Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Synthesis and Characterization of Novel Organomodified Nanoclays for Application in Dental Materials

Author(s): Alexandros K. Nikolaidis*, Elisabeth A. Koulaouzidou and Dimitris S. Achilias

Volume 15, Issue 5, 2019

Page: [512 - 524] Pages: 13

DOI: 10.2174/1573413714666180724113715

Price: $65

Abstract

Background: Nanoclays incorporated in dental resins have been previously investigated. However, limited reports are associated with nanoclays that exhibit high functionality.

Objective: The aim of this study was the targeted synthesis and characterization of organomodified nanoclays with methacrylic groups suitable for incorporation in dental nanocomposite resins.

Methods: Quaternary ammonium methacrylates were synthesized and characterized by means of proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Consequently, they were inserted into the interlayer space of nanoclay through a cation exchange reaction, while silane was also used for simultaneous surface modification. The produced organomodified nanoclays were characterized by means of X-ray diffraction, Fourier-transform infrared spectroscopy and thermogravimetric analysis.

Results: Fourier-transform infrared spectra confirmed the successful synthesis of the quaternary ammonium methacrylates. X-ray diffraction analysis showed that organoclays exhibited higher d001- values (up to 1.78 nm) compared to raw nanoclay (1.37 nm), indicating an accomplished intercalation in each case. X-ray diffraction spectra mainly disclosed the presence of methacrylic functional groups in all nanoclays. Thermogravimetric analysis curves verified the different thermal stability of organoclays due to the diversity of their organic modifiers.

Conclusion: The experimental results showed that nanoclay was successfully modified with ammonium methacrylates and silane. Τhe combination of X-ray diffraction and thermogravimetric analysis data revealed a high degree of intercalation and methacrylated organic loading as well. These phenomena may favor a good dispersion and high polymerization degree of nanoclays with dental resin monomers, rendering them potentially useful materials for the development of advanced dental nanocomposites resins.

Keywords: Organically modified clay, cation exchange reaction, quaternary ammonium methacrylate, silane, nanocomposite, dental resin.

Graphical Abstract

[1]
Cramer, N.; Stansbury, J.; Bowman, C. Recent advances and developments in composite dental restorative materials. J. Dent. Res., 2011, 90, 401-416.
[2]
Waltimo, T.; Brunner, T.; Vollenweider, M.; Stark, W.; Zehnder, M. Antimicrobial effect of nanometric bioactive glass 45S5. J. Dent. Res., 2007, 86, 754-757.
[3]
Xu, H.H.K.; Moreau, J.L.; Sun, L.; Chow, L.C. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials, 2008, 28, 642-652.
[4]
Chen, M.H. Update on dental nanocomposites. J. Dent. Res., 2010, 89, 549-560.
[5]
Xu, H.H.K.; Moreau, J.L.; Sun, L.; Chow, L.C. Novel CaF2 nanocomposite with high strength and fluoride ion release. J. Dent. Res., 2010, 89, 739-745.
[6]
Mitchell, J.C.; Musanje, L.; Ferracane, J.L. Biomimetic dentindesensitizer based on nano-structured bioactive glass. Dent. Mater., 2011, 27, 386-393.
[7]
Weir, M.D.; Chow, L.C.; Xu, H.H.K. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J. Dent. Res., 2012, 91, 979-984.
[8]
Weir, M.D.; Moreau, J.L.; Levine, E.D.; Strasslerb, H.E.; Chow, L.C.; Xu, H.H.K. Nanocomposite containing CaF2 nanoparticles: Thermal cycling, wear and long-term water-aging. Dent. Mater., 2012, 28, 642-652.
[9]
Melo, M.A.S.; Cheng, L.; Weir, M.D.; Hsia, R.H.; Rodrigues, L.K.A.; Xu, H.H.K. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J. Biomed. Mater. Res. B , 2013, 101B, 620-629.
[10]
Melo, M.A.S.; Cheng, L.; Zhang, K.; Weir, M.D.; Rodrigues, L.K.A.; Xu, H.H.K. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent. Mater., 2013, 29, 199-210.
[11]
Melo, M.; Guedes, S.; Xu, H.; Rodrigues, L. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol., 2013, 31, 459-467.
[12]
Melo, M.A.S.; Weir, M.D.; Rodrigues, L.K.A.; Xu, H.H.K. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent. Mater., 2013, 29, 231-240.
[13]
Moreau, J.L.; Weir, M.D.; Giuseppetti, A.A.; Chow, L.C.; Antonucci, J.M.; Xu, H.H.K. Long-term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100, 1264-1273.
[14]
Cheng, L.; Zhang, K.; Weir, M.; Melo, M.; Zhou, Z.; Xu, H. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine (Lond.), 2015, 10, 627-641.
[15]
Padovani, G.; Feitosa, V.; Sauro, S.; Tay, F.; Durán, G.; Paula, A.; Durán, N. Advances in dental materials through nanotechnology: Facts, perspectives and toxicological aspects. Trends Biotechnol., 2015, 33, 621-636.
[16]
Lung, C.Y.K.; Sarfraz, Z.; Habib, A.; Khan, A.S.; Matinlinna, J.P. Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. J. Mech. Behav. Biomed. Mater., 2016, 54, 283-294.
[17]
Xie, X.; Wang, L.; Xing, D.; Arola, D.D.; Weir, M.D.; Bai, Y.; Xu, H.H.K. Protein-repellent and antibacterial functions of a calcium phosphate rechargeable nanocomposite. J. Dent., 2016, 52, 15-22.
[18]
Zhang, L.; Weir, M.D.; Cheng, L.; Antonucci, J.M.; Chen, J.; Xu, H.H.K. Novel rechargeable calcium phosphate dental nanocomposite. Dent. Mater., 2016, 32, 285-293.
[19]
Zhang, L.; Weir, M.D.; Hack, G.; Fouad, A.F.; Xu, H.H.K. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release. J. Dent., 2015, 43, 1587-1595.
[20]
Asiri, A.M.; Inamuddin, D.; Mohammad, A. Applications of Nanocomposite Materials in Dentistry, 1st ed; Woodhead Publishing, 2018.
[21]
Su, S.; Jiang, D.; Wilkie, C. Methacrylate modified clays and their polystyrene and poly(methyl methacrylate) nanocomposites. Polym. Adv. Technol., 2004, 15, 225-231.
[22]
Gilman, J.W.; Morgan, A.B.; Harris, Jr R.; Manias, E.; Giannelis, E.P. In: Polymer Layered-Silicate Nanocomposites: Polyamide-6, Polypropylene and Polystyrene, Proceedings of the New Advances in Flame Retardant Technology Conference, Tucson, AZ, October 24-27, 1999, Fire Retardant Chemical Association, Lancaster: Tucson, 1999, pp. 9-22.
[23]
LeBaron, P.C.; Wang, Z.; Pinnavaia, T.J. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci., 1999, 15, 11-29.
[24]
Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 2000, 28, 1-63.
[25]
Ahmadi, S.J.; Huang, Y.D.; Li, W. Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J. Mater. Sci., 2004, 39, 1919-1925.
[26]
Pavlidou, S.; Papaspyrides, C.D. A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci., 2008, 33, 1119-1198.
[27]
Tiwari, R.R.; Khilar, K.C.; Natarajan, U. Synthesis and characterization of novel organo-montmorillonites. Appl. Clay Sci., 2008, 38, 203-208.
[28]
Okamoto, M.; Morita, S.; Taguchi, H.; Kim, Y.H.; Kotaka, T.; Tateyama, H. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer , 2000, 41, 3887-3890.
[29]
Li, Y.; Zhao, B.; Xie, S.; Zhang, S. Synthesis and properties of poly(methyl methacrylate)/montmorillonite (pmma/mmt) nanocomposites. Polym. Int., 2003, 52, 892-898.
[30]
Liu, G.D.; Zhang, L.C.; Qu, X.W.; Wang, B.T.; Zhang, Y. Tentative study on kinetics of bulk polymerization of methyl methacrylate in presence of montmorillonite. J. Appl. Polym. Sci., 2003, 90, 3690-3695.
[31]
Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci., 2003, 28, 1539-1641.
[32]
Essawy, H.; Badran, A.; Youssef, A.; El-Fetoh, A.; El-Hakim, A. Synthesis of poly(methylmethacrylate)/montmorillonite nanocomposites via in situ intercalative suspension and emulsion polymerization. Polym. Bull., 2004, 53, 9-17.
[33]
Zhao, H.; Argoti, S.D.; Farrell, B.P.; Shipp, D.A. Polymer–silicate nanocomposites produced by in situ atom transfer radical polymerization. J. Polym. Sci. A Polym. Chem., 2004, 42, 916-924.
[34]
Nese, A.; Sen, S.; Tasdelen, M.A.; Nugay, N.; Yagci, Y. Clay-pmma nanocomposites by photoinitiated radical polymerization using intercalated phenacyl pyridinium salt initiators. Macromol. Chem. Phys., 2006, 207, 820-826.
[35]
Okamoto, M. Polymer/layered silicate nano-composites. Int. Polym. Process., 2006, 21, 487-496.
[36]
Huskić, M.; Žigon, M. Pmma/mmt nanocomposites prepared by one-step in situ intercalative solution polymerization. Eur. Polym. J., 2007, 43, 4891-4897.
[37]
Cui, L.; Tarte, N.H.; Woo, S.I. Synthesis and properties of poly(methyl methacrylate)/clay nanocomposites prepared via in situ polymerization with Ni(acac)2 catalyst. J. Appl. Polym. Sci., 2008, 110, 784-790.
[38]
Lakshmi, M.S.; Narmadha, B.; Reddy, B.S.R. Enhanced thermal stability and structural characteristics of different MMT-clay/epoxy-nanocomposite materials. Polym. Degrad. Stabil., 2008, 93, 201-213.
[39]
Park, K.W.; Kwon, O.Y. Interlamellar silylation of montmorillonite with 3-aminopropyltriethoxy silane. Bull. Korean Chem. Soc., 2004, 25, 965-968.
[40]
Su, L.; Tao, Q.; He, H.; Zhu, J.; Yuan, P. Locking effect: A novel insight in the silylation of montmorillonite surfaces. Mater. Chem. Phys., 2012, 136, 292-295.
[41]
Su, L.; Tao, Q.; He, H.; Zhu, J.; Yuan, P.; Zhu, R. Silylation of montmorillonite surfaces: Dependence on solvent nature. J. Colloid Interface Sci., 2013, 391, 16-20.
[42]
Yang, Z.; Li, B.; Tang, F. Influence of Cu2+-organic montmorillonites on thermal decomposition and smoke emission of poly(vinyl chloride) by cone calorimetric study. J. Vinyl Addit. Technol., 2007, 13, 31-39.
[43]
Park, S.J.; Kim, B.J.; Seo, D.I.; Rhee, K.Y.; Yi-Yeol Lyu, Y.Y. Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mater. Sci. Eng. A, 2009, 526, 74-78.
[44]
Discacciati, R.; Oréfice, R. Structural analysis on photopolymerized dental resins containing nanocomponents. J. Mater. Sci., 2007, 42, 3883-3893.
[45]
Mahmoodian, M.; Pourabbas, B.; Arya, A. Preparation and characterization of bis-gma/tegdma/clay nanocomposites at low filler content regimes. J. Compos. Mater., 2010, 44, 1379-1395.
[46]
Campos, L.; Lugão, A.; Vasconcelos, M.; Parra, D. Polymerization shrinkage evaluation on nanoscale-layered silicates: Bis-GMA/TEGDMA nanocomposites, in photo-activated polymeric matrices. J. Appl. Polym. Sci., 2014, 131, 1-6.
[47]
Campos, L.; Boaro, L.; Ferreira, H.; Santos, L.; Santos, T.; Parra, D. Evaluation of polymerization shrinkage in dental restorative experimental composites based: Bis-GMA/TEGDMa, filled with MMT. J. Appl. Polym. Sci., 2016, 133, 1-10.
[48]
Menezes, L.; Silva, E. The use of montmorillonite clays as reinforcing fillers for dental adhesives. Mater. Res., 2016, 19, 236-242.
[49]
Mucci, V.; Pérez, J.; Vallo, C. Preparation and characterization of light-cured methacrylate/montmorillonite nanocomposites. Polym. Int., 2011, 60, 247-254.
[50]
Terrin, M.; Poli, A.; Horn, Jr, M.; Neumann, M.; Cavalheiro, E.T.G.; Correa, I.; Schmitt, C. Effect of the loading of organomodified clays on the thermal and mechanical properties of a model dental resin. Mater. Res., 2016, 19, 40-44.
[51]
Beyth, N.; Domb, A.; Weiss, E. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J. Dent., 2007, 35, 201-206.
[52]
Wang, L.; Xie, X.; Imazato, S.; Weir, M.; Reynolds, M.; Xu, H. A protein-repellent and antibacterial nanocomposite for class-v restorations to inhibit periodontitis-related pathogens. Mater. Sci. Eng. C, 2016, 67, 702-710.
[53]
Hong, S.I.; Rhim, J.W. Antimicrobial activity of organically modified nano-clays. J. Nanosci. Nanotechnol., 2008, 8, 5818-5824.
[54]
Li, F.; Weir, M.; Xu, H. Effects of quaternary ammonium chain length on antibacterial bonding agents. J. Dent. Res., 2013, 92, 932-938.
[55]
Zhou, C.; Weir, M.; Zhang, K.; Deng, D.; Cheng, L.; Xu, H. Synthesis of new antibacterial quaternary ammonium monomer for incorporation into CaP nanocomposite. Dent. Mater., 2013, 29, 859-870.
[56]
Antonucci, J.; Zeiger, D.; Tang, K.; Lin-Gibson, S.; Fowler, B.; Lin, N. Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent. Mater., 2012, 28, 219-228.
[57]
Cheng, L.; Weir, M.; Xu, H.; Antonucci, J.; Kraigsley, A.; Lin, N.; Lin-Gibson, S.; Zhou, X. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent. Mater., 2012, 28, 561-572.
[58]
Wang, W.; Liang, C.; Chen, Y.; Su, Y.; Tsai, T.; Chen-Yang, Y. Transparent and flame retardant PMMA/clay nanocomposites prepared with dual modified organoclay. Polym. Adv. Technol., 2012, 23, 625-631.
[59]
Zhang, W.; Fang, Y. Enhancement of radiation-resistant effect in ethylene-vinyl acetate copolymers by the formation of ethylene-vinyl acetate copolymers/clay nanocomposites. J. Appl. Polym. Sci., 2005, 98, 2532-2538.
[60]
Munhoz, T.; Fredholm, Y.; Rivory, P.; Balvay, S.; Hartmann, D.; Silva, P.; Chenal, J. Effect of nanoclay addition on physical, chemical and biological properties of experimental dental resin composites. Dent. Mater., 2017, 33, 271-279.
[61]
McCabe, J.; Walls, A. Applied Dental Materials, 9th ed; Blackwell Publishing Ltd: UK, 2008.
[62]
Giannakas, A.; Tsagkalias, I.; Achilias, D.; Ladavos, A. A novel method for the preparation of inorganic and organo-modified montmorillonite essential oil hybrids. Appl. Clay Sci., 2017, 146, 362-370.
[63]
Wang, Y.; Li, P.; Kong, L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech, 2013, 14, 585-592.
[64]
Patel, H.A.; Somani, R.R.S.; Bajaj, H.C.; Jashra, R.V. Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability. Appl. Clay Sci., 2007, 35, 194-200.
[65]
Paiva, L.; Morales, A.; Díaz, F. Organoclays: properties, preparations and applications. Appl. Clay Sci., 2008, 42, 8-24.
[66]
Wang, Y.; Carey, B.J.; Zhang, W.; Chrimes, A.F.; Chen, L.; Kalantar-zadeh, K.; Ou, J.Z.; Daeneke, T. Intercalated 2D MoS2 utilizing a simulated sun assisted process: Reducing the HER overpotential. J. Phys. Chem. C, 2016, 120, 2447-2455.
[67]
Wang, Y. Ou; Z.J.; Chrimes, A.F.; Carey, B.J.; Daeneke, T.; Alsaif, M.M.Y.A.; Mortazavi, M.; Zhuiykov, S.; Medhekar, N.; Bhaskaran, M.; Friend, J.R.; Strano, M.S.; Kalantar-Zadeh, K. Plasmon resonances of highly doped two-dimensional MoS2. Nano Lett., 2015, 15, 883-890.
[68]
Wang, Y.; Ou, Z.J.; Balendhran, S.; Chrimes, A.F.; Mortazavi, M.; Yao, D.D.; Field, M.R.; Latham, K.; Bansal, V.; Friend, J.R.; Zhuiykov, S.; Medhekar, N.V.; Strano, M.S.; Kalantar-zadeh, K. Electrochemical control of photoluminescence in two dimensional MoS2 nanoflakes. ACS Nano, 2013, 7, 10083-10093.
[69]
Xie, T.; Yang, G.; Fang, X.; Ou, Y. Synthesis and characterization of poly(methyl methacrylate)/montmorillonite nanocomposites by in situ bulk polymerization. J. Appl. Polym. Sci., 2003, 89, 2256-2260.
[70]
Şen, S.; Memeşa, M.; Nugay, N.; Nugay, T. Synthesis of effective poly(4-vinylpyridine) nanocomposites: In situ polymerization from edges/surfaces and interlayer galleries of clay. Polym. Int., 2006, 55, 216-221.
[71]
Effenberger, F.; Schweizer, M.; Mohamed, W. Synthesis and characterization of some polyacrylate/montmorillonite nanocomposites by in situ emulsion polymerization using redox initiation system. J. Appl. Polym. Sci., 2009, 112, 1572-1578.
[72]
Klapyta, Z.; Fujita, T.; Lyi, N. Adsorption of dodecyl- and octadecyltrimethylammonium ions on a smectite and synthetic micas. Appl. Clay Sci., 2001, 19, 5-10.
[73]
Krysztafkiewics, A.; Werner, R.; Lipska, L.; Jesionowski, T. Effect of silane coupling agents on properties of precipitated sodium-aluminium silicates. Colloids Surf. A ., 2001, 182, 65-81.
[74]
Alkadashi, N.A.; Kapadi, U.; Hundiwale, D. Effect of titanate coupling agent on the mechanical properties of clay-filled polybutadiene rubber. J. Appl. Polym. Sci., 2004, 93, 1299-1304.
[75]
Nikolaidis, A.K.; Achilias, D.S.; Karayiannidis, G.P. Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. Eur. Polym. J., 2012, 48, 240-251.
[76]
Vaia, R.; Teukolsk, R.; Giannelis, E. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem. Mater., 1994, 6, 1017-1022.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy