Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

In Vitro and In Vivo Antimetastatic Effects of ZSTK474 on Prostate Cancer DU145 Cells

Author(s): Jie Liu, Xiao Tan, Wennan Zhao, Jing Liu, Xiaoxue Xing, Guanwei Fan, Ping Zhang, Zhe Zhang, Yuxu Zhong* and Dexin Kong*

Volume 19, Issue 4, 2019

Page: [321 - 329] Pages: 9

DOI: 10.2174/1568009618666180911101310

Price: $65

Abstract

Background: The lethality of prostate cancer is mainly due to metastasis. Inhibition of metastasis is expected to be a promising approach for prostate cancer therapy. Phosphatidylinositol 3-kinase (PI3K)/Akt pathway is reported to be closely involved in cell growth, migration, etc.

Objective: The study investigated the antimetastatic activities of pan-PI3K inhibitor ZSTK474 on DU145 cells.

Methods: 1. The In vitro effect of ZSTK474 on the migration, invasion and adhesion of DU145 cells was determined with Transwell migration assay and wound healing assay, Tranwell invasion assay and adhesion assay, respectively. 2. In vitro effect of ZSTK474 on the signal proteins in DU145 cells was determined with Western blot analysis and ELISA. 3. Moreover, the In vivo antimetastatic effect of ZSTK474 was evaluated with MicroCT and histology analysis.

Results: ZSTK474 potently attenuated the capability of migration, invasion and adhesion of DU145 cells, negatively regulated Girdin, Integrinβ1 and matrix metalloproteinases (MMPs). In addition, the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), which are known to be related to angiogenesis and metastasis, was also inhibited. Oral administration of ZSTK474 (200 mg/kg) ameliorated in vivo bone metastasis of DU145 cells, with improved bone structure and bone mineral density (BMD). Tissue staining indicated a reduction in metastatic DU145 cells and osteoclasts in the bones of ZSTK474-treated mice, compared with the non-treated group.

Conclusion: Our result demonstrated the antimetastatic activity of ZSTK474 on prostate cancer DU145 cells, suggesting the potential application in prostate cancer patients.

Keywords: PI3K inhibitor, ZSTK474, antimetastasis, in vivo, DU145, prostate cancer.

Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[2]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science (New York, NY) , 2011, 331(6024), 1559-1564.
[3]
Chambers, A.F.; Groom, A.C.; MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer, 2002, 2(8), 563-572.
[4]
Kong, D.; Yamori, T. Advances in development of phosphatidylinositol 3-kinase inhibitors. Curr. Med. Chem., 2009, 16(22), 2839-2854.
[5]
Weinstein, J.N.; Akbani, R.; Broom, B.M.; Wang, W.; Verhaak, R.G.W.; Mcconkey, D. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature, 2014, 507(7492), 315-322.
[6]
Yap, T.A.; Bjerke, L.; Clarke, P.A.; Workman, P. Drugging PI3K in cancer: Refining targets and therapeutic strategies. Curr. Opin. Pharmacol., 2015, 23, 98-107.
[7]
Shah, A.; Mangaonkar, A. Idelalisib: A novel PI3Kδ inhibitor for chronic lymphocytic leukemia. Ann. Pharmacother., 2015, 49(10), 1162-1170.
[8]
Markham, A. Copanlisib: First global approval. Drugs, 2017, 77(18), 2057-2062.
[9]
Kong, D.X.; Yamori, T. ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor identified using the JFCR39 drug discovery system. Acta Pharmacol. Sin., 2010, 31(9), 1189-1197.
[10]
Yaguchi, S.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.; Gouda, H.; Hirono, S.; Yamazaki, K.; Yamori, T. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl. Cancer Inst., 2006, 98(8), 545-556.
[11]
Kong, D.; Yamori, T. JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs. Bioorg. Med. Chem., 2012, 20(6), 1947-1951.
[12]
Kong, D.; Dan, S.; Yamazaki, K.; Yamori, T. Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39. Eur. J. Cancer, 2010, 46(6), 1111-1121.
[13]
Kong, D.; Yaguchi, S.; Yamori, T. Effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor, on DNA-dependent protein kinase. Biol. Pharm. Bull., 2009, 32(2), 297-300.
[14]
Kong, D.; Yamori, T. ZSTK474 is an ATP-competitive inhibitor of class I phosphatidylinositol 3 kinase isoforms. Cancer Sci., 2007, 98(10), 1638-1642.
[15]
Zhao, W.; Qiu, Y.; Kong, D. Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm. Sin. B, 2017, 7(1), 27-37.
[16]
Kong, D.; Okamura, M.; Yoshimi, H.; Yamori, T. Antiangiogenic effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor. Eur. J. Cancer, 2009, 45(5), 857-865.
[17]
Zhao, W.; Guo, W.; Zhou, Q.; Ma, S.N.; Wang, R.; Qiu, Y.; Jin, M.; Duan, H.Q.; Kong, D. In vitro antimetastatic effect of phosphatidylinositol 3-kinase inhibitor ZSTK474 on prostate cancer PC3 cells. Int. J. Mol. Sci., 2013, 14(7), 13577-13591.
[18]
Dan, S.; Okamura, M.; Seki, M.; Yamazaki, K.; Sugita, H.; Okui, M.; Mukai, Y.; Nishimura, H.; Asaka, R.; Nomura, K.; Ishikawa, Y.; Yamori, T. Correlating phosphatidylinositol 3-kinase inhibitor efficacy with signaling pathway status: In silico and biological evaluations. Cancer Res., 2010, 70(12), 4982-4994.
[19]
Kong, D.; Yamori, T.; Kobayashi, M.; Duan, H. Antiproliferative and antiangiogenic activities of smenospongine, a marine sponge sesquiterpene aminoquinone. Mar. Drugs, 2011, 9(2), 154-161.
[20]
Workman, P.; Aboagye, E.O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D.J.; Double, J.A.; Everitt, J.; Farningham, D.A.; Glennie, M.J.; Kelland, L.R.; Robinson, V.; Stratford, I.J.; Tozer, G.M.; Watson, S.; Wedge, S.R.; Eccles, S.A. Committee of the National Cancer Research Institute. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer, 2010, 102(11), 1555-1577.
[21]
Corey, E.; Quinn, J.E.; Bladou, F.; Brown, L.G.; Roudier, M.P.; Brown, J.M.; Buhler, K.R.; Vessella, R.L. Establishment and characterization of osseous prostate cancer models: Intra‐tibial injection of human prostate cancer cells. Prostate, 2002, 52(1), 20-33.
[22]
Liu, D.; Li, X.; Li, J.; Yang, J.; Yokota, H.; Zhang, P. Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing. Bone, 2015, 81, 620-631.
[23]
Ridley, A.J.; Schwartz, M.A.; Burridge, K.; Firtel, R.A.; Ginsberg, M.H.; Borisy, G.; Parsons, J.T.; Horwitz, A.R. Cell migration: integrating signals from front to back. Science, 2003, 302(5651), 1704-1709.
[24]
Arboleda, M.J.; Lyons, J.F.; Kabbinavar, F.F.; Bray, M.R.; Snow, B.E.; Ayala, R.; Danino, M.; Karlan, B.Y.; Slamon, D.J. Overexpression of AKT2/protein kinase B beta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res., 2003, 63(1), 196-206.
[25]
Jiang, P.; Enomoto, A.; Jijiwa, M.; Kato, T.; Hasegawa, T.; Ishida, M.; Sato, T.; Asai, N.; Murakumo, Y.; Takahashi, M. An actin-binding protein Girdin regulates the motility of breast cancer cells. Cancer Res., 2008, 68(5), 1310-1318.
[26]
Imamichi, Y.; Menke, A. Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition. Cells Tissues Organs, 2007, 185(1-3), 180-190.
[27]
Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer, 2002, 2(3), 161-174.
[28]
Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[29]
Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. , 1999, 77(7), 527-543.
[30]
Ferrara, N.; Gerber, H.P. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol., 2001, 106(4), 148-156.
[31]
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 2003, 3(10), 721-732.
[32]
Jiang, B.H.; Jiang, G.; Zheng, J.Z.; Lu, Z.; Hunter, T.; Vogt, P.K. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ., 2001, 12(7), 363-369.
[33]
Dbouk, H.A.; Vadas, O.; Shymanets, A.; Burke, J.E.; Salamon, R.S.; Khalil, B.D.; Barrett, M.O.; Waldo, G.L.; Surve, C.; Hsueh, C.; Perisic, O.; Harteneck, C.; Shepherd, P.R.; Harden, T.K.; Smrcka, A.V.; Taussig, R.; Bresnick, A.R.; Nürnberg, B.; Williams, R.L.; Backer, J.M. G protein-coupled receptor-mediated activation of p110β by Gβγ is required for cellular transformation and invasiveness. Sci. Signal., 2012, 5(253), ra89.
[34]
Saudemont, A.; Garçon, F.; Yadi, H.; Rochemolina, M.; Kim, N.; Segondspichon, A.; Martín-Fontecha, A.; Okkenhaug, K.; Colucci, F. p110gamma and p110delta isoforms of phosphoinositide 3-kinase differentially regulate natural killer cell migration in health and disease. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5795-5800.
[35]
Burton, D.W.; Geller, J.; Yang, M.; Jiang, P.; Barken, I.; Hastings, R.H.; Hoffman, R.M.; Deftos, L.J. Monitoring of skeletal progression of prostate cancer by GFP imaging, X-ray, and serum OPG and PTHrP. Prostate, 2005, 62(3), 275-281.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy