol. Macromol., 2010, 46(3), 289-297.
[22]
Sharma, A.; Satyanarayana, T. High maltose-forming, Ca2+-independent and acid stable alpha-amylase from a novel acidophilic bacterium, Bacillus acidicola. Biotechnol. Lett., 2010, 32(10), 1503-1507.
[23]
Tanaka, A.; Hoshino, E. Secondary calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase obtained from inhibition kinetics. J. Biosci. Bioeng., 2003, 96(3), 262-267.
[24]
Mehta, D.; Satyanarayana, T. Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolysing alpha-amylase from an extreme thermophile Geobacillus thermoleovorans. J. Mol. Catal., B Enzym., 2013, 85-86, 229-238.
[25]
Liao, S.M.; Sun, L.; Wang, Q.Y.; Shen, N.K.; Zhu, J.; Huang, G.Y.; Huang, J.M.; Chen, D.; Huang, R.B. Screening of thermostable α-amylase producing strain and cloning, expression and characterization of the gene AmyGX. Guangxi Sci., 2017, 2017(1), 92-99.
[26]
Janecek, S.; Kuchtova, A.; Petrovicova, S. A novel GH13 subfamily of alpha-amylases with a pair of tryptophans in the helix alpha 3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia, 2015, 70(10), 1284-1294.
[27]
Mok, S.C.; Teh, A.H.; Saito, J.A.; Najimudin, N.; Alam, M. Crystal structure of a compact alpha-amylase from Geobacillus thermoleovorans. Enzyme Microb. Technol., 2013, 53(1), 46-54.
[28]
Chai, K.P.; Othman, N.F.B.; Teh, A.H.; Ho, K.L.; Chan, K.G.; Shamsir, M.S.; Goh, K.M.; Ng, C.L. Crystal structure of anoxybacillus alpha-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci. Rep. UK, 2016, 6, 23126.
[29]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[30]
Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 1959, 31(3), 426-428.
[31]
Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins, 1995, 23(3), 318-326.
[32]
Shen, M.Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci., 2006, 15(11), 2507-2524.
[33]
Lovell, S.C.; Davis, I.W.; Adrendall, W.B.; de Bakker, P.I.W.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by C alpha geometry: Phi, psi and C beta deviation. Proteins, 2003, 50(3), 437-450.
[34]
Eisenberg, D.; Luthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles, in macromolecular crystallography.Pt B, C.W. Carter and R.M. Sweet, Editors. , 1997, pp. 396-404.
[35]
MacGregor, E.A.; Janecek, S.; Svensson, B. Relationship of sequence
and structure to specificity in the alpha-amylase family of
enzymes BBA-Protein Struct. M, 2001.1546, (1), 1-20.
[36]
Igarashi, K.; Hatada, Y.; Ikawa, K.; Araki, H.; Ozawa, T.; Kobayashi, T.; Ozaki, K.; Ito, S. Improved thermostability of a Bacillus alpha-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Biochem. Biophys. Res. Commun., 1998, 248(2), 372-377.
[37]
Lin, L.L.; Huang, C.C.; Lo, H.F. Impact of Arg210-Ser211 deletion on thermostability of a truncated Bacillus sp strain TS-23 alpha-amylase. Process Biochem., 2008, 43(5), 559-565.
[38]
D’Amico, S.; Marx, J.C.; Gerday, C.; Feller, G. Activity-stability relationships in extremophilic enzymes. J. Biol. Chem., 2003, 278(10), 7891-7896.
[39]
Hagihara, H.; Igarashi, K.; Hayashi, Y.; Endo, K.; Ikawa-Kitayama, K.; Ozaki, K.; Kawai, S.; Ito, S. Novel alpha-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl. Environ. Microbiol., 2001, 67(4), 1744-1750.
[40]
Chai, Y.Y.; Abd Rahman, R.N.Z.R.; Illias, R.M.; Goh, K.M. Cloning and characterization of two new thermostable and alkalitolerant alpha-amylases from the Anoxybacillus species that produce high levels of maltose. J. Ind. Microbiol. Biotechnol., 2012, 39(5), 731-741.
[41]
Kikani, B.A.; Singh, S.P. The stability and thermodynamic parameters of a very thermostable and calcium-independent alpha-amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-1. Process Biochem., 2012, 47(12), 1791-1798.
[42]
Fukada, H.; Takahashi, K.; Sturtevant, J.M. Differential scanning calorimetric study of the thermal unfolding of Taka-amylase A from Aspergillus oryzae. Biochemistry, 1987, 26(13), 4063-4068.
[43]
Johnson, C.M. Differential scanning calorimetry as a tool for protein folding and stability. Arch. Biochem. Biophys., 2013, 531(1-2), 100-109.
[44]
Durowoju, I.B.; Bhandal, K.S.; Hu, J.; Carpick, B.; Kirkitadze, M. Differential scanning calorimetry. A method for assessing the thermal stability and conformation of protein antigen. J. Vis. Exp., 2017, 2017(121)
[45]
Fitter, J.; Herrmann, R.; Dencher, N.A.; Blume, A.; Hauss, T. Activity and stability of a thermostable alpha-amylase compared to its mesophilic homologue: Mechanisms of thermal adaptation. Biochemistry, 2001, 40(35), 10723-10731.
[46]
Nielsen, A.D.; Pusey, M.L.; Fuglsang, C.C.; Westh, P. A proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus alpha-amylase - the effect of calcium ions. BBA-Proteins Proteom., 2003, 1652(1), 52-63.
[47]
Feller, G.; d’Amico, D.; Gerday, C. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry, 1999, 38(14), 4613-4619.
[48]
Lumry, R.; Eyring, H. Conformation changes of proteins. J. Phys. Chem., 1954, 58(2), 110-120.
[49]
Sanchezruiz, J.M. Theoretical-analysis of lumry-eyring models in differential scanning calorimetry. Biophys. J., 1992, 61(4), 921-935.
[50]
del Pino, I.M.P.; Ibarra-Molero, B.; Sanchez-Ruiz, J.M. Lower kinetic limit to protein thermal stability: A proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins, 2000, 40(1), 58-70.
[51]
Rodriguez, V.B.; Alameda, E.J.; Gallegos, J.F.M.; Requena, A.R.; Lopez, A.I.G. Enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis. Biotechnol. Prog., 2006, 22(3), 718-722.
[52]
Sanchezruiz, J.M.; Lopezlacomba, J.L.; Cortijo, M.; Mateo, P.L. Differential scanning calorimetry of the irreversible thermal-denaturation of thermolysin. Biochemistry, 1988, 27(5), 1648-1652.
[53]
Kurganov, B.I.; Lyubarev, A.E.; Sanchez-Ruiz, J.M.; Shnyrov, V.L. Analysis of differential scanning calorimetry data for proteins. Criteria of validity of one-step mechanism of irreversible protein denaturation. Biophys. Chem., 1997, 69(2-3), 125-135.
[54]
Vogl, T.; Jatzke, C.; Hinz, H.J.; Benz, J.; Huber, R. Thermodynamic stability of annexin V E17G: Equilibrium parameters from an irreversible unfolding reaction. Biochemistry, 1997, 36(7), 1657-1668.
[55]
Rodriguez, A.; Pina, D.G.; Yelamos, B.; Leon, J.J.C.; Zhadan, G.G.; Villar, E.; Gavilanes, F.; Roig, M.G.; Sakharov, I.Y.; Shnyrov, V.L. Thermal stability of peroxidase from the african oil palm tree Elaeis guineensis. Eur. J. Biochem., 2002, 269(10), 2584-2590.
[56]
Tomazic, S.J.; Klibanov, A.M. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J. Biol. Chem., 1988, 263(7), 3086-3091.
[57]
Sanchez-Ruiz, J.M. Differential scanning calorimetry of proteins. Subcell. Biochem., 1995, 24, 133-176.
[58]
Tanaka, A.; Hoshino, E. Calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase determined by inactivation kinetics. Biochem. J., 2002, 364, 635-639.
[59]
Nazmi, A.R.; Reinisch, T.; Hinz, H.J. Calorimetric studies on renaturation by CaCl2 addition of metal-free alpha-amylase from Bacillus licheniformis (BLA). J. Therm. Anal. Calorim., 2008, 91(1), 141-149.
[60]
Fazili, N.A.; Bhat, W.F.; Naeem, A. Induction of amyloidogenicity in wild type HEWL by a dialdehyde: Analysis involving multi dimensional approach. Int. J. Biol. Macromol., 2014, 64, 36-44.
[61]
Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc., 2006, 1(6), 2527-2535.
[62]
Hegde, K.; Dasu, V.V. Structural stability and unfolding properties of cutinases from Thermobifida fusca. Appl. Biochem. Biotechnol., 2014, 174(2), 803-819.
[63]
Ropiak, H.M.; Lachmann, P.; Ramsay, A.; Green, R.J.; Mueller-Harvey, I. Identification of structural features of condensed tannins that affect protein aggregation. PLoS One, 2017, 12(1), e0170768.
[64]
Yadav, J.K. A differential behavior of alpha-amylase, in terms of catalytic activity and thermal stability, in response to higher concentration CaCl2. Int. J. Biol. Macromol., 2012, 51(1-2), 146-152.
[65]
Kikani, B.A.; Singh, S.P. Enzyme stability, thermodynamics and secondary structures of alpha-amylase as probed by the CD spectroscopy. Int. J. Biol. Macromol., 2015, 81, 450-460.
[66]
Ernest, V.; Sekar, G.; Mukherjee, A.; Chandrasekaran, N. Studies on the effect of AgNP binding on alpha-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods. J. Lumin., 2014, 146, 263-268.
[67]
Fitter, J. The perspectives of studying multi-domain protein folding. Cell. Mol. Life Sci., 2009, 66(10), 1672-1681.
[68]
Privalov, P.L.; Khechinashvili, N.N. A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. Mol. Biol., 1974, 86(3), 665-684.
[69]
Segawa, T.; Sugai, S. Interactions of divalent metal ions with bovine, human, and goat alpha-lactalbumins. J. Biochem., 1983, 93(5), 1321-1328.
[70]
Simons, J.; Kosters, H.A.; Visschers, R.W.; de Jongh, H.H.J. Role of calcium as trigger in thermal beta-lactoglobulin aggregation. Arch. Biochem. Biophys., 2002, 406(2), 143-152.
[71]
Violet, M.; Meunier, J.C. Kinetic-study of the irreversible thermal-denaturation of bacillus-licheniformis alpha-amylase. Biochem. J., 1989, 263(3), 665-670.
[72]
Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev., 2001, 65(1), 1-43.
[73]
Hameed, U.; Price, I.; Ikram Ul, H.; Ke, A.L.; Wilson, D.B.; Mirza, O. Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila, reveals high thermostability and an unusual form of dimerization. BBA-Proteins Proteom., 2017, 1865(10), 1237-1245.