Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting Long Non-Coding RNAs in Nervous System Cancers: New Insights in Prognosis, Diagnosis and Therapy

Author(s): Nikos Malissovas, Elpinickie Ninou , Artemis Michail and Panagiotis K. Politis*

Volume 26, Issue 30, 2019

Page: [5649 - 5663] Pages: 15

DOI: 10.2174/0929867325666180831170227

Price: $65

Abstract

Long non-coding RNAs (lncRNAs) constitute one of the most broad and diverse classes of cellular transcripts, playing key roles as regulatory molecules in many biological processes. Although the biology of lncRNAs is a new and emerging field of research, several studies have already shown that alterations in the expression of lncRNAs are associated with the development and progression of cancer in different organs and tissues, including central and peripheral nervous system. In this review, we summarize the oncogenic and tumor suppressive roles of lncRNAs in malignant tumors of the nervous system, such as glioma and neuroblastoma, focusing on their functional interactions with DNA, other RNA and protein molecules. We further discuss the potential use of lncRNAs as biomarkers for diagnosis, prognosis and tumor treatment. Gaining insight into the functional association between nervous system malignancies and lncRNAs could offer new perspectives to the development of promising therapeutic tools against cancer.

Keywords: Glioblastoma, neuroblastoma, HOTAIR, XIST, MALAT1, MEG3, I-BET, circulating lncRNAs.

[1]
Niland, C.N.; Merry, C.R.; Khalil, A.M. Emerging roles for long non-coding RNAs in cancer and neurological disorders. Front. Genet., 2012, 3(25)
[http://dx.doi.org/10.3389/fgene.2012.00025] [PMID: 22375145]
[2]
Prensner, J.R.; Chinnaiyan, A.M. The emergence of lncRNAs in cancer biology. Cancer Discov., 2011, 1(5), 391-407.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0209] [PMID: 22096659]
[3]
Gibb, E.A.; Brown, C.J.; Lam, W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer, 2011, 10(38)
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[4]
Wapinski, O.; Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol., 2011, 21(6), 354-361.
[http://dx.doi.org/10.1016/j.tcb.2011.04.001] [PMID: 21550244]
[5]
Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet., 2009, 10(3), 155-159.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[6]
Gutschner, T.; Diederichs, S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol., 2012, 9(6), 703-719.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[7]
Shi, J.; Dong, B.; Cao, J.; Mao, Y.; Guan, W.; Peng, Y.; Wang, S. Long non-coding RNA in glioma: signaling pathways. Oncotarget, 2017, 8(16), 27582-27592.
[http://dx.doi.org/10.18632/oncotarget.15175] [PMID: 28187439]
[8]
Pandey, G.K.; Kanduri, C. Long noncoding RNAs and neuroblastoma. Oncotarget, 2015, 6(21), 18265-18275.
[http://dx.doi.org/10.18632/oncotarget.4251] [PMID: 26087192]
[9]
Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med., 2008, 359(5), 492-507.
[http://dx.doi.org/10.1056/NEJMra0708126] [PMID: 18669428]
[10]
Young, R.M.; Jamshidi, A.; Davis, G.; Sherman, J.H. Current trends in the surgical management and treatment of adult glioblastoma. Ann. Transl. Med., 2015, 3(9), 121.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.05.10] [PMID: 26207249]
[11]
Khosla, D. Concurrent therapy to enhance radiotherapeutic outcomes in glioblastoma. Ann. Transl. Med., 2016, 4(3), 54.
[PMID: 26904576]
[12]
Gallego, O. Nonsurgical treatment of recurrent glioblastoma. Curr. Oncol., 2015, 22(4), e273-e281.
[http://dx.doi.org/10.3747/co.22.2436] [PMID: 26300678]
[13]
Maris, J.M; Hogarty, M.D; Bagatell, R; Cohn, S.L. Neuroblastoma. Lancet, 2007, 23;369(9579), 2106-2120.
[http://dx.doi.org/10.1016/S0140-6736(07)60983-0] [PMID: 17586306]
[14]
London, W.B.; Castleberry, R.P.; Matthay, K.K.; Look, A.T.; Seeger, R.C.; Shimada, H.; Thorner, P.; Brodeur, G.; Maris, J.M.; Reynolds, C.P.; Cohn, S.L. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol., 2005, 23(27), 6459-6465.
[http://dx.doi.org/10.1200/JCO.2005.05.571] [PMID: 16116153]
[15]
Foskolou, I.P.; Stellas, D.; Rozani, I.; Lavigne, M.D.; Politis, P.K. Prox1 suppresses the proliferation of neuroblastoma cells via a dual action in p27-Kip1 and Cdc25A. Oncogene, 2013, 32(8), 947-960.
[http://dx.doi.org/10.1038/onc.2012.129] [PMID: 22508481]
[16]
Politis, P.K.; Akrivou, S.; Hurel, C.; Papadodima, O.; Matsas, R. BM88/Cend1 is involved in histone deacetylase inhibition-mediated growth arrest and differentiation of neuroblastoma cells. FEBS Lett., 2008, 582(5), 741-748.
[http://dx.doi.org/10.1016/j.febslet.2008.01.052] [PMID: 18258204]
[17]
Pearson, A.D.; Pinkerton, C.R.; Lewis, I.J.; Imeson, J.; Ellershaw, C.; Machin, D. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol., 2008, 9(3), 247-256.
[http://dx.doi.org/10.1016/S1470-2045(08)70069-X] [PMID: 18308250]
[18]
Bian, E.B.; Li, J.; Xie, Y.S.; Zong, G.; Li, J.; Zhao, B. LncRNAs: new players in gliomas, with special emphasis on the interaction of lncRNAs With EZH2. J. Cell. Physiol., 2015, 230(3), 496-503.
[http://dx.doi.org/10.1002/jcp.24549] [PMID: 24403021]
[19]
Sun, L.; Hui, A.M.; Su, Q.; Vortmeyer, A.; Kotliarov, Y.; Pastorino, S.; Passaniti, A.; Menon, J.; Walling, J.; Bailey, R.; Rosenblum, M.; Mikkelsen, T.; Fine, H.A. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell, 2006, 9(4), 287-300.
[http://dx.doi.org/10.1016/j.ccr.2006.03.003] [PMID: 16616334]
[20]
Wang, J.; Wang, H.; Li, Z.; Wu, Q.; Lathia, J.D.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One, 2008, 3(11)e3769
[http://dx.doi.org/10.1371/journal.pone.0003769] [PMID: 19020659]
[21]
Zhang, X.; Sun, S.; Pu, J.K.; Tsang, A.C.; Lee, D.; Man, V.O.; Lui, W.M.; Wong, S.T.; Leung, G.K. Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol. Dis., 2012, 48(1), 1-8.
[http://dx.doi.org/10.1016/j.nbd.2012.06.004] [PMID: 22709987]
[22]
Amit, D.; Matouk, I.J.; Lavon, I.; Birman, T.; Galula, J.; Abu-Lail, R.; Schneider, T.; Siegal, T.; Hochberg, A.; Fellig, Y. Transcriptional targeting of glioblastoma by diphtheria toxin-A driven by both H19 and IGF2-P4 promoters. Int. J. Clin. Exp. Med., 2012, 5(2), 124-135.
[PMID: 22567173]
[23]
Brunner, A.L.; Beck, A.H.; Edris, B.; Sweeney, R.T.; Zhu, S.X.; Li, R.; Montgomery, K.; Varma, S.; Gilks, T.; Guo, X.; Foley, J.W.; Witten, D.M.; Giacomini, C.P.; Flynn, R.A.; Pollack, J.R.; Tibshirani, R.; Chang, H.Y.; van de Rijn, M.; West, R.B. Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol., 2012, 13(8), R75.
[http://dx.doi.org/10.1186/gb-2012-13-8-r75] [PMID: 22929540]
[24]
Gibb, E.A.; Vucic, E.A.; Enfield, K.S.; Stewart, G.L.; Lonergan, K.M.; Kennett, J.Y.; Becker-Santos, D.D.; MacAulay, C.E.; Lam, S.; Brown, C.J.; Lam, W.L. Human cancer long non-coding RNA transcriptomes. PLoS One, 2011, 6(10)e25915
[http://dx.doi.org/10.1371/journal.pone.0025915] [PMID: 21991387]
[25]
Han, L.; Zhang, K.; Shi, Z.; Zhang, J.; Zhu, J.; Zhu, S.; Zhang, A.; Jia, Z.; Wang, G.; Yu, S.; Pu, P.; Dong, L.; Kang, C. LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int. J. Oncol., 2012, 40(6), 2004-2012.
[http://dx.doi.org/10.3892/ijo.2012.1413] [PMID: 22446686]
[26]
Pastori, C.; Kapranov, P.; Penas, C.; Peschansky, V.; Volmar, C.H.; Sarkaria, J.N.; Bregy, A.; Komotar, R.; St Laurent, G.; Ayad, N.G.; Wahlestedt, C. The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proc. Natl. Acad. Sci. USA, 2015, 112(27), 8326-8331.
[http://dx.doi.org/10.1073/pnas.1424220112] [PMID: 26111795]
[27]
Baritaki, S.; Chatzinikola, A.M.; Vakis, A.F.; Soulitzis, N.; Karabetsos, D.A.; Neonakis, I.; Bonavida, B.; Spandidos, D.A. YY1 Over-expression in human brain gliomas and meningiomas correlates with TGF-beta1, IGF-1 and FGF-2 mRNA levels. Cancer Invest., 2009, 27(2), 184-192.
[http://dx.doi.org/10.1080/07357900802210760] [PMID: 19235591]
[28]
Grzmil, M.; Morin, P., Jr; Lino, M.M.; Merlo, A.; Frank, S.; Wang, Y.; Moncayo, G.; Hemmings, B.A. MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-β signaling pathway in human glioblastoma. Cancer Res., 2011, 71(6), 2392-2402.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3112] [PMID: 21406405]
[29]
Murat, A.; Migliavacca, E.; Gorlia, T.; Lambiv, W.L.; Shay, T.; Hamou, M.F.; de Tribolet, N.; Regli, L.; Wick, W.; Kouwenhoven, M.C.; Hainfellner, J.A.; Heppner, F.L.; Dietrich, P.Y.; Zimmer, Y.; Cairncross, J.G.; Janzer, R.C.; Domany, E.; Delorenzi, M.; Stupp, R.; Hegi, M.E. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol., 2008, 26(18), 3015-3024.
[http://dx.doi.org/10.1200/JCO.2007.15.7164] [PMID: 18565887]
[30]
Guo, H.; Wu, L.; Yang, Q.; Ye, M.; Zhu, X. Functional linc-POU3F3 is overexpressed and contributes to tumorigenesis in glioma. Gene, 2015, 554(1), 114-119.
[http://dx.doi.org/10.1016/j.gene.2014.10.038] [PMID: 25445282]
[31]
Shi, Y.; Wang, Y.; Luan, W.; Wang, P.; Tao, T.; Zhang, J.; Qian, J.; Liu, N.; You, Y. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One, 2014, 9(1)e86295
[http://dx.doi.org/10.1371/journal.pone.0086295] [PMID: 24466011]
[32]
Ma, K.X.; Wang, H.J.; Li, X.R.; Li, T.; Su, G.; Yang, P.; Wu, J.W. Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumour Biol., 2015, 36(5), 3355-3359.
[http://dx.doi.org/10.1007/s13277-014-2969-7] [PMID: 25613066]
[33]
Vital, A.L.; Tabernero, M.D.; Castrillo, A.; Rebelo, O.; Tão, H.; Gomes, F.; Nieto, A.B.; Resende Oliveira, C.; Lopes, M.C.; Orfao, A. Gene expression profiles of human glioblastomas are associated with both tumor cytogenetics and histopathology. Neuro-oncol., 2010, 12(9), 991-1003.
[http://dx.doi.org/10.1093/neuonc/noq050] [PMID: 20484145]
[34]
Scaruffi, P.; Stigliani, S.; Moretti, S.; Coco, S.; De Vecchi, C.; Valdora, F.; Garaventa, A.; Bonassi, S.; Tonini, G.P. Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer, 2009, 9, 441.
[http://dx.doi.org/10.1186/1471-2407-9-441] [PMID: 20003513]
[35]
Mestdagh, P.; Fredlund, E.; Pattyn, F.; Rihani, A.; Van Maerken, T.; Vermeulen, J.; Kumps, C.; Menten, B.; De Preter, K.; Schramm, A.; Schulte, J.; Noguera, R.; Schleiermacher, G.; Janoueix-Lerosey, I.; Laureys, G.; Powel, R.; Nittner, D.; Marine, J.C.; Ringnér, M.; Speleman, F.; Vandesompele, J. An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene, 2010, 29(24), 3583-3592.
[http://dx.doi.org/10.1038/onc.2010.106] [PMID: 20383195]
[36]
Watters, K.M.; Bryan, K.; Foley, N.H.; Meehan, M.; Stallings, R.L. Expressional alterations in functional ultra-conserved non-coding RNAs in response to all-trans retinoic acid--induced differentiation in neuroblastoma cells. BMC Cancer, 2013, 13, 184.
[http://dx.doi.org/10.1186/1471-2407-13-184] [PMID: 23565812]
[37]
Pandey, G.K.; Kanduri, C. Fighting Neuroblastomas with NBAT1. Oncoscience, 2015, 2(2), 79-80.
[http://dx.doi.org/10.18632/oncoscience.126] [PMID: 25859549]
[38]
Zhang, X.Q.; Sun, S.; Lam, K.F.; Kiang, K.M.; Pu, J.K.; Ho, A.S.; Lui, W.M.; Fung, C.F.; Wong, T.S.; Leung, G.K. A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol. Dis., 2013, 58, 123-131.
[http://dx.doi.org/10.1016/j.nbd.2013.05.011] [PMID: 23726844]
[39]
Ma, K.X.; Wang, H.J.; Li, X.R.; Li, T.; Su, G.; Yang, P.; Wu, J.W. Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumour Biol., 2015, 36(5), 3355-3359.
[http://dx.doi.org/10.1007/s13277-014-2969-7] [PMID: 25613066]
[40]
Zhang, J.X.; Han, L.; Bao, Z.S.; Wang, Y.Y.; Chen, L.Y.; Yan, W.; Yu, S.Z.; Pu, P.Y.; Liu, N.; You, Y.P.; Jiang, T.; Kang, C.S. Chinese Glioma Cooperative Group HOTAIR, a cell cycle-associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma. Neuro-oncol., 2013, 15(12), 1595-1603.
[http://dx.doi.org/10.1093/neuonc/not131] [PMID: 24203894]
[41]
Zhang, K.; Sun, X.; Zhou, X.; Han, L.; Chen, L.; Shi, Z.; Zhang, A.; Ye, M.; Wang, Q.; Liu, C.; Wei, J.; Ren, Y.; Yang, J.; Zhang, J.; Pu, P.; Li, M.; Kang, C. Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner. Oncotarget, 2015, 6(1), 537-546.
[http://dx.doi.org/10.18632/oncotarget.2681] [PMID: 25428914]
[42]
Khalil, A.M.; Guttman, M.; Huarte, M.; Garber, M.; Raj, A.; Rivea Morales, D.; Thomas, K.; Presser, A.; Bernstein, B.E.; van Oudenaarden, A.; Regev, A.; Lander, E.S.; Rinn, J.L. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA, 2009, 106(28), 11667-11672.
[http://dx.doi.org/10.1073/pnas.0904715106] [PMID: 19571010]
[43]
Tsai, M.C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992), 689-693.
[http://dx.doi.org/10.1126/science.1192002] [PMID: 20616235]
[44]
Fang, K.; Liu, P.; Dong, S.; Guo, Y.; Cui, X.; Zhu, X.; Li, X.; Jiang, L.; Liu, T.; Wu, Y. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. Int. J. Oncol., 2016, 49(2), 509-518.
[http://dx.doi.org/10.3892/ijo.2016.3571] [PMID: 27277755]
[45]
Zhou, X.; Ren, Y.; Zhang, J.; Zhang, C.; Zhang, K.; Han, L.; Kong, L.; Wei, J.; Chen, L.; Yang, J.; Wang, Q.; Zhang, J.; Yang, Y.; Jiang, T.; Li, M.; Kang, C. HOTAIR is a therapeutic target in glioblastoma. Oncotarget, 2015, 6(10), 8353-8365.
[http://dx.doi.org/10.18632/oncotarget.3229] [PMID: 25823657]
[46]
Zhou, X.; Chen, J.; Tang, W. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(12), 1011-1015.
[http://dx.doi.org/10.1093/abbs/gmu104] [PMID: 25385164]
[47]
Ma, M.Z.; Li, C.X.; Zhang, Y.; Weng, M.Z.; Zhang, M.D.; Qin, Y.Y.; Gong, W.; Quan, Z.W. Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer. Mol. Cancer, 2014, 23(13), 156.
[http://dx.doi.org/10.1186/1476-4598-13-156]
[48]
Huiyuan, C.; Xinyi, L.; Wenbin, L.; Huyong, Z. miR-130a can predict response to temozolomide in patients with glioblastoma multiforme, independently of O6-methylguanine-DNA methyltransferase. J. Transl. Med., 2015, 13(69)
[http://dx.doi.org/10.1186/s12967-015-0435-y] [PMID: 25890369]
[49]
Hao, Y.; Crenshaw, T.; Moulton, T.; Newcomb, E.; Tycko, B. Tumour-suppressor activity of H19 RNA. Nature, 1993, 365(6448), 764-767.
[http://dx.doi.org/10.1038/365764a0] [PMID: 7692308]
[50]
Brannan, C.I.; Dees, E.C.; Ingram, R.S.; Tilghman, S.M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol., 1990, 10(1), 28-36.
[http://dx.doi.org/10.1128/MCB.10.1.28] [PMID: 1688465]
[51]
Li, W.; Jiang, P.; Sun, X.; Xu, S.; Ma, X.; Zhan, R. Suppressing H19 modulates tumorigenicity and stemness in U251 and U87MG glioma cells. Cell. Mol. Neurobiol., 2016, 36(8), 1219-1227.
[http://dx.doi.org/10.1007/s10571-015-0320-5] [PMID: 26983719]
[52]
Venkatraman, A.; He, X.C.; Thorvaldsen, J.L.; Sugimura, R.; Perry, J.M.; Tao, F.; Zhao, M.; Christenson, M.K.; Sanchez, R.; Yu, J.Y.; Peng, L.; Haug, J.S.; Paulson, A.; Li, H.; Zhong, X.B.; Clemens, T.L.; Bartolomei, M.S.; Li, L. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature, 2013, 500(7462), 345-349.
[http://dx.doi.org/10.1038/nature12303] [PMID: 23863936]
[53]
Fellig, Y.; Ariel, I.; Ohana, P.; Schachter, P.; Sinelnikov, I.; Birman, T.; Ayesh, S.; Schneider, T.; de Groot, N.; Czerniak, A.; Hochberg, A. H19 expression in hepatic metastases from a range of human carcinomas. J. Clin. Pathol., 2005, 58(10), 1064-1068.
[http://dx.doi.org/10.1136/jcp.2004.023648] [PMID: 16189152]
[54]
Jiang, X.; Yan, Y.; Hu, M.; Chen, X.; Wang, Y.; Dai, Y.; Wu, D.; Wang, Y.; Zhuang, Z.; Xia, H. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J. Neurosurg., 2016, 124(1), 129-136.
[http://dx.doi.org/10.3171/2014.12.JNS1426] [PMID: 26274999]
[55]
Gariboldi, M.B.; Ravizza, R.; Monti, E. The IGFR1 inhibitor NVP-AEW541 disrupts a pro-survival and pro-angiogenic IGF-STAT3-HIF1 pathway in human glioblastoma cells. Biochem. Pharmacol., 2010, 80(4), 455-462.
[PMID: 20488164] [http://dx.doi.org/10.1016/j.bcp.2010.05.011]
[56]
Matouk, I.J.; Mezan, S.; Mizrahi, A.; Ohana, P.; Abu-Lail, R.; Fellig, Y.; Degroot, N.; Galun, E.; Hochberg, A. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim. Biophys. Acta, 2010, 1803(4), 443-451.
[http://dx.doi.org/10.1016/j.bbamcr.2010.01.010] [PMID: 20117150]
[57]
Gariboldi, M.B.; Ravizza, R.; Monti, E. The IGFR1 inhibitor NVP-AEW541 disrupts a pro-survival and pro-angiogenic IGF-STAT3-HIF1 pathway in human glioblastoma cells. Biochem. Pharmacol., 2010, 80(4), 455-462.
[http://dx.doi.org/10.1016/j.bcp.2010.05.011] [PMID: 20488164]
[58]
Amit, D.; Matouk, I.J.; Lavon, I.; Birman, T.; Galula, J.; Abu-Lail, R.; Schneider, T.; Siegal, T.; Hochberg, A.; Fellig, Y. Transcriptional targeting of glioblastoma by diphtheria toxin-A driven by both H19 and IGF2-P4 promoters. Int. J. Clin. Exp. Med., 2012, 5(2), 124-135.
[PMID: 22567173]
[59]
Barsyte-Lovejoy, D.; Lau, S.K.; Boutros, P.C.; Khosravi, F.; Jurisica, I.; Andrulis, I.L.; Tsao, M.S.; Penn, L.Z. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res., 2006, 66(10), 5330-5337.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0037] [PMID: 16707459]
[60]
Wang, Y.; Wang, Y.; Li, J.; Zhang, Y.; Yin, H.; Han, B. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett., 2015, 367(2), 122-128.
[http://dx.doi.org/10.1016/j.canlet.2015.03.027] [PMID: 25813405]
[61]
Ellis, B.C.; Molloy, P.L.; Graham, L.D. CRNDE: A long non-coding RNA involved in cancer, neurobiology, and development. Front. Genet., 2012, 3, 270.
[http://dx.doi.org/10.3389/fgene.2012.00270] [PMID: 23226159]
[62]
Guttman, M.; Donaghey, J.; Carey, B.W.; Garber, M.; Grenier, J.K.; Munson, G.; Young, G.; Lucas, A.B.; Ach, R.; Bruhn, L.; Yang, X.; Amit, I.; Meissner, A.; Regev, A.; Rinn, J.L.; Root, D.E.; Lander, E.S. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011, 477(7364), 295-300.
[http://dx.doi.org/10.1038/nature10398] [PMID: 21874018]
[63]
Mazzoleni, S.; Politi, L.S.; Pala, M.; Cominelli, M.; Franzin, A.; Sergi Sergi, L.; Falini, A.; De Palma, M.; Bulfone, A.; Poliani, P.L.; Galli, R. Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res., 2010, 70(19), 7500-7513.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2353] [PMID: 20858720]
[64]
Ducray, F.; Idbaih, A.; de Reyniès, A.; Bièche, I.; Thillet, J.; Mokhtari, K.; Lair, S.; Marie, Y.; Paris, S.; Vidaud, M.; Hoang-Xuan, K.; Delattre, O.; Delattre, J.Y.; Sanson, M. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol. Cancer, 2008, 7(41)
[http://dx.doi.org/10.1186/1476-4598-7-41] [PMID: 18492260]
[65]
Han, Y.; Wu, Z.; Wu, T.; Huang, Y.; Cheng, Z.; Li, X.; Sun, T.; Xie, X.; Zhou, Y.; Du, Z. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis., 2016, 7e2123
[http://dx.doi.org/10.1038/cddis.2015.407] [PMID: 26938295]
[66]
Kohsaka, S.; Hinohara, K.; Wang, L.; Nishimura, T.; Urushido, M.; Yachi, K.; Tsuda, M.; Tanino, M.; Kimura, T.; Nishihara, H.; Gotoh, N.; Tanaka, S. Epiregulin enhances tumorigenicity by activating the ERK/MAPK pathway in glioblastoma. Neuro-oncol., 2014, 16(7), 960-970.
[http://dx.doi.org/10.1093/neuonc/not315] [PMID: 24470554]
[67]
Wang, P.; Ren, Z.; Sun, P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J. Cell. Biochem., 2012, 113(6), 1868-1874.
[http://dx.doi.org/10.1002/jcb.24055] [PMID: 22234798]
[68]
Zhou, Y.; Zhong, Y.; Wang, Y.; Zhang, X.; Batista, D.L.; Gejman, R.; Ansell, P.J.; Zhao, J.; Weng, C.; Klibanski, A. Activation of p53 by MEG3 non-coding RNA. J. Biol. Chem., 2007, 282(34), 24731-24742.
[http://dx.doi.org/10.1074/jbc.M702029200] [PMID: 17569660]
[69]
Benetatos, L.; Vartholomatos, G.; Hatzimichael, E. MEG3 imprinted gene contribution in tumorigenesis. Int. J. Cancer, 2011, 129(4), 773-779.
[http://dx.doi.org/10.1002/ijc.26052] [PMID: 21400503]
[70]
Gordon, F.E.; Nutt, C.L.; Cheunsuchon, P.; Nakayama, Y.; Provencher, K.A.; Rice, K.A.; Zhou, Y.; Zhang, X.; Klibanski, A. Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology, 2010, 151(6), 2443-2452.
[http://dx.doi.org/10.1210/en.2009-1151] [PMID: 20392836]
[71]
Brodeur, G.M.; Seeger, R.C.; Schwab, M.; Varmus, H.E.; Bishop, J.M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science, 1984, 224(4653), 1121-1124.
[http://dx.doi.org/10.1126/science.6719137] [PMID: 6719137]
[72]
Seeger, R.C.; Brodeur, G.M.; Sather, H.; Dalton, A.; Siegel, S.E.; Wong, K.Y.; Hammond, D. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med., 1985, 313(18), 1111-1116.
[http://dx.doi.org/10.1056/NEJM198510313131802] [PMID: 4047115]
[73]
Liu, P.Y; Erriquez, D; Marshall, G.M; Tee, A.E; Polly, P; Wong, M; Liu, B; Bell, J.L; Zhang, X.D; Milazzo, G; Cheung, B.B; Fox, A; Swarbrick, A; Hüttelmaier, S; Kavallaris, M; Perini, G; Mattick, J.S; Dinger, M.E; Liu, T. Effects of a novel long noncoding RNA, lncUSMycN, on N-Myc expression and neuroblastoma progression. J. Natl. Cancer Inst, 2014, 106 (7)pii; dju13.
[http://dx.doi.org/10.1093/jnci/dju113] [PMID: 24906397]
[74]
Pandey, G.K.; Mitra, S.; Subhash, S.; Hertwig, F.; Kanduri, M.; Mishra, K.; Fransson, S.; Ganeshram, A.; Mondal, T.; Bandaru, S.; Ostensson, M.; Akyürek, L.M.; Abrahamsson, J.; Pfeifer, S.; Larsson, E.; Shi, L.; Peng, Z.; Fischer, M.; Martinsson, T.; Hedborg, F.; Kogner, P.; Kanduri, C. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell, 2014, 26(5), 722-737.
[http://dx.doi.org/10.1016/j.ccell.2014.09.014] [PMID: 25517750]
[75]
Filippakopoulos, P.; Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov., 2014, 13(5), 337-356.
[http://dx.doi.org/10.1038/nrd4286] [PMID: 24751816]
[76]
Papavassiliou, K.A.; Papavassiliou, A.G. Bromodomains: pockets with therapeutic potential. Trends Mol. Med., 2014, 20(9), 477-478.
[http://dx.doi.org/10.1016/j.molmed.2014.06.004] [PMID: 24986769]
[77]
Chen, W.; Xu, X.K.; Li, J.L.; Kong, K.K.; Li, H.; Chen, C.; He, J.; Wang, F.; Li, P.; Ge, X.S.; Li, F.C. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget, 2017, 8(14), 22783-22799.
[http://dx.doi.org/10.18632/oncotarget.15199] [PMID: 28187000]
[78]
Li, H.; Yuan, X.; Yan, D.; Li, D.; Guan, F.; Dong, Y.; Wang, H.; Liu, X.; Yang, B. Long non-coding RNA MALAT1 decreases the sensitivity of resistant glioblastoma cell lines to temozolomide. Cell. Physiol. Biochem., 2017, 42(3), 1192-1201.
[http://dx.doi.org/10.1159/000478917] [PMID: 28668966]
[79]
Kim, S.S.; Harford, J.B.; Moghe, M.; Rait, A.; Pirollo, K.F.; Chang, E.H. Targeted nanocomplex carrying siRNA against MALAT1 sensitizes glioblastoma to temozolomide. Nucleic Acids Res., 2017, 46(3), 1424-1440.
[http://dx.doi.org/10.1093/nar/gkx1221] [PMID: 29202181]
[80]
Minniti, G.; Muni, R.; Lanzetta, G.; Marchetti, P.; Enrici, R.M. Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res., 2009, 29(12), 5171-5184.
[PMID: 20044633]
[81]
Peng, Du; Haiting, Zhao; Renjun, Peng; Qing, Liu; Jian, Yuan; Gang, Peng; Yiwei, Liao. LncRNA-XIST interacts with miR-29c to modulate the chemoresistance of glioma cell to TMZ through DNA mismatch repair pathway. Biosci. Rep., 2017, 37(5) pii: BSR20170696
[PMID: 28831025] [http://dx.doi.org/10.1042/BSR20170696]
[82]
Arechaga-Ocampo, E.; Lopez-Camarillo, C.; Villegas-Sepulveda, N.; Gonzalez-De la Rosa, C.H.; Perez-Añorve, I.X.; Roldan-Perez, R.; Flores-Perez, A.; Peña-Curiel, O.; Angeles-Zaragoza, O.; Rangel Corona, R.; Gonzalez-Barrios, J.A.; Bonilla-Moreno, R.; Del Moral-Hernandez, O.; Herrera, L.A.; Garcia-Carranca, A. Tumor suppressor miR-29c regulates lung cancer cells. Tumour Biol., 2017, 39(3)1010428317695010
[http://dx.doi.org/10.1177/1010428317695010] [PMID: 28345453]
[83]
Lu, Y.; Hu, J.; Sun, W.; Li, S.; Deng, S.; Li, M. MiR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. OncoTargets Ther., 2015, 9, 99-109.
[http://dx.doi.org/ 10.2147/OTT.S92758] [PMID: 26766915]
[84]
Feldstein, O.; Nizri, T.; Doniger, T.; Jacob, J.; Rechavi, G.; Ginsberg, D. The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol. Cancer, 2013, 12(1), 131.
[http://dx.doi.org/10.1186/1476-4598-12-131] [PMID: 24168400]
[85]
Brodie, S.; Lee, H.K.; Jiang, W.; Cazacu, S.; Xiang, C.; Poisson, L.M.; Datta, I.; Kalkanis, S.; Ginsberg, D.; Brodie, C. The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells. Oncotarget, 2017, 8(19), 31785-31801.
[http://dx.doi.org/10.18632/oncotarget.15991] [PMID: 28423669]
[86]
Tso, C.L.; Shintaku, P.; Chen, J.; Liu, Q.; Liu, J.; Chen, Z.; Yoshimoto, K.; Mischel, P.S.; Cloughesy, T.F.; Liau, L.M.; Nelson, S.F. Primary glioblastomas express mesenchymal stem-like properties. Mol. Cancer Res., 2006, 4(9), 607-619.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0005] [PMID: 16966431]
[87]
Carro, M.S.; Lim, W.K.; Alvarez, M.J.; Bollo, R.J.; Zhao, X.; Snyder, E.Y.; Sulman, E.P.; Anne, S.L.; Doetsch, F.; Colman, H.; Lasorella, A.; Aldape, K.; Califano, A.; Iavarone, A. The transcriptional network for mesenchymal transformation of brain tumours. Nature, 2010, 463(7279), 318-325.
[http://dx.doi.org/10.1038/nature08712] [PMID: 20032975]
[88]
Chen, W.M.; Huang, M.D.; Sun, D.P.; Kong, R.; Xu, T.P.; Xia, R.; Zhang, E.B.; Shu, Y.Q. Long intergenic non-coding RNA 00152 promotes tumor cell cycle progression by binding to EZH2 and repressing p15 and p21 in gastric cancer. Oncotarget, 2016, 7(9), 9773-9787.
[http://dx.doi.org/10.18632/oncotarget.6949] [PMID: 26799422]
[89]
Yue, B.; Cai, D.; Liu, C.; Fang, C.; Yan, D. Linc00152 functions as a competing endogenous RNA to confer oxaliplatin resistance and holds prognostic values in colon cancer. Mol. Ther., 2016, 24(12), 2064-2077.
[http://dx.doi.org/10.1038/mt.2016.180] [PMID: 27633443]
[90]
Shen, S.; Sun, Q.; Liang, Z.; Cui, X.; Ren, X.; Chen, H.; Zhang, X.; Zhou, Y. A prognostic model of triple-negative breast cancer based on miR-27b-3p and node status. PLoS One, 2014, 9(6)e100664
[http://dx.doi.org/10.1371/journal.pone.0100664] [PMID: 24945253]
[91]
Vigneri, P.; Martorana, F.; Manzella, L.; Stella, S. Biomarkers and prognostic factors for malignant pleural mesothelioma. Future Oncol., 2015, 11(24)(Suppl.), 29-33.
[http://dx.doi.org/10.2217/fon.15.317] [PMID: 26638920]
[92]
Yu, M.; Xue, Y.; Zheng, J.; Liu, X.; Yu, H.; Liu, L.; Li, Z.; Liu, Y. Linc00152 promotes malignant progression of glioma stem cells by regulating miR-103a-3p/FEZF1/CDC25A pathway. Mol. Cancer, 2017, 16(1), 110.
[http://dx.doi.org/10.1186/s12943-017-0677-9] [PMID: 28651608]
[93]
Bolha, L.; Ravnik-Glavač, M.; Glavač, D. Long noncoding RNAs as biomarkers in cancer. Dis. Markers, 2017, 20177243968
[http://dx.doi.org/10.1155/2017/7243968] [PMID: 28634418]
[94]
Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer, 2011, 11(6), 426-437.
[http://dx.doi.org/10.1038/nrc3066] [PMID: 21562580]
[95]
Zou, H.; Wu, L.X.; Yang, Y.; Li, S.; Mei, Y.; Liu, Y.B.; Zhang, L.; Cheng, Y.; Zhou, H.H. lncRNAs PVT1 and HAR1A are prognosis biomarkers and indicate therapy outcome for diffuse glioma patients. Oncotarget, 2017, 8(45), 78767-78780.
[http://dx.doi.org/10.18632/oncotarget.20226] [PMID: 29108264]
[96]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[97]
Shen, J.; Hodges, T.R.; Song, R.; Gong, Y.; Calin, G.A.; Heimberger, A.B.; Zhao, H. Serum HOTAIR and GAS5 levels as predictors of survival in patients with glioblastoma. Mol. Carcinog., 2018, 57(1), 137-141.
[http://dx.doi.org/10.1002/mc.22739] [PMID: 28926136]
[98]
Wang, Q.; Zhang, J.; Liu, Y.; Zhang, W.; Zhou, J.; Duan, R.; Pu, P.; Kang, C.; Han, L. A novel cell cycle-associated lncRNA, HOXA11-AS, is transcribed from the 5-prime end of the HOXA transcript and is a biomarker of progression in glioma. Cancer Lett., 2016, 373(2), 251-259.
[http://dx.doi.org/10.1016/j.canlet.2016.01.039] [PMID: 26828136]
[99]
Lv, Q.L.; Hu, L.; Chen, S.H.; Sun, B.; Fu, M.L.; Qin, C.Z.; Qu, Q.; Wang, G.H.; He, C.J.; Zhou, H.H. A long noncoding RNA ZEB1-AS1 promotes tumorigenesis and predicts poor prognosis in glioma. Int. J. Mol. Sci., 2016, 17(9)E1431
[http://dx.doi.org/10.3390/ijms17091431] [PMID: 27589728]
[100]
Sun, Y.; Wang, Z.; Zhou, D. Long non-coding RNAs as potential biomarkers and therapeutic targets for gliomas. Med. Hypotheses, 2013, 81(2), 319-321.
[http://dx.doi.org/10.1016/j.mehy.2013.04.010] [PMID: 23688743]
[101]
Hu, G.W.; Wu, L.; Kuang, W.; Chen, Y.; Zhu, X.G.; Guo, H.; Lang, H.L. Knockdown of linc-OIP5 inhibits proliferation and migration of glioma cells through down-regulation of YAP-NOTCH signaling pathway. Gene, 2017, 610, 24-31.
[http://dx.doi.org/10.1016/j.gene.2017.02.006] [PMID: 28189759]
[102]
Hu, L.; Lv, Q.L.; Chen, S.H.; Sun, B.; Qu, Q.; Cheng, L.; Guo, Y.; Zhou, H.H.; Fan, L. Up-regulation of long non-coding RNA AB073614 predicts a poor prognosis in patients with glioma. Int. J. Environ. Res. Public Health, 2016, 13(4), 433.
[http://dx.doi.org/10.3390/ijerph13040433] [PMID: 27104549]
[103]
Yan, Y.; Xu, Z.; Li, Z.; Sun, L.; Gong, Z. An insight into the increasing role of LncRNAs in the pathogenesis of gliomas. Front. Mol. Neurosci., 2017, 10, 53.
[http://dx.doi.org/10.3389/fnmol.2017.00053] [PMID: 28293170]
[104]
Balci, T.; Yilmaz Susluer, S.; Kayabasi, C.; Ozmen Yelken, B.; Biray Avci, C.; Gunduz, C. Analysis of dysregulated long non-coding RNA expressions in glioblastoma cells. Gene, 2016, 590(1), 120-122.
[http://dx.doi.org/10.1016/j.gene.2016.06.024] [PMID: 27306825]
[105]
Liao, Y.; Shen, L.; Zhao, H.; Liu, Q.; Fu, J.; Guo, Y.; Peng, R.; Cheng, L. LncRNA CASC2 interacts with miR-181a to modulate glioma growth and resistance to TMZ through PTEN pathway. J. Cell. Biochem., 2017, 118(7), 1889-1899.
[http://dx.doi.org/10.1002/jcb.25910] [PMID: 28121023]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy