Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

ZSTK474对前列腺癌DU145细胞的体外和体内抗转移作用

卷 19, 期 4, 2019

页: [321 - 329] 页: 9

弟呕挨: 10.2174/1568009618666180911101310

价格: $65

摘要

背景:前列腺癌的致死率主要是由于转移。预期转移的抑制是前列腺癌治疗的有希望的方法。据报道,磷脂酰肌醇3-激酶(PI3K)/ Akt途径与细胞生长,迁移等密切相关。 目的:研究pan-PI3K抑制剂ZSTK474对DU145细胞的抗转移作用。 方法:1。采用Transwell迁移实验和伤口愈合实验,Tranwell侵袭实验和粘附实验,分别测定ZSTK474对DU145细胞迁移,侵袭和粘附的体外作用。 2.用Western印迹分析和ELISA测定ZSTK474对DU145细胞中信号蛋白的体外作用。此外,用MicroCT和组织学分析评估ZSTK474的体内抗转移作用。 结果:ZSTK474有效减弱DU145细胞的迁移,侵袭和粘附能力,对Girdin,Integrinβ1和基质金属蛋白酶(MMPs)产生负调控作用。此外,已知与血管生成和转移相关的缺氧诱导因子-1α(HIF-1α)和血管内皮生长因子(VEGF)的表达也受到抑制。口服ZSTK474(200 mg / kg)可改善DU145细胞的体内骨转移,改善骨结构和骨矿物质密度(BMD)。组织染色表明,与未处理组相比,ZSTK474处理的小鼠的骨中转移性DU145细胞和破骨细胞减少。结论:我们的结果证明了ZSTK474对前列腺癌DU145细胞的抗转移活性,表明其在前列腺癌患者中的潜在应用。

关键词: PICK抑制剂,ZSTK474,转移,痣,DY145,前列腺神经节。

图形摘要

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[2]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science (New York, NY) , 2011, 331(6024), 1559-1564.
[3]
Chambers, A.F.; Groom, A.C.; MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer, 2002, 2(8), 563-572.
[4]
Kong, D.; Yamori, T. Advances in development of phosphatidylinositol 3-kinase inhibitors. Curr. Med. Chem., 2009, 16(22), 2839-2854.
[5]
Weinstein, J.N.; Akbani, R.; Broom, B.M.; Wang, W.; Verhaak, R.G.W.; Mcconkey, D. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature, 2014, 507(7492), 315-322.
[6]
Yap, T.A.; Bjerke, L.; Clarke, P.A.; Workman, P. Drugging PI3K in cancer: Refining targets and therapeutic strategies. Curr. Opin. Pharmacol., 2015, 23, 98-107.
[7]
Shah, A.; Mangaonkar, A. Idelalisib: A novel PI3Kδ inhibitor for chronic lymphocytic leukemia. Ann. Pharmacother., 2015, 49(10), 1162-1170.
[8]
Markham, A. Copanlisib: First global approval. Drugs, 2017, 77(18), 2057-2062.
[9]
Kong, D.X.; Yamori, T. ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor identified using the JFCR39 drug discovery system. Acta Pharmacol. Sin., 2010, 31(9), 1189-1197.
[10]
Yaguchi, S.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.; Gouda, H.; Hirono, S.; Yamazaki, K.; Yamori, T. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl. Cancer Inst., 2006, 98(8), 545-556.
[11]
Kong, D.; Yamori, T. JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs. Bioorg. Med. Chem., 2012, 20(6), 1947-1951.
[12]
Kong, D.; Dan, S.; Yamazaki, K.; Yamori, T. Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39. Eur. J. Cancer, 2010, 46(6), 1111-1121.
[13]
Kong, D.; Yaguchi, S.; Yamori, T. Effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor, on DNA-dependent protein kinase. Biol. Pharm. Bull., 2009, 32(2), 297-300.
[14]
Kong, D.; Yamori, T. ZSTK474 is an ATP-competitive inhibitor of class I phosphatidylinositol 3 kinase isoforms. Cancer Sci., 2007, 98(10), 1638-1642.
[15]
Zhao, W.; Qiu, Y.; Kong, D. Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm. Sin. B, 2017, 7(1), 27-37.
[16]
Kong, D.; Okamura, M.; Yoshimi, H.; Yamori, T. Antiangiogenic effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor. Eur. J. Cancer, 2009, 45(5), 857-865.
[17]
Zhao, W.; Guo, W.; Zhou, Q.; Ma, S.N.; Wang, R.; Qiu, Y.; Jin, M.; Duan, H.Q.; Kong, D. In vitro antimetastatic effect of phosphatidylinositol 3-kinase inhibitor ZSTK474 on prostate cancer PC3 cells. Int. J. Mol. Sci., 2013, 14(7), 13577-13591.
[18]
Dan, S.; Okamura, M.; Seki, M.; Yamazaki, K.; Sugita, H.; Okui, M.; Mukai, Y.; Nishimura, H.; Asaka, R.; Nomura, K.; Ishikawa, Y.; Yamori, T. Correlating phosphatidylinositol 3-kinase inhibitor efficacy with signaling pathway status: In silico and biological evaluations. Cancer Res., 2010, 70(12), 4982-4994.
[19]
Kong, D.; Yamori, T.; Kobayashi, M.; Duan, H. Antiproliferative and antiangiogenic activities of smenospongine, a marine sponge sesquiterpene aminoquinone. Mar. Drugs, 2011, 9(2), 154-161.
[20]
Workman, P.; Aboagye, E.O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D.J.; Double, J.A.; Everitt, J.; Farningham, D.A.; Glennie, M.J.; Kelland, L.R.; Robinson, V.; Stratford, I.J.; Tozer, G.M.; Watson, S.; Wedge, S.R.; Eccles, S.A. Committee of the National Cancer Research Institute. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer, 2010, 102(11), 1555-1577.
[21]
Corey, E.; Quinn, J.E.; Bladou, F.; Brown, L.G.; Roudier, M.P.; Brown, J.M.; Buhler, K.R.; Vessella, R.L. Establishment and characterization of osseous prostate cancer models: Intra‐tibial injection of human prostate cancer cells. Prostate, 2002, 52(1), 20-33.
[22]
Liu, D.; Li, X.; Li, J.; Yang, J.; Yokota, H.; Zhang, P. Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing. Bone, 2015, 81, 620-631.
[23]
Ridley, A.J.; Schwartz, M.A.; Burridge, K.; Firtel, R.A.; Ginsberg, M.H.; Borisy, G.; Parsons, J.T.; Horwitz, A.R. Cell migration: integrating signals from front to back. Science, 2003, 302(5651), 1704-1709.
[24]
Arboleda, M.J.; Lyons, J.F.; Kabbinavar, F.F.; Bray, M.R.; Snow, B.E.; Ayala, R.; Danino, M.; Karlan, B.Y.; Slamon, D.J. Overexpression of AKT2/protein kinase B beta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res., 2003, 63(1), 196-206.
[25]
Jiang, P.; Enomoto, A.; Jijiwa, M.; Kato, T.; Hasegawa, T.; Ishida, M.; Sato, T.; Asai, N.; Murakumo, Y.; Takahashi, M. An actin-binding protein Girdin regulates the motility of breast cancer cells. Cancer Res., 2008, 68(5), 1310-1318.
[26]
Imamichi, Y.; Menke, A. Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition. Cells Tissues Organs, 2007, 185(1-3), 180-190.
[27]
Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer, 2002, 2(3), 161-174.
[28]
Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[29]
Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. , 1999, 77(7), 527-543.
[30]
Ferrara, N.; Gerber, H.P. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol., 2001, 106(4), 148-156.
[31]
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 2003, 3(10), 721-732.
[32]
Jiang, B.H.; Jiang, G.; Zheng, J.Z.; Lu, Z.; Hunter, T.; Vogt, P.K. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ., 2001, 12(7), 363-369.
[33]
Dbouk, H.A.; Vadas, O.; Shymanets, A.; Burke, J.E.; Salamon, R.S.; Khalil, B.D.; Barrett, M.O.; Waldo, G.L.; Surve, C.; Hsueh, C.; Perisic, O.; Harteneck, C.; Shepherd, P.R.; Harden, T.K.; Smrcka, A.V.; Taussig, R.; Bresnick, A.R.; Nürnberg, B.; Williams, R.L.; Backer, J.M. G protein-coupled receptor-mediated activation of p110β by Gβγ is required for cellular transformation and invasiveness. Sci. Signal., 2012, 5(253), ra89.
[34]
Saudemont, A.; Garçon, F.; Yadi, H.; Rochemolina, M.; Kim, N.; Segondspichon, A.; Martín-Fontecha, A.; Okkenhaug, K.; Colucci, F. p110gamma and p110delta isoforms of phosphoinositide 3-kinase differentially regulate natural killer cell migration in health and disease. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5795-5800.
[35]
Burton, D.W.; Geller, J.; Yang, M.; Jiang, P.; Barken, I.; Hastings, R.H.; Hoffman, R.M.; Deftos, L.J. Monitoring of skeletal progression of prostate cancer by GFP imaging, X-ray, and serum OPG and PTHrP. Prostate, 2005, 62(3), 275-281.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy