Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: A Review of the Effect of Physicochemical Formulation Factors in the Optimization Process, Different Preparation Technique, Characterization, and Toxicity

Author(s): Ganesan Poovi*, Thangavel Mahalingam Vijayakumar and Narayanasamy Damodharan*

Volume 15, Issue 5, 2019

Page: [436 - 453] Pages: 18

DOI: 10.2174/1573413714666180809120435

Price: $65

Abstract

Background: The high molecular weight and increasing lipophilicity drug face many problems starting from the drug development to formulation and conduction of pharmacological, toxicological and pharmacokinetic studies to its biological application. To overcome this problem, a different formulation of nano-sized drugs was developed recently. The use of Solid lipid nanoparticles (SLNs) and Nanostructured lipid carriers (NLCs) offers new insight into the formulation of the poorly soluble drug.

Objective: The study aimed to investigate the literature with regard to the development of SLNs and NLCs for lipid-based nano drug delivery of poorly soluble drugs, with a view to identifying the factors influencing the optimization of the formulation of SLNs and NLCs and strategies to decrease the use of organic solvent during the preparation.

Results: This review highlights the simple and easily scaled-up novel lipid nanoparticles (SLNs and NLCs) and their factors to be considered in the formulation for the proper selection of excipients. Also, this review summarizes the research findings reported by the different researchers regarding the principle formulation components, different preparation techniques, characterization, and toxicology of lipid nanoparticles.

Conclusion: The SLNs/NLCs make this drug delivery system as one of the promising delivery systems, and safe colloidal lipid carriers for the delivery of poorly soluble drug and will be a solution to the formulation scientist for the solubility and permeability problem associated with the drugs to assure its good bioavailability.

Keywords: Solid lipid nanoparticles, nanostructured lipid carriers, physicochemical factors, different preparation technique, characterization technique, toxicology of lipid nanoparticles.

Graphical Abstract

[1]
Qiu, Y.; Chen, Y.; Zhang, G.G.Z.; Liu, L.; Porter, W. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, 1st ed; Academic Press: Boston, 2009.
[2]
Fuoco, D. Hypothesis for Changing Models: Current Pharmaceutical Paradigms, Trends and Approaches in Drug Discovery. 2167-9843;; PeerJ PrePrints, 2015.
[3]
Mitra, A.; Lee, C.H.; Cheng, K. Advanced Drug Delivery; Wiley & Sons: New York, 2013.
[4]
Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov., 2004, 3(8), 711-716.
[5]
Stegemann, S.; Leveiller, F.; Franchi, D.; de Jong, H.; Lindén, H. When poor solubility becomes an issue: From early stage to proof of concept. Eur. J. Pharm. Sci., 2007, 31(5), 249-261.
[6]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[7]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[8]
Yeramwar, S.; Patil, S.; Sharma, P.; Bhargava, A. Design & development of solid self micro- emulsifying osmotic drug delivery system for isradipine. JDDT, 2014, 4, 28-41.
[9]
Poonia, N.; Kharb, R.; Lather, V.; Pandita, D. Nanostructured lipid carriers: Versatile oral delivery vehicle. Future Sci. OA, 2016, 2(3)FSO135
[10]
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499.
[11]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012Article ID 195727
[12]
Qiu, Y.; Chen, Y.; Zhang, G.G.Z.; Yu, L.; Mantri, R.V. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, 2nd ed; Academic Press: Boston, 2016.
[13]
Mantri, R.V.; Sanghvi, R.; Zhu, H. In Developing Solid Oral Dosage Forms, 2nd ed; Academic Press: Boston, 2017, pp. 3-22.
[14]
Rao, V.M.; Sanghvi, R.; Zhu, H. Solubility of pharmaceutical solids. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, 1st ed; Academic Press: Boston, 2009, pp. 3-23.
[15]
Ali, H.; Singh, S.K. Biological voyage of solid lipid nanoparticles: A proficient carrier in nanomedicine. Ther. Deliv., 2016, 7(10), 691-709.
[16]
Ghadi, R.; Dand, N. BCS class IV drugs: Highly notorious candidates for formulation development. J. Control. Release, 2017, 248, 71-95.
[17]
Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: challenges and opportunities. J. Control. Release, 2013, 170(1), 15-40.
[18]
Mukherjee, S.; Ray, S.; Thakur, R. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[19]
Puri, A.; Loomis, K.; Smith, B.; Lee, J-H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid- based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[20]
Martins, S.; Sarmento, B.; Ferreira, D.C.; Souto, E.B. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int. J. Nanomedicine, 2007, 2(4), 595-607.
[21]
Teeranachaideekul, V.; Souto, E.B.; Müller, R.H.; Junyaprasert, V.B. Physicochemical characterization and in vitro release studies of ascorbyl palmitate-loaded semi-solid nanostructured lipid carriers (NLC gels). J. Microencapsul., 2008, 25(2), 111-120.
[22]
Chang, W-K.; Tai, Y-J.; Chiang, C-H.; Hu, C-S.; Hong, P-D.; Yeh, M-K. The comparison of protein-entrapped liposomes and lipoparticles: Preparation, characterization, and efficacy of cellular uptake. Int. J. Nanomedicine, 2011, 6, 2403-2417.
[23]
Battaglia, L.; Gallarate, M. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv., 2012, 9(5), 497-508.
[24]
Kumar, S.; Dilbaghi, N.; Saharan, R.; Bhanjana, G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience, 2012, 2(4), 227-250.
[25]
Wissing, S.; Kayser, O.; Müller, R. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[26]
Wissing, S.A.; Müller, R.H. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity–in vivo study. Eur. J. Pharm. Biopharm., 2003, 56(1), 67-72.
[27]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[28]
Wang, G.; Wang, J.; Wu, W.; Tony To, S.S.; Zhao, H.; Wang, J. Advances in lipid-based drug delivery: Enhancing efficiency for hydrophobic drugs. Expert Opin. Drug Deliv., 2015, 12(9), 1475-1499.
[29]
Attama, A.A.; Umeyor, C.E. The use of solid lipid nanoparticles for sustained drug release. Ther. Deliv., 2015, 6(6), 669-684.
[30]
Ali, M.E.; Lamprecht, A. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles. Int. J. Pharm., 2017, 516(1), 170-177.
[31]
Pathak, K.; Raghuvanshi, S. Oral bioavailability: Issues and solutions via nanoformulations. Clin. Pharmacokinet., 2015, 54(4), 325-357.
[32]
Schwarz, C.; Mehnert, W.; Lucks, J.; Müller, R. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Release, 1994, 30(1), 83-96.
[33]
Westesen, K.; Bunjes, H.; Koch, M. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release, 1997, 48(2), 223-236.
[34]
Üner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[35]
Liu, C-H.; Wu, C-T. Optimization of nanostructured lipid carriers for lutein delivery. Colloids Surf. A Physicochem. Eng. Asp., 2010, 353(2), 149-156.
[36]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[37]
Domingo, C.; Saurina, J. An overview of the analytical characterization of nanostructured drug delivery systems: towards green and sustainable pharmaceuticals: A review. Anal. Chim. Acta, 2012, 744, 8-22.
[38]
Pardeshi, C.; Rajput, P.; Belgamwar, V.; Tekade, A.; Patil, G.; Chaudhary, K.; Sonje, A. Solid lipid based nanocarriers: An overview/Nanonosači na bazi čvrstih lipida: Pregled. Acta Pharm., 2012, 62(4), 433-472.
[39]
Mishra, D.K.; Dhote, V.; Bhatnagar, P.; Mishra, P.K. Engineering solid lipid nanoparticles for improved drug delivery: Promises and challenges of translational research. Drug Deliv. Transl. Res., 2012, 2(4), 238-253.
[40]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[41]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54, S131-S155.
[42]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine: NBM., 2016, 12(1), 143-161.
[43]
Manjunath, K.; Reddy, J.S.; Venkateswarlu, V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol., 2005, 27(2), 127-144.
[44]
Harde, H.; Das, M.; Jain, S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv., 2011, 8(11), 1407-1424.
[45]
Severino, P.; Andreani, T.; Macedo, A.S.; Fangueiro, J.F.; Santana, M.H.A.; Silva, A.M.; Souto, E.B. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J. Drug Deliv., 2011, 2012750891
[46]
Kossena, G.A.; Boyd, B.J.; Porter, C.J.; Charman, W.N. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water‐soluble drugs. J. Pharm. Sci., 2003, 92(3), 634-648.
[47]
Griffin, B.; O’Driscoll, C. Opportunities and challenges for oral delivery of hydrophobic versus hydrophilic peptide and protein-like drugs using lipid-based technologies. Ther. Deliv., 2011, 2(12), 1633-1653.
[48]
Qi, J.; Lu, Y.; Wu, W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr. Drug Metab., 2012, 13(4), 418-428.
[49]
Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release, 2012, 163(1), 34-45.
[50]
Pedersen, N.; Hansen, S.; Heydenreich, A.V.; Kristensen, H.G.; Poulsen, H.S. Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur. J. Pharm. Biopharm., 2006, 62(2), 155-162.
[51]
Kheradmandnia, S.; Vasheghani-Farahani, E.; Nosrati, M.; Atyabi, F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine: NBM., 2010, 6(6), 753-759.
[52]
Di Marzio, L.; Marianecci, C.; Petrone, M.; Rinaldi, F.; Carafa, M. Novel pH-sensitive non-ionic surfactant vesicles: Comparison between Tween 21 and Tween 20. Colloids Surf. B Biointerfaces, 2011, 82(1), 18-24.
[53]
Rahman, Z.; Zidan, A.S.; Khan, M.A. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur. J. Pharm. Biopharm., 2010, 76(1), 127-137.
[54]
Pabla, D.; Akhlaghi, F.; Zia, H. Intestinal permeability enhancement of levothyroxine sodium by straight chain fatty acids studied in MDCK epithelial cell line. Eur. J. Pharm. Sci., 2010, 40(5), 466-472.
[55]
Shaikh, M.; Derle, N.D.; Bhamber, R. Permeability enhancement techniques for poorly permeable drugs: A review. J. Appl. Pharm. Sci., 2012, 2(6), 34-39.
[56]
Rojanasakul, Y.; Wang, L-Y.; Bhat, M.; Glover, D.D.; Malanga, C.J.; Ma, J.K. The transport barrier of epithelia: A comparative study on membrane permeability and charge selectivity in the rabbit. Pharmacol. Res., 1992, 9(8), 1029-1034.
[57]
Manjunath, K.; Venkateswarlu, V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Release, 2005, 107(2), 215-228.
[58]
Schubert, M.; Müller-Goymann, C. Characterisation of surface-modified solid lipid nanoparticles (SLN): Influence of lecithin and nonionic emulsifier. Eur. J. Pharm. Biopharm., 2005, 61(1), 77-86.
[59]
zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[60]
Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109.
[61]
Souto, E.; Mehnert, W.; Müller, R. Polymorphic behaviour of Compritol® 888 ATO as bulk lipid and as SLN and NLC. J. Microencapsul., 2006, 23(4), 417-433.
[62]
Elgart, A.; Cherniakov, I.; Aldouby, Y.; Domb, A.J.; Hoffman, A. Lipospheres and pro-nano lipospheres for delivery of poorly water soluble compounds. Chem. Phys. Lipids, 2012, 165(4), 438-453.
[63]
Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol., 2013, 19, 29-43.
[64]
Vivek, K.; Reddy, H.; Murthy, R.S. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2007, 8(4), 16-24.
[65]
Dowell, R.; Pritchett, D. Portal transport of absorbed lipids in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 1991, 261(3), G530-G538.
[66]
McDonald, G.B.; Weidman, M. Partitioning of polar fatty acids into lymph and portal vein after intestinal absorption in the rat. Exp. Physiol., 1987, 72(2), 153-159.
[67]
Bloom, B.; Chaikoff, I.L.; Reinhardt, W. Intestinal lymph as pathway for transport of absorbed fatty acids of different chain lengths. Am. J. Physiol., 1951, 166(2), 451-455.
[68]
Porter, C.J.; Trevaskis, N.L.; Charman, W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov., 2007, 6(3), 231-248.
[69]
Feldman, E.B.; Russell, B.S.; Chen, R.; Johnson, J.; Forte, T.; Clark, S.B. Dietary saturated fatty acid content affects lymph lipoproteins: studies in the rat. J. Lipid Res., 1983, 24(8), 967-976.
[70]
Hayashi, H.; Fujimoto, K.; Cardelli, J.A.; Nutting, D.F.; Bergstedt, S.; Tso, P. Fat feeding increases size, but not number, of chylomicrons produced by small intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 1990, 259(5), G709-G719.
[71]
Porter, C.J.; Trevaskis, N.L.; Charman, W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov., 2007, 6(3), 231-248.
[72]
Meaney, C.; O’Driscoll, C. A comparison of the permeation enhancement potential of simple bile salt and mixed bile salt: Fatty acid micellar systems using the CaCo-2 cell culture model. Int. J. Pharm., 2000, 207(1), 21-30.
[73]
Anderberg, E.K.; Artursson, P. Epithelial transport of drugs in cell culture. VIII: Effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial (Caco‐2) cells. J. Pharm. Sci., 1993, 82(4), 392-398.
[74]
Aungst, B.J. Intestinal permeation enhancers. J. Pharm. Sci., 2000, 89(4), 429-442.
[75]
Muranishi, S. Absorption enhancers. Crit. Rev. Ther. Drug Carrier Syst., 1990, 7(1), 1-33.
[76]
Porter, C.J.; Charman, S.A.; Humberstone, A.J.; Charman, W.N. Lymphatic transport of halofantrine in the conscious rat when administered as either the free base or the hydrochloride salt: Effect of lipid class and lipid vehicle dispersion. J. Pharm. Sci., 1996, 85(4), 357-361.
[77]
Charman, W.; Stella, V. Effects of lipid class and lipid vehicle volume on the intestinal lymphatic transport of DDT. Int. J. Pharm., 1986, 33(1-3), 165-172.
[78]
Paliwal, R.; Rai, S.; Vaidya, B.; Khatri, K.; Goyal, A.K.; Mishra, N.; Mehta, A.; Vyas, S.P. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine , 2009, 5(2), 184-191.
[79]
Manjunath, K.; Venkateswarlu, V. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Drug Target., 2006, 14(9), 632-645.
[80]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2), 165-196.
[81]
Wise, D.L. Handbook of Pharmaceutical Controlled Release Technology; Taylor & Francis: Boca Raton, FL, 2000.
[82]
Pathak, Y.; Thassu, D. Drug Delivery Nanoparticles Formulation and Characterization; CRC Press: Boca Raton, FL, 2016.
[83]
Swartz, M.A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev., 2001, 50(1), 3-20.
[84]
Jani, P.; Halbert, G.; Langridge, J.; Florence, A. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J. Pharm. Pharmacol., 1989, 41(12), 809-812.
[85]
Bleve, M.; Pavanetto, F.; Perugini, P. In Progress in Molecular and Environmental Bioengineering- From Analysis and Modeling to Technology Applications; InTech: London, 2011.
[86]
Souto, E.B.; Müller, R.H. Lipid Nanoparticles: Effect on Bioavailability and Pharmacokinetic Changes. In: Drug Delivery; Schäfer-Korting, M. Ed., Springer-Verlag Berlin Heidelberg: Switzerland AG; , 2010, pp. pp. 115-141.
[87]
Hauss, D.J. Oral lipid-based formulations. Adv. Drug Deliv. Rev., 2007, 59(7), 667-676.
[88]
Radomska-Soukharev, A. Stability of lipid excipients in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 411-418.
[89]
Westesen, K.; Bunjes, H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int. J. Pharm., 1995, 115(1), 129-131.
[90]
Freitas, C.; Müller, R. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm., 1999, 47(2), 125-132.
[91]
Jenning, V.; Schäfer-Korting, M.; Gohla, S. Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties. J. Control. Release, 2000, 66(2), 115-126.
[92]
Bunjes, H.; Koch, M.H.; Westesen, K. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J. Pharm. Sci., 2003, 92(7), 1509-1520.
[93]
Müller, R.; Wallis, K.H. Surface modification of iv injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. Int. J. Pharm., 1993, 89(1), 25-31.
[94]
Olbrich, C.; Bakowsky, U.; Lehr, C-M.; Müller, R.H.; Kneuer, C. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J. Control. Release, 2001, 77(3), 345-355.
[95]
MuÈller R.H.; MaÈder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[96]
Hejri, A.; Khosravi, A.; Gharanjig, K.; Hejazi, M. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem., 2013, 141(1), 117-123.
[97]
Tan, S.; Billa, N.; Roberts, C.; Burley, J. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers. Colloids Surf. A Physicochem. Eng. Asp., 2010, 372(1), 73-79.
[98]
Chen, C-C.; Tsai, T-H.; Huang, Z-R.; Fang, J-Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm., 2010, 74(3), 474-482.
[99]
Siekmann, B.; Westesen, K. Thermoanalysis of the recrystallization process of melt- homogenized glyceride nanoparticles. Colloids Surf. B Biointerfaces, 1994, 3(3), 159-175.
[100]
Trotta, M.; Debernardi, F.; Caputo, O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int. J. Pharm., 2003, 257(1), 153-160.
[101]
Chen, D-B.; Yang, T-z.; Lu, W-L.; Zhang, Q. In vitro and in vivo study of two types of long- circulating solid lipid nanoparticles containing paclitaxel. Chem. Pharm. Bull. , 2001, 49(11), 1444-1447.
[102]
Sanjula, B.; Shah, F.M.; Javed, A.; Alka, A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J. Drug Target., 2009, 17(3), 249-256.
[103]
Zhuang, C-Y.; Li, N.; Wang, M.; Zhang, X-N.; Pan, W-S.; Peng, J-J.; Pan, Y-S.; Tang, X. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int. J. Pharm., 2010, 394(1), 179-185.
[104]
Zhang, T.; Chen, J.; Zhang, Y.; Shen, Q.; Pan, W. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur. J. Pharm. Sci., 2011, 43(3), 174-179.
[105]
Humberstone, A.J.; Charman, W.N. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv. Drug Deliv. Rev., 1997, 25(1), 103-128.
[106]
Pouton, C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self- emulsifying and ‘self-microemulsifying’drug delivery systems. Eur. J. Pharm. Sci., 2000, 11, S93-S98.
[107]
Wagner, D.; Spahn-Langguth, H.; Hanafy, A.; Koggel, A.; Langguth, P. Intestinal drug efflux: formulation and food effects. Adv. Drug Deliv. Rev., 2001, 50, S13-S31.
[108]
Woodcock, D.M.; Jefferson, S.; Linsenmeyer, M.E.; Crowther, P.J.; Chojnowski, G.M.; Williams, B.; Bertoncello, I. Reversal of the multidrug resistance phenotype with cremophor EL, a common vehicle for water-insoluble vitamins and drugs. Cancer Res., 1990, 50(14), 4199-4203.
[109]
Cornaire, G.; Woodley, J.; Hermann, P.; Cloarec, A.; Arellano, C.; Houin, G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int. J. Pharm., 2004, 278(1), 119-131.
[110]
Holland, I.B.; Cole, S.P.; Kuchler, K.; Higgins, C.F. ABC Proteins: From Bacteria to MAN. Academic Press: Salt Lake, 2003.
[111]
Rege, B.D.; Kao, J.P.; Polli, J.E. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur. J. Pharm. Sci., 2002, 16(4), 237-246.
[112]
Nerurkar, M.M.; Burton, P.S.; Borchardt, R.T. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system. Pharmacol. Res., 1996, 13(4), 528-534.
[113]
Westesen, K.; Siekmann, B.; Koch, M.H. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm., 1993, 93(1), 189-199.
[114]
Üner, M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Die Pharmazie, 2006, 61(5), 375-386.
[115]
Hu, F-Q.; Jiang, S-P.; Du, Y-Z.; Yuan, H.; Ye, Y-Q.; Zeng, S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf. B Biointerfaces, 2005, 45(3), 167-173.
[116]
Buse, J.; El-Aneed, A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances. Nanomedicine , 2010, 5(8), 1237-1260.
[117]
Ranpise, N.S.; Korabu, S.S.; Ghodake, V.N. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf. B Biointerfaces, 2014, 116, 81-87.
[118]
Yuan, H.; Wang, L-L.; Du, Y-Z.; You, J.; Hu, F-Q.; Zeng, S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf. B Biointerfaces, 2007, 60(2), 174-179.
[119]
Shastri, V.; Sussman, E.; Jayagopal, A. Functionalized solid lipid nanoparticles and methods of making and using same. U.S. Patent 20060083781A1, April 20,, 2006.
[120]
Svilenov, H. Tzachev, C. In Nanomedicine; One Central Press Manchester: Cheshire, 2014, pp. 187-237.
[121]
Gupta, D.R.; Shah, Y.D.; Vora, R.S.; Shah, D. Solubility enhancement by solid lipid nanoparticle. IJPPR, 2016, 7(1), 351-367.
[122]
Emeje, M.O.; Akpabio, E.I.; Obidike, I.C.; Ofoefule, S.I. Nanotechnology in Drug Delivery; INTECH Open Access Publisher: London, 2012.
[123]
Shah, R.; Eldridge, D.; Palombo, E.; Harding, I. Lipid Nanoparticles: Production, Characterization and Stability. Springer-Verlag Berlin Heidelberg: Switzerland AG, 2015.
[124]
Charcosset, C.; El-Harati, A.; Fessi, H. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release, 2005, 108(1), 112-120.
[125]
Jaiswal, J.; Gupta, S.K.; Kreuter, J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J. Control. Release, 2004, 96(1), 169-178.
[126]
Schubert, M.; Müller-Goymann, C. Solvent injection as a new approach for manufacturing lipid nanoparticles–evaluation of the method and process parameters. Eur. J. Pharm. Biopharm., 2003, 55(1), 125-131.
[127]
Ruktanonchai, U.; Bejrapha, P.; Sakulkhu, U.; Opanasopit, P.; Bunyapraphatsara, N.; Junyaprasert, V.; Puttipipatkhachorn, S. Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid. AAPS PharmSciTech, 2009, 10(1), 227-234.
[128]
Puglia, C.; Sarpietro, M.G.; Bonina, F.; Castelli, F.; Zammataro, M.; Chiechio, S. Development, characterization, and in vitro and in vivo evaluation of benzocaine‐and lidocaine‐loaded nanostructrured lipid carriers. J. Pharm. Sci., 2011, 100(5), 1892-1899.
[129]
Lin, Y-K.; Huang, Z-R.; Zhuo, R-Z.; Fang, J-Y. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int. J. Nanomedicine, 2010, 5, 117-128.
[130]
Yang, S.; Zhu, J.; Lu, Y.; Liang, B.; Yang, C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharmacol. Res., 1999, 16(5), 751-757.
[131]
Huang, Z.R. Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol. Sin., 2008, 29(9), 1094-1102.
[132]
Obeidat, W.M.; Schwabe, K.; Müller, R.H.; Keck, C.M. Preservation of nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm., 2010, 76(1), 56-67.
[133]
Hu, L.; Xing, Q.; Meng, J.; Shang, C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2010, 11(2), 582-587.
[134]
Müller, R.; Runge, S.; Ravelli, V.; Thünemann, A.; Mehnert, W.; Souto, E. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm., 2008, 68(3), 535-544.
[135]
Štecová, J.; Mehnert, W.; Blaschke, T.; Kleuser, B.; Sivaramakrishnan, R.; Zouboulis, C.C.; Seltmann, H.; Korting, H.C.; Kramer, K.D.; Schäfer-Korting, M. Cyproterone acetate loading to lipid nanoparticles for topical acne treatment: Particle characterisation and skin uptake. Pharmacol. Res., 2007, 24(5), 991-1000.
[136]
Liu, D.; Liu, Z.; Wang, L.; Zhang, C.; Zhang, N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces, 2011, 85(2), 262-269.
[137]
Thatipamula, R.; Palem, C.; Gannu, R.; Mudragada, S.; Yamsani, M. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru, 2011, 19(1), 23-32.
[138]
Hanafy, A.; Spahn-Langguth, H.; Vergnault, G.; Grenier, P.; Grozdanis, M.T.; Lenhardt, T.; Langguth, P. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv. Drug Deliv. Rev., 2007, 59(6), 419-426.
[139]
Gonzalez-Mira, E.; Egea, M.; Garcia, M.; Souto, E. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf. B Biointerfaces, 2010, 81(2), 412-421.
[140]
Doktorovová, S.; Araújo, J.; Garcia, M.L.; Rakovský, E.; Souto, E.B. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf. B Biointerfaces, 2010, 75(2), 538-542.
[141]
Zara, G.P.; Bargoni, A.; Cavalli, R.; Fundarò, A.; Vighetto, D.; Gasco, M.R. Pharmacokinetics and tissue distribution of idarubicin‐loaded solid lipid nanoparticles after duodenal administration to rats. J. Pharm. Sci., 2002, 91(5), 1324-1333.
[142]
Ricci, M.; Puglia, C.; Bonina, F.; Giovanni, C.D.; Giovagnoli, S.; Rossi, C. Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): In vitro and in vivo studies. J. Pharm. Sci., 2005, 94(5), 1149-1159.
[143]
Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 2006, 327(1), 153-159.
[144]
Cirri, M.; Bragagni, M.; Mennini, N.; Mura, P. Development of a new delivery system consisting in “drug–in cyclodextrin–in nanostructured lipid carriers” for ketoprofen topical delivery. Eur. J. Pharm. Biopharm., 2012, 80(1), 46-53.
[145]
Pathak, P.; Nagarsenker, M. Formulation and evaluation of lidocaine lipid nanosystems for dermal delivery. AAPS PharmSciTech, 2009, 10(3), 985-992.
[146]
Alex, M.A.; Chacko, A.; Jose, S.; Souto, E. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur. J. Pharm. Sci., 2011, 42(1), 11-18.
[147]
Suresh, G.; Manjunath, K.; Venkateswarlu, V.; Satyanarayana, V. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS PharmSciTech, 2007, 8(1), E162-E170.
[148]
Rao, K.K. Polymerized solid lipid nanoparticles for oral or mucosal delivery of therapeutic proteins and peptides. U.S. Patent 20080311214, December 18, 2008.
[149]
Kuo, Y-C.; Chung, J-F. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf. B Biointerfaces, 2011, 83(2), 299-306.
[150]
Yuan, H.; Chen, J.; Du, Y-Z.; Hu, F-Q.; Zeng, S.; Zhao, H-L. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surf. B Biointerfaces, 2007, 58(2), 157-164.
[151]
Sanad, R.A.; AbdelMalak, N.S.; Badawi, A.A. Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs). AAPS PharmSciTech, 2010, 11(4), 1684-1694.
[152]
Luo, C-F.; Yuan, M.; Chen, M-S.; Liu, S-M.; Zhu, L.; Huang, B-Y.; Liu, X-W.; Xiong, W. Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. Int. J. Pharm., 2011, 410(1), 138-144.
[153]
Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release, 2009, 133(3), 238-244.
[154]
Pandey, R.; Sharma, S.; Khuller, G. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis , 2005, 85(5), 415-420.
[155]
Cavalli, R.; Bargoni, A.; Podio, V.; Muntoni, E.; Zara, G.P.; Gasco, M.R. Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J. Pharm. Sci., 2003, 92(5), 1085-1094.
[156]
Mei, Z.; Li, X.; Wu, Q.; Hu, S.; Yang, X. The research on the anti-inflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. Pharmacol. Res., 2005, 51(4), 345-351.
[157]
Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release, 2006, 114(1), 53-59.
[158]
Kathe, N.; Henriksen, B.; Chauhan, H. Physicochemical characterization techniques for solid lipid nanoparticles: Principles and limitations. Drug Dev. Ind. Pharm., 2014, 40(12), 1565-1575.
[159]
Doktorovova, S.; Souto, E.B.; Silva, A.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers–a systematic review of in vitro data. Eur. J. Pharm. Biopharm., 2014, 87(1), 1-18.
[160]
Miglietta, A.; Cavalli, R.; Bocca, C.; Gabriel, L.; Gasco, M.R. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int. J. Pharm., 2000, 210(1), 61-67.
[161]
Yuan, H.; Miao, J.; Du, Y-Z.; You, J.; Hu, F-Q.; Zeng, S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int. J. Pharm., 2008, 348(1), 137-145.
[162]
Müller, R.; Maaßen, S.; Weyhers, H.; Specht, F.; Lucks, J. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int. J. Pharm., 1996, 138(1), 85-94.
[163]
Ying, X-Y.; Cui, D.; Yu, L.; Du, Y-Z. Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin. Carbohydr. Polym., 2011, 84(4), 1357-1364.
[164]
Silva, A.H.; Filippin-Monteiro, F.B.; Mattei, B.; Zanetti-Ramos, B.G.; Creczynski-Pasa, T.B. In vitro biocompatibility of solid lipid nanoparticles. Sci. Total Environ., 2012, 432, 382-388.
[165]
Zhang, X-G.; Miao, J.; Dai, Y-Q.; Du, Y-Z.; Yuan, H.; Hu, F-Q. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int. J. Pharm., 2008, 361(1), 239-244.
[166]
Miao, J.; Du, Y-Z.; Yuan, H.; Zhang, X-g.; Hu, F-Q. Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multi-drug resistant cancer cells. Colloids Surf. B Biointerfaces, 2013, 110, 74-80.
[167]
Martins, S.M.; Sarmento, B.; Nunes, C.; Lúcio, M.; Reis, S.; Ferreira, D.C. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur. J. Pharm. Biopharm., 2013, 85(3), 488-502.
[168]
Nassimi, M.; Schleh, C.; Lauenstein, H.; Hussein, R.; Hoymann, H.; Koch, W.; Pohlmann, G.A.; Krug, N.; Sewald, K.; Rittinghausen, S. A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur. J. Pharm. Biopharm., 2010, 75(2), 107-116.
[169]
Nassimi, M.; Schleh, C.; Lauenstein, H.-D.; Hussein, R.; Lübbers, K.; Pohlmann, G.; Switalla, S.; Sewald, K.; Müller, M.; Krug, N. Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal. Toxicol. 2009, 21(sup1), 104-109.
[170]
Aznar, M.Á.; Lasa-Saracíbar, B.; de Mendoza, A.E-H.; Blanco-Prieto, M.J. Efficacy of edelfosine lipid nanoparticles in breast cancer cells. Int. J. Pharm., 2013, 454(2), 720-726.
[171]
Han, C.; Qi, C.; Zhao, B.; Cao, J.; Xie, S.; Wang, S.; Zhou, W. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: In vitro and in vivo studies. J. Vet. Pharmacol. Ther., 2009, 32(2), 116-123.
[172]
Gokce, E.H.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Güneri, T.; Caramella, C. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int. J. Pharm., 2008, 364(1), 76-86.
[173]
Vighi, E.; Montanari, M.; Hanuskova, M.; Iannuccelli, V.; Coppi, G.; Leo, E. Design flexibility influencing the in vitro behavior of cationic SLN as a nonviral gene vector. Int. J. Pharm., 2013, 440(2), 161-169.
[174]
Mussi, S.V.; Silva, R.C.; de Oliveira, M.C.; Lucci, C.M.; de Azevedo, R.B.; Ferreira, L.A.M. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur. J. Pharm. Sci., 2013, 48(1), 282-290.
[175]
Khajavinia, A.; Varshosaz, J.; Dehkordi, A.J. Targeting etoposide to acute myelogenous leukaemia cells using nanostructured lipid carriers coated with transferrin. Nanotechnology, 2012, 23(40)405101
[176]
Bondì, M.L.; Craparo, E.F.; Giammona, G.; Cervello, M.; Azzolina, A.; Diana, P.; Martorana, A.; Cirrincione, G. Nanostructured lipid carriers-containing anticancer compounds: Preparation, characterization, and cytotoxicity studies. Drug Deliv., 2007, 14(2), 61-67.
[177]
Patlolla, R.R.; Chougule, M.; Patel, A.R.; Jackson, T.; Tata, P.N.; Singh, M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J. Control. Release, 2010, 144(2), 233-241.
[178]
Vitorino, C.; Almeida, J.; Gonçalves, L.; Almeida, A.; Sousa, J.; Pais, A. Co-encapsulating nanostructured lipid carriers for transdermal application: from experimental design to the molecular detail. J. Control. Release, 2013, 167(3), 301-314.
[179]
Weyenberg, W.; Filev, P.; Van den Plas, D.; Vandervoort, J.; De Smet, K.; Sollie, P.; Ludwig, A. Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int. J. Pharm., 2007, 337(1), 291-298.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy