Review Article

新型化学治疗剂-蝎子的贡献

卷 26, 期 41, 2019

页: [7452 - 7475] 页: 24

弟呕挨: 10.2174/0929867325666180914104237

价格: $65

摘要

安全有效的化学治疗剂的开发是药物化学的重中之重和挑战之一,并且新的过渡金属配合物正在作为抗癌剂不断进行设计和测试。 自从1960年代末特罗菲缅科(Trofimenko)发现蝎子配体以来,它们就在配位化学中发挥了重要作用,在催化和生物无机化学领域做出了重大贡献。 蝎子状金属配合物也显示出令人感兴趣的抗癌特性,在此,综述了报道的最近(最近十年)和相关的蝎子状配合物用于药物化学中作为化学治疗剂的应用。 着重指出了从双或三-(吡唑-1-基)-硼酸酯或-甲烷基团衍生而来的带有高配或异配蝎配体的过渡金属配合物的抗癌性能方面的最新进展。

关键词: 蝎子酸盐,金属络合物,细胞毒剂,碳氧化物释放分子(CORM),光敏剂,化学治疗剂。

[1]
World Health Organization. Fact Sheet No. 297 on cancer., Available at: http://www.who.int/mediacentre/factsheets/fs297/en/
[2]
Farrell, N. Metal complexes as drugs and chemotherapeutic agents. Comprehensive Coordination Chemistry, 2004, 9, 809-840.
[http://dx.doi.org/10.1016/B0-08-043748-6/09021-6]
[3]
Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563.
[http://dx.doi.org/10.1021/cr400460s] [PMID: 24456146]
[4]
Muhammad, N.; Guo, Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol., 2014, 19, 144-153.
[http://dx.doi.org/10.1016/j.cbpa.2014.02.003] [PMID: 24608084]
[5]
Barry, N.P.E.; Sadler, P.J. Exploration of the medical periodic table: towards new targets. Chem. Commun. (Camb.), 2013, 49(45), 5106-5131.
[http://dx.doi.org/10.1039/c3cc41143e] [PMID: 23636600]
[6]
Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia Coli by electrolysis products from a platinum electrode. Nature, 1965, 205, 698-699.
[http://dx.doi.org/10.1038/205698a0] [PMID: 14287410]
[7]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted pt(II) agents, nanoparticle delivery, and pt(IV). Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[8]
Gianferrara, T.; Bratsos, I.; Alessio, E. A categorization of metal anticancer compounds based on their mode of action. Dalton Trans., 2009, (37), 7588-7598.
[http://dx.doi.org/10.1039/b905798f] [PMID: 19759927]
[9]
Petrelli, A.; Giordano, S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem., 2008, 15(5), 422-432.
[http://dx.doi.org/10.2174/092986708783503212] [PMID: 18288997]
[10]
Jungwirth, U.; Kowol, C.R.; Keppler, B.K.; Hartinger, C.G.; Berger, W.; Heffeter, P. Anticancer activity of metal complexes: involvement of redox processes. Antioxid. Redox Signal., 2011, 15(4), 1085-1127.
[http://dx.doi.org/10.1089/ars.2010.3663] [PMID: 21275772]
[11]
Lazarević, T.; Rilak, A.; Bugarčić, Z.D. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur. J. Med. Chem., 2017, 142, 8-31.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.007] [PMID: 28442170]
[12]
Zhang, P.Y.; Sadler, P.J. Advances in the design of organometallic anticancer complexes. J. Organomet. Chem., 2017, 839, 5-14.
[http://dx.doi.org/10.1016/j.jorganchem.2017.03.038]
[13]
Zhang, M.; Saint-Germain, C.; He, G.; Sun, R.W.Y. Drug delivery systems for anti-cancer active complexes of some coinage metals. Curr. Med. Chem., 2018, 25(4), 493-505.
[http://dx.doi.org/10.2174/0929867324666170511152441] [PMID: 28545356]
[14]
Chakravarty, A.R.; Roy, M. Photoactivated DNA cleavage and anticancer activity of 3D metal complexes. Prog. Inorg. Chem., 2012, 57(1), 119-202.
[http://dx.doi.org/10.1002/9781118148235.ch3]
[15]
Wani, W.A.; Prashar, S.; Shreaz, S.; Gomez-Ruiz, S. Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord. Chem. Rev., 2016, 312, 67-98.
[http://dx.doi.org/10.1016/j.ccr.2016.01.001]
[16]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752.
[PMID: 28393696]
[17]
Trofimenko, S. Photoinduced nucleophilic substitution in halogenated clovoboranes. J. Am. Chem. Soc., 1966, 88, 1899.
[http://dx.doi.org/10.1021/ja00961a010]
[18]
Trofimenko, S. Scorpionates: The Coordination Chemistry of Polypyrazolylborates Ligands, 1999.
[http://dx.doi.org/10.1142/p148]
[19]
Otero, A.; Fernandez-Baeza, J.; Lara-Sanchez, A.; Sanchez-Barba, L.F. Metal complexes with heteroscorpionate ligands based on the bis(pyrazol-1-yl)methane moiety: Catalytic chemistry. Coord. Chem. Rev., 2013, 257, 1806-1868.
[http://dx.doi.org/10.1016/j.ccr.2013.01.027]
[20]
Bigmore, H.R.; Lawrence, S.C.; Mountford, P.; Tredget, C.S. Coordination, organometallic and related chemistry of tris(pyrazolyl)methane ligands. Dalton Trans., 2005, 36(4), 635-651.
[http://dx.doi.org/10.1039/b413121e] [PMID: 15702171]
[21]
Martins, L.; Pombeiro, A.J.L. Tris(pyrazol-1-yl)methane metal complexes for catalytic mild oxidative functionalizations of alkanes, alkenes and ketones. Coord. Chem. Rev., 2014, 265, 74-88.
[http://dx.doi.org/10.1016/j.ccr.2014.01.013]
[22]
Martins, L.M.D.R.S.; Alegria, E.C.B.A.; Pombeiro, A.J.L. Synthesis and biological applications of tris(pyrazol-1-yl)- methane and borate metal complexes In: Ligands: Synthesis Characterization and Role in Biotechnology; , 2014; p. 117-140.
[23]
Pettinari, C.; Santini, C. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology; McCleverty, J.A; Meyer, T.J., Ed.; , 2003.
[http://dx.doi.org/10.1016/B0-08-043748-6/01179-8]
[24]
Carrano, C.J. A Family of homo- and heteroscorpionate ligands: applications to bioinorganic chemistry. Eur. J. Inorg. Chem., 2016, 2016(15-16), 2377-2390.
[http://dx.doi.org/10.1002/ejic.201501476]
[25]
Martins, L.; Pombeiro, A.J.L. Water-soluble c-scorpionate complexes – catalytic and biological applications. Eur. J. Inorg. Chem., 2016, 2016(15-16), 2236-2252.
[http://dx.doi.org/10.1002/ejic.201600053]
[26]
Pettinari, C.; Pettinari, R. Metal derivatives of poly(pyrazolyl)alkanes - I. Tris(pyrazolyl)alkanes and related systems. Coord. Chem. Rev., 2005, 249(5-6), 525-543.
[http://dx.doi.org/10.1016/S0010-8545(04)00131-6]
[27]
Pettinari, C. Scorpionates II: Chelating Borate Ligands, 2008.
[http://dx.doi.org/10.1142/p527]
[28]
Reglinski, J.; Spicer, M.D. Chemistry of the p-block elements with anionic scorpionate ligands. Coord. Chem. Rev., 2015, 297-298, 181-207.
[http://dx.doi.org/10.1016/j.ccr.2015.02.023]
[29]
Semeniuc, R.F.; Reger, D.L. Metal complexes of multitopic, third generation poly(pyrazolyl)methane Ligands: multiple coordination arrangements. Eur. J. Inorg. Chem., 2016, 2016(15-16), 2253-2271.
[http://dx.doi.org/10.1002/ejic.201600116]
[30]
Silva, F.; Fernandes, C.; Campello, M.P.C.; Paulo, A. Metal complexes of tridentate tripod ligands in medical imaging and therapy. Polyhedron, 2017, 125, 186-205.
[http://dx.doi.org/10.1016/j.poly.2016.11.040]
[31]
Buss, J.L.; Greene, B.T.; Turner, J.; Torti, F.M.; Torti, S.V. Iron chelators in cancer chemotherapy. Curr. Top. Med. Chem., 2004, 4(15), 1623-1635.
[http://dx.doi.org/10.2174/1568026043387269] [PMID: 15579100]
[32]
Jin, H.; Xu, Z.; Li, D.; Huang, J. Antiproliferative activity and therapeutic implications of potassium tris(4-methyl-1-pyrazolyl) borohydride in hepatocellular carcinoma. Chem. Biol. Interact., 2014, 213, 69-76.
[http://dx.doi.org/10.1016/j.cbi.2013.12.011] [PMID: 24412237]
[33]
Chao, H.; Ji, L-N. 27Co cobalt complexes as potential pharmaceutical agents. In: Metallotherapeutic drugs and metal-based diagnostic agents: The use of metals in medicine; Marcel Gielen, Edward R.T. Tiekink, Eds., 2005; pp. 201-218.
[http://dx.doi.org/10.1002/0470864052.ch11]
[34]
Silva, T.F.S.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Fernandes, A.R.; Silva, A.; Borralho, P.M.; Santos, S.; Rodrigues, C.M.P.; Pombeiro, A.J.L. Cobalt complexes bearing scorpionate ligands: synthesis, characterization, cytotoxicity and DNA cleavage. Dalton Trans., 2012, 41(41), 12888-12897.
[http://dx.doi.org/10.1039/c2dt11577h] [PMID: 22986733]
[35]
Silva, T.F.S.; Martins, L.M.; Guedes da Silva, M.F.; Kuznetsov, M.L.; Fernandes, A.R.; Silva, A.; Pan, C.J.; Lee, J.F.; Hwang, B.J.; Pombeiro, A.J.L. Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications. Chem. Asian J., 2014, 9(4), 1132-1143.
[http://dx.doi.org/10.1002/asia.201301331] [PMID: 24482364]
[36]
González-Vílchez, F.; Vilaplana, R. 29Cu chemotherapeutic copper compounds. In: Metallotherapeutic drugs and metal-based diagnostic agents-the use of metals in medicine; Marcel Gielen, Edward R.T. Tiekink, Eds., 2005; pp. 219-236.
[http://dx.doi.org/10.1002/0470864052.ch12]
[37]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev., 2014, 114(1), 815-862.
[http://dx.doi.org/10.1021/cr400135x] [PMID: 24102434]
[38]
Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev., 2010, 30(4), 708-749.
[PMID: 19626597]
[39]
Tardito, S.; Marchiò, L. Copper compounds in anticancer strategies. Curr. Med. Chem., 2009, 16(11), 1325-1348.
[http://dx.doi.org/10.2174/092986709787846532] [PMID: 19355889]
[40]
Porchia, M.; Dolmella, A.; Gandin, V.; Marzano, C.; Pellei, M.; Peruzzo, V.; Refosco, F.; Santini, C.; Tisato, F. Neutral and charged phosphine/scorpionate copper(I) complexes: effects of ligand assembly on their antiproliferative activity. Eur. J. Med. Chem., 2013, 59, 218-226.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.022] [PMID: 23229057]
[41]
Gandin, V.; Tisato, F.; Dolmella, A.; Pellei, M.; Santini, C.; Giorgetti, M.; Marzano, C.; Porchia, M. In vitro and in vivo anticancer activity of copper(I) complexes with homoscorpionate tridentate tris(pyrazolyl)borate and auxiliary monodentate phosphine ligands. J. Med. Chem., 2014, 57(11), 4745-4760.
[http://dx.doi.org/10.1021/jm500279x] [PMID: 24793739]
[42]
Khan, R.A.; Usman, M.; Dhivya, R.; Balaji, P.; Alsalme, A.; AlLohedan, H.; Arjmand, F.; AlFarhan, K.; Akbarsha, M.A.; Marchetti, F.; Pettinari, C.; Tabassum, S. Heteroleptic copper(I) complexes of “scorpionate” bis-pyrazolyl carboxylate ligand with auxiliary phosphine as potential anticancer agents: An insight into cytotoxic mode. Sci. Rep., 2017, 7, 45229.
[http://dx.doi.org/10.1038/srep45229] [PMID: 28338061]
[43]
Lentzen, O.; Moucheron, C.; Mesmaeker, A.K. 44Ru perspectives of ruthenium complexes in cancer therapy. In: Metallotherapeutic drugs and metal-based diagnostic agents-the use of metals in medicine; Marcel Gielen, Edward R.T. Tiekink, Eds., 2005; pp. 359-378.
[http://dx.doi.org/10.1002/0470864052.ch19]
[44]
Antonarakis, E.S.; Emadi, A. Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother. Pharmacol., 2010, 66(1), 1-9.
[http://dx.doi.org/10.1007/s00280-010-1293-1] [PMID: 20213076]
[45]
Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z.S. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev., 2017, 46(19), 5771-5804.
[http://dx.doi.org/10.1039/C7CS00195A] [PMID: 28654103]
[46]
Walker, J.M.; McEwan, A.; Pycko, R.; Tassotto, M.L.; Gottardo, C.; Th’ng, J.; Wang, R.Y.; Spivak, G.J. Tris(pyrazolyl)methane ruthenium complexes capable of inhibiting cancer cell growth. Eur. J. Inorg. Chem., 2009, 2009(31), 4629-4633.
[http://dx.doi.org/10.1002/ejic.200900766]
[47]
García-Fernández, A.; Díez, J.; Manteca, A.; Sánchez, J.; García-Navas, R.; Sierra, B.G.; Mollinedo, F.; Gamasa, M.P.; Lastra, E. Antitumor activity of new hydridotris(pyrazolyl)borate ruthenium(II) complexes containing the phosphanes PTA and 1-CH3-PTA. Dalton Trans., 2010, 39(42), 10186-10196.
[http://dx.doi.org/10.1039/c0dt00206b] [PMID: 20882255]
[48]
Khan, R.A.; Arjmand, F.; Tabassum, S.; Monari, M.; Marchetti, F.; Pettinari, C. Organometallic ruthenium(II) scorpionate as topo II alpha inhibitor; in vitro binding studies with DNA, HPLC analysis and its anticancer activity. J. Organomet. Chem., 2014, 771, 47-58.
[http://dx.doi.org/10.1016/j.jorganchem.2014.05.013]
[49]
Santillan, G.A.; Carrano, C.J. Synthesis and characterization of copper(II) complexes of nonfacially coordinating heteroscorpionate ligands (4-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane and (3-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane. Inorg. Chem., 2007, 46(5), 1751-1759.
[http://dx.doi.org/10.1021/ic062226u] [PMID: 17286399]
[50]
Montani, M.; Pazmay, G.V.B.; Hysi, A.; Lupidi, G.; Pettinari, R.; Gambini, V.; Tilio, M.; Marchetti, F.; Pettinari, C.; Ferraro, S.; Iezzi, M.; Marchini, C.; Amici, A. The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells. Pharmacol. Res., 2016, 107, 282-290.
[http://dx.doi.org/10.1016/j.phrs.2016.03.032] [PMID: 27038531]
[51]
Marchetti, F.; Pettinari, C.; Pettinari, R.; Cerquetella, A.; Di Nicola, C.; Macchioni, A.; Zuccaccia, D.; Monari, M.; Piccinelli, F. Synthesis and intramolecular and interionic structural characterization of half-sandwich (arene)ruthenium(II) derivatives of bis(pyrazolyl)alkanes. Inorg. Chem., 2008, 47(24), 11593-11603.
[http://dx.doi.org/10.1021/ic801150c] [PMID: 18998632]
[52]
Bertucci, F.; Finetti, P.; Birnbaum, D. Basal breast cancer: a complex and deadly molecular subtype. Curr. Mol. Med., 2012, 12(1), 96-110.
[http://dx.doi.org/10.2174/156652412798376134] [PMID: 22082486]
[53]
Klasen, H.J. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns, 2000, 26(2), 117-130.
[http://dx.doi.org/10.1016/S0305-4179(99)00108-4] [PMID: 10716354]
[54]
Klasen, H.J. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 2000, 26(2), 131-138.
[http://dx.doi.org/10.1016/S0305-4179(99)00116-3] [PMID: 10716355]
[55]
Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev., 2016, 327, 349-359.
[http://dx.doi.org/10.1016/j.ccr.2016.05.015]
[56]
Pettinari, C.; Marchetti, F.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Petrelli, D.; Vitali, L.A.; da Silva, M.F.; Martins, L.M.; Smoleński, P.; Pombeiro, A.J.L. Synthesis, antimicrobial and antiproliferative activity of novel silver(I) tris(pyrazolyl)methanesulfonate and 1,3,5-triaza-7-phosphadamantane complexes. Inorg. Chem., 2011, 50(21), 11173-11183.
[http://dx.doi.org/10.1021/ic201714c] [PMID: 21999582]
[57]
Bortoluzzi, M.; Paolucci, G.; Fregona, D.; Via, L.D.; Enrichi, F. Group 3 and lanthanide triflate-complexes with N,N,O -donor ligands: synthesis, characterization, and cytotoxic activity. J. Coord. Chem., 2012, 65, 3903-3916.
[http://dx.doi.org/10.1080/00958972.2012.728591]
[58]
Saturnino, C.; Bortoluzzi, M.; Napoli, M.; Popolo, A.; Pinto, A.; Longo, P.; Paolucci, G. New insights on cytotoxic activity of group 3 and lanthanide compounds: complexes with [N,N,N]-scorpionate ligands. J. Pharm. Pharmacol., 2013, 65(9), 1354-1359.
[http://dx.doi.org/10.1111/jphp.12112] [PMID: 23927474]
[59]
Caporale, A.; Palma, G.; Mariconda, A.; Del Vecchio, V.; Iacopetta, D.; Parisi, O.I.; Sinicropi, M.S.; Puoci, F.; Arra, C.; Longo, P.; Saturnino, C. Synthesis and Antitumor Activity of New Group 3 Metallocene Complexes. Molecules, 2017, 22(4), 1-13.
[http://dx.doi.org/10.3390/molecules22040526] [PMID: 28350335]
[60]
García-Gallego, S.; Bernardes, G.J.L. Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. Angew. Chem. Int. Ed. Engl., 2014, 53(37), 9712-9721.
[http://dx.doi.org/10.1002/anie.201311225] [PMID: 25070185]
[61]
Heinemann, S.H.; Hoshi, T.; Westerhausen, M.; Schiller, A. Carbon monoxide--physiology, detection and controlled release. Chem. Commun. (Camb.), 2014, 50(28), 3644-3660.
[http://dx.doi.org/10.1039/C3CC49196J] [PMID: 24556640]
[62]
Romão, C.C.; Blättler, W.A.; Seixas, J.D.; Bernardes, G.J.L. Developing drug molecules for therapy with carbon monoxide. Chem. Soc. Rev., 2012, 41(9), 3571-3583.
[http://dx.doi.org/10.1039/c2cs15317c] [PMID: 22349541]
[63]
Schatzschneider, U. Photoactivated Biological Activity of Transition-Metal Complexes. Eur. J. Inorg. Chem., 2010, 1451-1467.
[http://dx.doi.org/10.1002/ejic.201000003]
[64]
Schatzschneider, U. PhotoCORMs: Light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications. Inorg. Chim. Acta, 2011, 374, 19-23.
[http://dx.doi.org/10.1016/j.ica.2011.02.068]
[65]
Schatzschneider, U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). Br. J. Pharmacol., 2015, 172(6), 1638-1650.
[http://dx.doi.org/10.1111/bph.12688] [PMID: 24628281]
[66]
Niesel, J.; Pinto, A.; N’Dongo, H.W.P.; Merz, K.; Ott, I.; Gust, R.; Schatzschneider, U. Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex. Chem. Commun. (Camb.), 2008, (15), 1798-1800.
[67]
Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov., 2010, 9(9), 728-743.
[http://dx.doi.org/10.1038/nrd3228] [PMID: 20811383]
[68]
Dördelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.; Schatzschneider, U. CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem. Commun. (Camb.), 2012, 48(94), 11528-11530.
[http://dx.doi.org/10.1039/c2cc36491c] [PMID: 23090687]
[69]
Dördelmann, G.; Pfeiffer, H.; Birkner, A.; Schatzschneider, U. Silicium dioxide nanoparticles as carriers for photoactivatable CO-releasing molecules (PhotoCORMs). Inorg. Chem., 2011, 50(10), 4362-4367.
[http://dx.doi.org/10.1021/ic1024197] [PMID: 21506524]
[70]
Strinitz, F.; Trautner, P.; Pfeiffer, H.; Schatzschneider, U.; Burzlaff, N. Synthesis and characterization of heteroscorpionate-based manganese carbonyl complexes as CO-releasing molecules. Tetrahedron, 2015, 71, 2951-2954.
[http://dx.doi.org/10.1016/j.tet.2015.03.002]
[71]
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[72]
Kim, M.; Jung, H.Y.; Park, H.J. Topical PDT in the treatment of benign skin diseases: principles and new applications. Int. J. Mol. Sci., 2015, 16(10), 23259-23278.
[http://dx.doi.org/10.3390/ijms161023259] [PMID: 26404243]
[73]
Braathen, L.R.; Szeimies, R.M.; Basset-Seguin, N.; Bissonnette, R.; Foley, P.; Pariser, D.; Roelandts, R.; Wennberg, A.M.; Morton, C.A. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. International society for photodynamic therapy in dermatology, 2005. J. Am. Acad. Dermatol., 2007, 56(1), 125-143.
[http://dx.doi.org/10.1016/j.jaad.2006.06.006] [PMID: 17190630]
[74]
Roy, S.; Patra, A.K.; Dhar, S.; Chakravarty, A.R. Photosensitizer in a molecular bowl and its effect on the DNA-binding and -cleavage activity of 3d-metal scorpionates. Inorg. Chem., 2008, 47(13), 5625-5633.
[http://dx.doi.org/10.1021/ic702508r] [PMID: 18533626]
[75]
Dhar, S.; Chakravarty, A.R. Photosensitizer in a molecular bowl: steric protection enhancing the photonuclease activity of copper(II) scorpionates. Inorg. Chem., 2005, 44(8), 2582-2584.
[http://dx.doi.org/10.1021/ic050085a] [PMID: 15819541]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy