[1]
Rauwel, P.; Rauwel, E.; Ferdov, S.; Singh, M.P. Silver nanoparticles: Synthesis, properties, and applications. Adv. Mater. Sci. Eng., 2015, 2015, 1-2.
[2]
Philip, D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E Low Dimens. Syst. Nanostruct., 2010, 42(5), 1417-1424.
[3]
Abdelhamid, H.N.; Talib, A.S.; Wu, H.F. Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv., 2015, 5(44), 34594-34602.
[4]
Abdelhamid, H.N.; Wu, H-F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Anal. Chem., 2015, 65, 30-46.
[5]
Haseeb, M.T.; Hussain, M.A.; Abbas, K.; Youssif, B.G.; Bashir, S.; Yuk, S.H.; Bukhari, S.N.A. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications. Int. J. Nanomed., 2017, 12, 2845-2855.
[6]
Resmi, R.; Unnikrishnan, S.; Krishnan, L.K.; Kalliyana Krishnan, V. Synthesis and characterization of silver nanoparticle incorporated gelatin‐hydroxypropyl methacrylate hydrogels for wound dressing applications. J. Appl. Polym. Sci., 2016, 134(10), 44529.
[7]
Golinelli, D.L.; Machado, S.A.; Cesarino, I. Synthesis of silver nanoparticle-graphene composites for electroanalysis applications using chemical and electrochemical methods. Electroanalysis, 2017, 29(4), 1014-1021.
[8]
Zhang, D.; Liu, X.; Wang, X.; Yang, X.; Lu, L. Optical properties of monodispersed silver nanoparticles produced via reverse micelle microemulsion. Physica B Condens. Matter, 2011, 406(8), 1389-1394.
[9]
Jeevanandam, P.; Srikanth, C.K.; Dixit, S. Synthesis of monodisperse silver nanoparticles and their self-assembly through simple thermal decomposition approach. Mater. Chem. Phys., 2010, 122(2), 402-407.
[10]
Venkatpurwar, V.; Pokharkar, V. Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. Mater. Lett., 2011, 65(6), 999-1002.
[11]
Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using aloevera plant extract. Biotechnol. Prog., 2006, 22(2), 577-583.
[12]
Shankar, S.S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog., 2003, 19(6), 1627-1631.
[13]
Jain, D.; Daima, H.K.; Kachhwaha, S.; Kothari, S. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti-microbial activities. Dig. J. Nanomater. Biostruct., 2009, 4(3), 557-563.
[14]
Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; De, S.P.; Misra, A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp., 2009, 339(1), 134-139.
[15]
Prasad, C.; Venkateswarlu, P. Soybean seeds extract based green synthesis of silver nanoparticles. Indian J. Adv. Chem. Sci., 2014, 2(3), 208-211.
[16]
Lu, R.; Yang, D.; Cui, D.; Wang, Z.; Guo, L. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int. J. Nanomed., 2012, 7, 2101-2107.
[17]
Philip, D.; Unni, C. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys. E Low Dimens. Syst. Nanostruct., 2011, 43(7), 1318-1322.
[18]
Sachdewa, A.; Khemani, L. Effect of Hibiscus rosa sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J. Ethnopharmacol., 2003, 89(1), 61-66.
[19]
Ghaffar, F.R.A.; El-Elaimy, I.A. In vitro, antioxidant and scavenging activities of Hibiscus rosa sinensis crude extract. J. Appl. Pharm. Sci., 2012, 2(1), 51-58.
[20]
Yin, Y.; Li, Z-Y.; Zhong, Z.; Gates, B.; Xia, Y.; Venkateswaran, S. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem., 2002, 12(3), 522-527.
[21]
Arulkumar, S.; Sabesan, M. Rapid preparation process of antiparkinsonian drug Mucuna pruriens silver nanoparticle by bioreduction and their characterization. Pharmacol. Res., 2010, 2(4), 233-236.
[22]
Nishimura, S.; Mott, D.; Takagaki, A.; Maenosono, S.; Ebitani, K. Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent. Phys. Chem. Chem. Phys., 2011, 13(20), 9335-9343.
[23]
Forough, M.; Fahadi, K. Biological and green synthesis of silver nanoparticles. Turkish J. Eng. Environ. Sci, 2011, 34(4), 281-287.
[24]
Safaepour, M.; Shahverdi, A.R.; Shahverdi, H.R.; Khorramizadeh, M.R.; Gohari, A.R. Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against Fibrosarcoma-Wehi 164. Avicenna J. Med. Biotechnol., 2009, 1(2), 111-115.
[25]
Jha, A.K.; Kumar, V.; Prasad, K. Biosynthesis of metal and oxide nanoparticles using orange juice. J. Bionanosci., 2011, 5(2), 162-166.
[26]
Ashby, M.F.; Ferreira, P.J.; Schodek, D.L. Nanomaterials Synthesis and Characterization.In: Nanomaterials: Nanotechnologies and Design. Ch. 8; Elsevier: Amsterdam, 2009, pp. 257-290.
[27]
Cao, G.; Wang, Y. Physical Chemistry of Solid Surfaces. In:Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Ch. 2; World Scientific: Singapore, 2004, pp. 19-60.
[28]
Barnard, A. A thermodynamic model for the shape and stability of twinned nanostructures. J. Phys. Chem. B, 2006, 110(48), 24498-24504.
[29]
Zhang, Q.; Xie, J.; Yang, J.; Lee, J.Y. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: Size control strategy and superlattice formation. ACS Nano, 2008, 3(1), 139-148.
[30]
Stoeva, S.I.; Prasad, B.; Uma, S.; Stoimenov, P.K.; Zaikovski, V.; Sorensen, C.M.; Klabunde, K.J. Face-centered cubic and hexagonal closed-packed nanocrystal superlattices of gold nanoparticles prepared by different methods. J. Phys. Chem., 2003, 107(30), 7441-7448.
[31]
Berger, A.; Drost, W.G.; Hopfe, S.; Steen, M.; Hofmeister, H. Stress State and Twin Configuration Of Spheroidal Silver Nanoparticles.In: Glass In: Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology; Springer: Berlin, 2005, pp. 323-326.
[32]
Morchshakov, V.; Yang, C.; Troyanchuk, I.; Bärner, K. Electroresistive effect in slightly oxygen deficient Nd 0.7 Sr 0.3 MnO 3−δ ceramic. J. Alloys Compd., 2005, 399(1), 27-31.
[33]
Yadav, A.; Rai, M. Bioreduction and mechanistic aspects involved in the synthesis of silver nanoparticles using Holarrhena antidysenterica. J. Bionanoscience, 2011, 5(1), 70-73.
[34]
Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; Hong, N.J.; Chen, C. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007, 18(10), 105104-105115.