[1]
Zimmer, B.; Nies, C.; Schmitt, C.; Possart, W. Chemistry, polymer dynamics and mechanical properties of a two-part polyurethane elastomer during and after crosslinking. Part I: Dry conditions. Polymer, 2017, 115, 77-95.
[2]
Singh, R.; Kukrety, A.; Chouhan, A.; Atray, N.; Ray, S. Recent progress in the preparation of eco-friendly lubricant and fuel additives through organic transformations of biomaterials. Mini Rev. Org. Chem., 2017, 14(1), 44-55.
[3]
Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Kaloyanova, S.; Vaquero, J.J.; Builla-Alvarez, J. Green chemistry in organic synthesis. Mini Rev. Org. Chem., 2010, 7(1), 44-53.
[4]
Meyer, H.P.; Turner, N.J. Biotechnological manufacturing options for organic chemistry. Mini Rev. Org. Chem., 2009, 6(4), 300-306.
[5]
Fan, S.; Zhang, P.; Li, F.; Jin, S.; Wang, S.; Zhou, S. A review of lignocellulose change during hydrothermal pretreatment for bioenergy production. Curr. Org. Chem., 2016, 20(26), 2799-2809.
[6]
Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; Langan, P.; Naskar, A.K.; Saddler, J.N.; Tschaplinski, T.J.; Tuskan, G.A.; Wyman, C.E. Lignin valorization: Improving lignin processing in the biorefinery. Science, 2014, 344(6185), 1246843.
[7]
Doherty, W.O.S.; Mousavioun, P.; Fellows, C.M. Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crops Prod., 2011, 33(2), 259-276.
[8]
Naseem, A.; Tabasum, S.; Zia, K.M.; Zuber, M.; Ali, M.; Noreen, A. Lignin-derivatives based polymers, blends and composites: A review. Int. J. Biol. Macromol., 2016, 93, 296-313.
[9]
Ponomarenko, J.; Dizhbite, T.; Lauberts, M.; Volperts, A.; Dobele, G.; Telysheva, G. Analytical pyrolysis. A tool for revealing of lignin structure-antioxidant activity relationship. J. Anal. Appl. Pyrol, 2015, 113, 360-369.
[10]
Kai, D.; Tan, M.J.; Chee, P.L.; Chua, Y.K.; Yap, Y.L.; Loh, X.J. Towards lignin-based functional materials in a sustainable world. Green Chem., 2016, 18(5), 1175-1200.
[11]
Ten, E.; Vermerris, W. Recent developments in polymers derived from industrial lignin. J. Appl. Polym. Sci., 2015, 132(24), 1-13.
[12]
Lora, J.H.; Glasser, W.G. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. J. Polym. Environ., 2002, 10(1-2), 39-48.
[13]
Neumann, G.T.; Pimentel, B.R.; Rensel, D.J.; Hicks, J.C. Correlating lignin structure to aromatic products in the catalytic fast pyrolysis of lignin model compounds containing β–O–4 linkages. Catal. Sci. Technol., 2014, 4(11), 3953-3963.
[14]
Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci., 2014, 39(7), 1266-1290.
[15]
Saraf, V.P.; Glasser, W.G. Engineering plastics from lignin. III. Structure property relationships in solution cast polyurethane films. J. Appl. Polym. Sci., 1984, 29(5), 1831-1841.
[16]
Silva, E.A.B.; Zabkova, M.; Araújo, J.D.; Cateto, C.A.; Barreiro, M.F.; Belgacem, M.N.; Rodrigues, A.E. An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem. Eng. Res. Des., 2009, 87(9), 1276-1292.
[17]
Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review. Renew. Sustain. Energy Rev., 2016, 60, 317-329.
[18]
Upton, B.M.; Kasko, A.M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective. Chem. Rev., 2016, 116(4), 2275-2306.
[19]
Sen, S.; Patil, S.; Argyropoulos, D.S. Thermal properties of lignin in copolymers, blends, and composites: A review. Green Chem., 2015, 17(11), 4862-4887.
[20]
Wang, Y.; Cai, C.M. Recent advances in lignin-based polyurethanes. TAPPI J., 2017, 16(4), 203-207.
[21]
Griffini, G.; Passoni, V.; Suriano, R.; Levi, M.; Turri, S. Polyurethane coatings based on chemically unmodified fractionated lignin. ACS Sustain. Chem.& Eng., 2015, 3(6), 1145-1154.
[22]
Janik, H.; Sienkiewicz, M.; Kucinska-Lipka, J. Polyurethanes. In: Handbook of Thermoset Plastics; Dodiuk, H.; Goodman, S.H., Eds.; Elsevier: San DIego, 2014; p. 217.
[23]
Luo, J.; Luo, J.; Yuan, C.; Zhang, W.; Li, J.; Gao, Q.; Chen, H. An eco-friendly wood adhesive from soy protein and lignin: Performance properties. RSC Adv, 2015, 5(122), 100849-100855.
[24]
Zhao, M.; Jing, J.; Zhu, Y.; Yang, X.; Wang, X.; Wang, Z. Preparation and performance of lignin-phenol-formaldehyde adhesives. Int. J. Adhes. Adhes., 2016, 64, 163-167.
[25]
Anh, P.T.; Jian, L.; Jin‐Zhen, C. Fabrication and characterization of isolated lignin as adhesive for three‐ply plywood. Polym. Compos., 2018, 39(2), 484-490.
[26]
Nacas, A.M.; Ito, N.M.; Sousa, R.R.D.; Spinacé, M.A.; Dos Santos, D.J. Effects of NCO:OH ratio on the mechanical properties and chemical structure of kraft lignin-based polyurethane adhesive. J. Adhes., 2017, 93(1-2), 18-29.
[27]
Avelino, F.; Almeida, S.L.; Duarte, E.B. Thermal and mechanical properties of coconut shell lignin-based polyurethanes synthesized by solvent-free polymerization. J. Mater. Sci., 2018, 53(2), 1470-1486.
[28]
Xue, B.L.; Wen, J.L.; Sun, R.C. Lignin-based rigid polyurethane foam reinforced with pulp fiber: Synthesis and characterization. ACS Sustain. Chem. Eng., 2014, 2(6), 1474-1480.
[29]
Carriço, C.S.; Fraga, T.; Pasa, V.M.D. Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J., 2016, 85, 53-61.
[30]
Cinelli, P.; Anguillesi, I.; Lazzeri, A. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur. Polym. J., 2013, 49(6), 1174-1184.
[31]
Tavares, L.B. Bio-based polyurethane prepared from kraft lignin and modified castor oil. Express Polym. Lett., 2016, 10(11), 927-940.
[32]
Chung, H.; Washburn, N.R. Improved lignin polyurethane properties with lewis acid treatment. ACS Appl. Mater. Interf, 2012, 4(6), 2840-2846.
[33]
Sadeghifar, H.; Cui, C.; Argyropoulos, D.S. Toward thermoplastic lignin polymers. Part 1. Selective masking of phenolic hydroxyl groups in kraft lignins via methylation and oxypropylation chemistries. Ind. Eng. Chem. Res., 2012, 51(51), 16713-16720.
[34]
Wu, L.C.; Glasser, W.G. Engineering plastics from lignin. I. Synthesis of hydroxypropyl lignin. J. Appl. Polym. Sci., 1984, 29(4), 1111-1123.
[35]
Glasser, W.G.; Barnett, C.A.; Rials, T.G.; Saraf, V.P. Engineering plastics from lignin II. Characterization of hydroxyalkyl lignin derivatives. J. Appl. Polym. Sci., 1984, 29(5), 1815-1830.
[36]
Cateto, C.A.; Barreiro, M.F.; Rodrigues, A.E.; Belgacem, M.N. Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind. Eng. Chem. Res., 2009, 48(5), 2583-2589.
[37]
Cateto, C.A.; Barreiro, M.F.; Ottati, C.; Lopretti, M.; Rodrigues, A.E.; Belgacem, M.N. Lignin-based rigid polyurethane foams with improved biodegradation. J. Cell. Plast., 2013, 50(1), 81-95.
[38]
Nadji, H.; Bruzzèse, C.; Belgacem, M.N.; Benaboura, A.; Gandini, A. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng., 2005, 290(10), 1009-1016.
[39]
Li, Y.; Ragauskas, A.J. Kraft lignin-based rigid polyurethane foam. J. Wood Chem. Technol., 2012, 32(3), 210-224.
[40]
Bernardini, J.; Cinelli, P.; Anguillesi, I.; Coltelli, M.B.; Lazzeri, A. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J., 2015, 64, 147-156.
[41]
Kühnel, I.; Podschun, J.; Saake, B.; Lehnen, R. Synthesis of lignin polyols via oxyalkylation with propylene carbonate. Holzforschung, 2015, 69(5), 531-538.
[42]
Kühnel, I.; Saake, B.; Lehnen, R. Oxyalkylation of lignin with propylene carbonate: Influence of reaction parameters on the ensuing bio-based polyols. Ind. Crops Prod., 2017, 101, 75-83.
[43]
Silva, E.A.B.D.; Zabkova, M.; Araújo, J.D.; Cateto, C.A.; Barreiro, M.F.; Belgacem, M.N.; Rodrigues, A.E. An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem. Eng. Res. Des., 2009, 87(9), 1276-1292.
[44]
Pandey, M.P.; Kim, C.S. Lignin depolymerization and conversion: A review of thermochemical methods. Chem. Eng. Technol., 2011, 34(1), 29-41.
[45]
Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, K. Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev., 2017, 118(2), 614-678.
[46]
Xu, C.; Arancon, R.A.D.; Labidi, J.; Luque, R. Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chem. Soc. Rev., 2014, 43(22), 7485-7500.
[47]
Yang, G.; Jahan, M.S.; Ni, Y. Structural characterization of pre-hydrolysis liquor lignin and its comparison with other technical lignins. Curr. Org. Chem., 2013, 17(15), 1589-1595.
[48]
Perchyonok, V.T.; Lykakis, I.N. Recent advances in free radical chemistry of C-C bond formation in aqueous media: From mechanistic origins to applications. Mini Rev. Org. Chem., 2008, 5, 19-32.
[49]
Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C.C. Production of polyols via direct hydrolysis of kraft lignin: Optimization of process parameters. Bioresour. Technol., 2014, 4(2), 44-51.
[50]
Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized kraft lignin via direct replacement or oxypropylation. Eur. Polym. J., 2015, 68, 1-9.
[51]
Xue, B.L.; Huang, P.L.; Sun, Y.C.; Li, X.P.; Sun, R.C. Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis. RSC Adv, 2017, 7(10), 6123-6130.
[52]
Li, H.; Sun, J.; Wang, C.; Liu, S.; Yuan, D. Modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustain. Chem. Eng., 2017, 5(9), 7942-7949.
[53]
Yilgör, I.; Yilgör, E.; Wilkes, G.L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer , 2015, 58, A1-A36.
[54]
Li, X.; Stribeck, A.; Schulz, I.; Pöselt, E.; Eling, B.; Hoell, A. Nanostructure of thermally aged thermoplastic polyurethane and its evolution under strain. Eur. Polym. J., 2016, 81, 569-581.
[55]
Saralegi, A.; Rueda, L.; Fernández-D’Arlas, B.; Mondragon, I.; Eceiza, A.; Corcuera, M.A. Thermoplastic polyurethanes from renewable resources: Effect of soft segment chemical structure and molecular weight on morphology and final properties. Polym. Int., 2013, 62(1), 106-115.
[56]
Zia, K.M.; Bhatti, H.N.; Ahmad Bhatti, I. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym., 2007, 67(8), 675-692.
[57]
Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications. A review. RSC Adv, 2016, 6(115), 114453-114482.
[58]
Jakab, B.E.; Faix, O.; Till, F.; Szekely, T. Thermogravimetry / mass spectrometry of various lignosulfonates as well as of a kraft and acetosolv lignin. Holzforschung, 1991, 45(5), 355-360.
[59]
Cui, C.; Sadeghifar, H.; Sen, S.; Argyropoulos, D.S. Toward thermoplastic lignin polymers; Part II: Thermal & polymer characteristics of kraft lignin & derivatives. BioResour, 2013, 8(1), 864-886.
[60]
Sen, S.; Patil, S.; Argyropoulos, D.S. Methylation of softwood kraft lignin with dimethyl carbonate. Green Chem., 2015, 17, 1077-1087.
[61]
Saito, T.; Perkins, J.H.; Jackson, D.C.; Trammel, N.E.; Hunt, M.A.; Naskar, A.K. Development of lignin-based polyurethane thermoplastics. RSC Adv, 2013, 3(44), 21832.
[62]
Laurichesse, S.; Huillet, C.; Avérous, L. Original polyols based on organosolv lignin and fatty acids: New bio-based building blocks for segmented polyurethanes synthesis. Green Chem., 2014, 16, 3958-3970.
[63]
Jeong, H.; Park, J.; Kim, S.; Lee, J.; Ahn, N.; Roh, H. Preparation and characterization of thermoplastic polyurethanes using partially acetylated kraft lignin. Fibers Polym., 2013, 14(7), 1082-1093.