[1]
Lou, T.; Cui, G.; Xun, J.; Wang, X.; Feng, N.; Zhang, J. Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal. Coll. Surf. A, 2018, 537, 149-154.
[2]
Kim, S.; Chu, K.H.; Al-Hamadani, Y.A.J.; Park, C.M.; Jang, M.; Kim, D.H.; Yu, M.; Heo, J.; Yoon, Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J., 2018, 335, 896-914.
[3]
Ahmed, A.E.S.I.; Moustafa, H.Y.; El-Masry, A.M.; Hassan, S.A. Natural and synthetic polymers for water treatment against dissolved pharmaceuticals. J. Appl. Polym. Sci., 2014, 131.
[4]
Tu, H.; Yu, Y.; Chen, J.; Shi, X.; Zhou, J.; Deng, H.; Du, Y. Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: Chitosan and cellulose. Polym. Chem., 2017, 8, 2913-2921.
[5]
Zia, F.; Zia, K.M.; Zuber, M.; Kamal, S.; Aslam, N. Starch based polyurethanes: A critical review updating recent literature. Carbohydr. Polym., 2015, 134, 784-798.
[6]
Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod., 2018, 172, 566-581.
[7]
Sarkheil, H.; Rahbari, S. Fractal geometry analysis of chemical structure of natural starch modification as a green biopolymeric product. Arab. J. Chem., 2015, 18.
[8]
Li, X.; Zheng, H.; Wang, Y.; Sun, Y.; Xu, B.; Zhao, C. Fabricating an enhanced sterilization chitosan-based flocculants: Synthesis, characterization, evaluation of sterilization and flocculation. Chem. Eng. J., 2017, 319, 119-130.
[9]
Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv., 2018, 36(1), 92-119.
[10]
Du, Q.; Wei, H.; Li, A.; Yang, H. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater. Sci. Total Environ., 2017, 601-602, 1628-1637.
[11]
Liu, Q.; Li, F.; Lu, H.; Li, M.; Liu, J.; Zhang, S.; Sun, Q.; Xiong, L. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chem., 2018, 242, 256-263.
[12]
Huang, L.; Xiao, C.; Chen, B. A novel starch-based adsorbent for removing toxic Hg(II) and Pb(II) ions from aqueous solution. J. Hazard. Mater., 2011, 192, 832-836.
[13]
Lapointe, M.; Barbeau, B. Dual starch-polyacrylamide polymer system for improved flocculation. Water Res., 2017, 124, 202-209.
[14]
Saedi, S.; Madaeni, S.S.; Seidi, F.; Shamsabadi, A.A.; Laki, S. Synthesis and application of a novel Amino-Starch derivative as a new polymeric additive for fixed facilitated transport of carbon dioxide through an asymmetric polyethersulfone (PES) membrane. Int. J. Greenh. G. Con., 2013, 19, 126-137.
[15]
Yuan, X.; Ju, B.; Zhang, S. Novel pH- and temperature-responsive polymer: Tertiary amine starch ether. Carbohyd. Polym., 2014, 114, 530-536.
[16]
Klimaviciute, R.; Bendoraitiene, J.; Lekniute, E.; Zemaitaitis, A. Non-stoichiometric complexes of cationic starch and 4-sulfophthalic acid and their flocculation efficiency. Coll. Surf. A, 2014, 457, 180-188.
[17]
Liu, Z.; Huang, M.; Li, A.; Yang, H. Flocculation and antimicrobial properties of a cationized starch. Water Res., 2017, 119, 57-66.
[18]
Ji, J.; Li, J.; Qiu, J.; Li, X. Polyacrylamide-starch composite flocculant as a membrane fouling reducer: Key factors of fouling reduction. Sep. Purif. Technol., 2014, 131, 1-7.
[19]
Canché-Escamilla, G.; Canché-Canché, M.; Duarte-Aranda, S.; Cáceres-Farfán, M.; Borges-Argáez, R. Mechanical properties and biodegradation of thermoplastic starches obtained from grafted starches with acrylics. Carbohyd. Polym., 2011, 86, 1501-1508.
[20]
Akhlaghi, S.P.; Zaman, M.; Mohammed, N.; Brinatti, C.; Batmaz, R.; Berry, R.; Loh, W.; Tam, K.C. Synthesis of amine functionalized cellulose nanocrystals: Optimization and characterization. Carbohyd. Res., 2015, 409, 48-55.
[21]
Sirviö, J.; Honka, A.; Liimatainen, H.; Niinimäki, J.; Hormi, O. Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent. Carbohyd. Polym., 2011, 86, 266-270.
[22]
Zhou, C.; Lee, S.; Dooley, K.; Wu, Q. A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations. J. Hazard. Mater., 2013, 263, 334-341.
[23]
Anirudhan, T.S.; Nima, J.; Divya, P.L. Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups. Appl. Surf. Sci., 2013, 279, 441-449.
[24]
Lam, B.; Déon, S.; Morin-Crini, N.; Crini, G.; Fievet, P. Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Clean. Prod., 2018, 171, 927-933.
[25]
Salama, A. Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water. Int. J. Biol. Macromol., 2018, 106, 940-946.
[26]
Ding, C.; Li, Y.; Wang, Y.; Li, J.; Sun, Y.; Lin, Y.; Sun, W.; Luo, C. Highly selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. Int. J. Biol. Macromol., 2018, 107, 957-964.
[27]
Zhong, T.; Huang, R.; Sui, S.; Lian, Z.; Sun, X.; Wan, A.; Li, H. Effects of ultrasound treatment on lipid self-association and properties of methylcellulose/stearic acid blending films. Carbohyd. Polym., 2015, 131, 415-423.
[28]
Peng, X.; Ren, J.; Sun, R. An efficient method for the synthesis of hemicellulosic derivatives with bifunctional groups in butanol/water medium and their rheological properties. Carbohyd. Polym., 2011, 83, 1922-1928.
[29]
Mänttäri, M.; Al Manasrah, M.; Strand, E.; Laasonen, H.; Preis, S.; Puro, L.; Xu, C.; Kisonen, V.; Korpinen, R.; Kallioinen, M. Improvement of ultrafiltration performance by oxidation treatment in the recovery of galactoglucomannan from wood autohydrolyzate. Sep. Purif. Technol., 2015, 149, 428-436.
[30]
Xu, F.; Jiang, J.X.; Sun, R.C.; She, D.; Peng, B.; Sun, J.X.; Kennedy, J.F. Rapid esterification of wheat straw hemicelluloses induced by microwave irradiation. Carbohyd. Polym., 2008, 73, 612-620.
[31]
Dong, L.; Hu, H.; Yang, S.; Cheng, F. Grafted copolymerization modification of hemicellulose directly in the Alkaline Peroxide Mechanical Pulping (APMP) effluent and its surface sizing effects on corrugated paper. Ind. Eng. Chem. Res., 2014, 53, 6221-6229.
[32]
Wu, S.P.; Dai, X.Z.; Kan, J.R.; Shilong, F.D.; Zhu, M.Y. Fabrication of carboxymethyl chitosan-hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin. Chem. Lett., 2017, 28, 625-632.
[33]
Dax, D.; Chávez, M.S.; Xu, C.; Willför, S.; Mendonça, R.T.; Sánchez, J. Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohyd. Polym., 2014, 111, 797-805.
[34]
He, W.; Gao, W.; Fatehi, P. Oxidation of kraft lignin with hydrogen peroxide and its application as a dispersant for kaolin suspensions. ACS Sustain. Chem. Eng., 2017, 5, 10597-10605.
[35]
Aro, T.; Fatehi, P. Production and application of lignosulfonates and sulfonated lignin. Chem. Sus. Chem., 2017, 10, 1861-1877.
[36]
Nie, G.; Zhang, X.; Han, P.; Xie, J.; Pan, L.; Wang, L.; Zou, J.J. Lignin-derived multi-cyclic high density biofuel by alkylation and hydrogenated intramolecular cyclization. Chem. Eng. Sci., 2017, 158, 64-69.
[37]
Hu, L.Q.; Dai, L.; Liu, R.; Si, C.L. Lignin-graft-poly(acrylic acid) for enhancement of heavy metal ion biosorption. J. Mater. Sci., 2017, 52, 13689-13699.
[38]
Luo, X.; Liu, C.; Yuan, J.; Zhu, X.; Liu, S. Interfacial solid-phase chemical modification with mannich reaction and Fe(III) chelation for designing lignin-based spherical nanoparticle adsorbents for highly efficient removal of low concentration phosphate from water. ACS Sustain. Chem. Eng., 2017, 5, 6539-6547.
[39]
Qin, Y.; Yang, D.; Guo, W.; Qiu, X. Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry. J. Ind. Eng. Chem., 2015, 27, 192-200.
[40]
Şimşek, S.; Ulusoy, U. Adsorptive properties of sulfolignin-polyacrylamide graft copolymer for lead and uranium: Effect of hydroxylamine-hydrochloride treatment. React. Funct. Polym., 2013, 73, 73-82.
[41]
Santos, O.S.H.; Coelho da Silva, M.; Silva, V.R.; Mussel, W.N.; Yoshida, M.I. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J. Hazard. Mater., 2017, 324 Part B, 406-413.
[42]
Arshanitsa, A.; Krumina, L.; Telysheva, G.; Dizhbite, T. Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crop Prod., 2016, 92, 1-12.
[43]
Pan, H.; Sun, G.; Zhao, T. Synthesis and characterization of aminated lignin. Int. J. Biol. Macromol., 2013, 59, 221-226.
[44]
Anirudhan, T.S.; Rejeena, S.R.; Tharun, A.R. Preparation, characterization and adsorption behavior of tannin-modified poly(glycidylmethacrylate)-grafted zirconium oxide-densified cellulose for the selective separation of bovine serum albumin. Coll. Surf. B, 2012, 93, 49-58.
[45]
Bridson, J.H.; Grigsby, W.J.; Main, L. One-pot solvent-free synthesis and characterisation of hydroxypropylated polyflavonoid compounds. Ind. Crops Prod., 2018, 111, 529-535.
[46]
Zhao, C.; Zheng, H.; Sun, Y.; Liu, B.; Zhou, Y.; Liu, Y.; Zheng, X. Fabrication of tannin-based dithiocarbamate biosorbent and its application for Ni(II) ion removal. Water Air Soil Poll., 2017, 228, 409.
[47]
Tondi, G. Tannin-based copolymer resins: Synthesis and characterization by solid state 13C NMR and FT-IR spectroscopy. Polymers , 2017, 9.
[48]
Sumathirathne, L.D.; Karunanayake, L. Synthesis of novel porous tannin-phenol-formaldehyde cation exchange resin from Terminalia arjuna (Kumbuk). J. Natl. Sci. Found. Sri., 2017, 45, 219-227.
[49]
Braghiroli, F.L.; Fierro, V.; Izquierdo, M.T.; Parmentier, J.; Pizzi, A.; Delmotte, L.; Fioux, P.; Celzard, A. High surface - Highly N-doped carbons from hydrothermally treated tannin. Ind. Crop Prod., 2015, 66, 282-290.
[50]
Kwon, S.G.; Bae, D.G. A Study on the sulfonation of persimmon tannin; Textil. Color. Finish, 2017, p. 29.
[51]
Wang, Y.; Cheng, S.; Wang, F.; Gao, M.; Cao, R. Synthesis and characterization of natural polymer/inorganic antibacterial nanocomposites. J. Wuhan Univer. Technol. Mater. Sci. Ed., 2013, 28, 1044-1047.
[52]
Zhang, Z.; Jin, F.; Wu, Z.; Jin, J.; Li, F.; Wang, Y.; Wang, Z.; Tang, S.; Wu, C.; Wang, Y. O-acylation of chitosan nanofibers by short-chain and long-chain fatty acids. Carbohyd. Polym., 2017, 177, 203-209.
[53]
Wang, Q.; Yan, X.; Chang, Y.; Ren, L.; Zhou, J. Fabrication and characterization of chitin nanofibers through esterification and ultrasound treatment. Carbohyd. Polym., 2018, 180, 81-87.
[54]
Lu, L.; Xing, C.; Xin, S.; Shitao, Y.; Feng, S.; Shiwei, L.; Fusheng, L.; Congxia, X. Alkyl chitosan film-high strength, functional biomaterials. J. Biomed. Mater. Res. A, 2017, 105, 3034-3041.
[55]
Xie, Y.; Liu, X.; Chen, Q. Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohyd. Polym., 2007, 69, 142-147.
[56]
Beil, S.; Schamberger, A.; Naumann, W.; Machill, S.; van Pée, K.H. Determination of the degree of N-acetylation (DA) of chitin and chitosan in the presence of water by first derivative ATR FTIR spectroscopy. Carbohyd. Polym., 2012, 87, 117-122.
[57]
Abla, M.; Marmuse, L.; Delolme, F.; Vors, J.P.; Ladavière, C.; Trombotto, S. Access to tetra-N-acetyl-chitopentaose by chemical N-acetylation of glucosamine pentamer. Carbohyd. Polym., 2013, 98, 770-777.
[58]
Kurita, Y.; Isogai, A. N-Alkylations of chitosan promoted with sodium hydrogen carbonate under aqueous conditions. Int. J. Biol. Macromol., 2012, 50, 741-746.
[59]
Kurita, Y.; Isogai, A. Reductive N-alkylation of chitosan with acetone and levulinic acid in aqueous media. Int. J. Biol. Macromol., 2010, 47, 184-189.
[60]
Masina, N.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Govender, M.; Indermun, S.; Pillay, V. A review of the chemical modification techniques of starch. Carbohyd. Polym., 2017, 157, 1226-1236.
[61]
Chen, Q.; Yu, H.; Wang, L.; Abdin, Z.; Chen, Y.; Wang, J.; Zhou, W.; Yang, X.; Khan, R.U.; Zhang, H.; Chen, X. Recent progress in chemical modification of starch and its applications. RSC Adv, 2015, 5, 67459-67474.
[62]
Simanaviciute, D.; Liudvinaviciute, D.; Klimaviciute, R.; Rutkaite, R. Cross-linked cationic starch derivatives for immobilization of chlorogenic acid. Eur. Polym. J., 2017, 93, 833-842.
[63]
Lekniute, E.; Peciulyte, L.; Klimaviciute, R.; Bendoraitiene, J.; Zemaitaitis, A. Structural characteristics and flocculation properties of amphoteric starch. Coll. Surf. A, 2013, 430, 95-102.
[64]
Peng, H.; Zhong, S.; Lin, Q.; Yao, X.; Liang, Z.; Yang, M.; Yin, G.; Liu, Q.; He, H. Removal of both cationic and anionic contaminants by amphoteric starch. Carbohyd. Polym., 2016, 138, 210-214.
[65]
Yang, Z.; Wu, H.; Yuan, B.; Huang, M.; Yang, H.; Li, A.; Bai, J.; Cheng, R. Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water. Chem. Eng. J., 2014, 244, 209-217.
[66]
Kumar, R.; Sharma, R.K.; Singh, A.P. Cellulose based grafted biosorbents. Journey from lignocellulose biomass to toxic metal ions sorption applications. A review. J. Mol. Liq., 2017, 232, 62-93.
[67]
Kono, H.; Ogasawara, K.; Kusumoto, R.; Oshima, K.; Hashimoto, H.; Shimizu, Y. Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): Preparation, molecular dynamics, and adsorption of anionic dyes. Carbohyd. Polym., 2016, 152, 170-180.
[68]
Suopajärvi, T.; Sirviö, J.A.; Liimatainen, H. Cationic nanocelluloses in dewatering of municipal activated sludge. J. Environ. Chem. Eng., 2017, 5, 86-92.
[69]
Zhang, H.; Zeng, X.; Xie, J.; Li, Z.; Li, H. Study on the sorption process of triclosan on cationic microfibrillated cellulose and its antibacterial activity. Carbohyd. Polym., 2016, 136, 493-498.
[70]
Kemppainen, K.; Suopajärvi, T.; Laitinen, O.; Ämmälä, A.; Liimatainen, H.; Illikainen, M. Flocculation of fine hematite and quartz suspensions with anionic cellulose nanofibers. Chem. Eng. Sci., 2016, 148, 256-266.
[71]
Suopajärvi, T.; Koivuranta, E.; Liimatainen, H.; Niinimäki, J. Flocculation of municipal wastewaters with anionic nanocelluloses: Influence of nanocellulose characteristics on floc morphology and strength. J. Environ. Chem. Eng., 2014, 2, 2005-2012.
[72]
Hong, P.; Fa, C.; Wei, Y.; Sen, Z. Surface properties and synthesis of the cellulose-based amphoteric polymeric surfactant. Carbohyd. Polym., 2007, 69, 625-630.
[73]
Kono, H.; Kusumoto, R. Preparation, structural characterization, and flocculation ability of amphoteric cellulose. React. Funct. Polym., 2014, 82, 111-119.
[74]
Zhong, Q.Q.; Yue, Q.Y.; Li, Q.; Gao, B.Y.; Xu, X. Removal of Cu(II) and Cr(VI) from wastewater by an amphoteric sorbent based on cellulose-rich biomass. Carbohyd. Polym., 2014, 111, 788-796.
[75]
Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci., 2018, 93, 233-269.
[76]
Thakur, S.; Govender, P.P.; Mamo, M.A.; Tamulevicius, S.; Mishra, Y.K.; Thakur, V.K. Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives. Vacuum, 2017, 146, 342-355.
[77]
Lü, Q.F.; Huang, Z.K.; Liu, B.; Cheng, X. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids. Bioresource. Technol., 2012, 104, 111-118.
[78]
Bacelo, H.A.M.; Santos, S.C.R.; Botelho, C.M.S. Tannin-based biosorbents for environmental applications. A review. Chem. Eng. J., 2016, 303, 575-587.
[79]
Huang, Q.; Liu, M.; Zhao, J.; Chen, J.; Zeng, G.; Huang, H.; Tian, J.; Wen, Y.; Zhang, X.; Wei, Y. Facile preparation of polyethylenimine-tannins coated SiO2 hybrid materials for Cu2+ removal. Appl. Surf. Sci., 2018, 427, 535-544.
[80]
Wang, Z.; Li, X.; Liang, H.; Ning, J.; Zhou, Z.; Li, G. Equilibrium, kinetics and mechanism of Au3+, Pd2+and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin. Mater. Sci. Eng. C, 2017, 79, 227-236.
[81]
Xu, Q.; Wang, Y.; Jin, L.; Wang, Y.; Qin, M. Adsorption of Cu(II), Pb(II) and Cr(VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J. Hazard. Mater., 2017, 339, 91-99.
[82]
Paneysar, J.S.; Barton, S.; Chandra, S.; Ambre, P.; Coutinho, E. Novel thermoresponsive assemblies of co-grafted natural and synthetic polymers for water purification. Water Sci. Technol., 2017, 75, 1084.
[83]
Ahmad, M.; Manzoor, K.; Ikram, S. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review. Int. J. Biol. Macromol., 2017, 105, 190-203.
[84]
Bertoni, F.A.; González, J.C.; García, S.I.; Sala, L.F.; Bellú, S.E. Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohyd. Polym., 2018, 180, 55-62.
[85]
Adewuyi, S.; Jacob, J.M.; Olaleye, O.O.; Abdulraheem, T.O.; Tayo, J.A.; Oladoyinbo, F.O. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents. Carbohyd. Polym., 2016, 151, 1235-1239.
[86]
Xiong, Y.; Song, Y.; Tong, Q.; Zhang, P.; Wang, Y.; Lou, Z.; Zhang, F.; Shan, W. Adsorption-controlled preparation of anionic imprinted amino-functionalization chitosan for recognizing rhenium(VII). Sep. Purif. Technol., 2017, 177, 142-151.
[87]
Zheng, X.; Li, X.; Li, J.; Wang, L.; Jin, W. liu, J.; Pei, Y.; Tang, K. Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. Int. J. Biol. Macromol., 2018, 107, 283-289.
[88]
Yu, Z.; Dang, Q.; Liu, C.; Cha, D.; Zhang, H.; Zhu, W.; Zhang, Q.; Fan, B. Preparation and characterization of poly(maleic acid)-grafted cross-linked chitosan microspheres for Cd(II) adsorption. Carbohyd. Polym., 2017, 172, 28-39.
[89]
Liu, B.; Chen, X.; Zheng, H.; Wang, Y.; Sun, Y.; Zhao, C.; Zhang, S. Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: Role of ionic groups. Carbohyd. Polym., 2018, 181, 327-336.
[90]
Liu, T.; Han, X.; Wang, Y.; Yan, L.; Du, B.; Wei, Q.; Wei, D. Magnetic chitosan/anaerobic granular sludge composite: Synthesis, characterization and application in heavy metal ions removal. J. Colloid Interf Sci., 2017, 508, 405-414.
[91]
Rezgui, S.; Amrane, A.; Fourcade, F.; Assadi, A.; Monser, L.; Adhoum, N. Electro-fenton catalyzed with magnetic chitosan beads for the removal of Chlordimeform insecticide. Appl. Catal. BEnviron, 2018, 226, 346-359.
[92]
Taher, F.A.; Kamal, F.H.; Badawy, N.A.; Shrshr, A.E. Hierarchical magnetic/chitosan/graphene oxide 3D nanostructure as highly effective adsorbent. Mater. Res. Bull., 2018, 97, 361-368.
[93]
Zhang, B.; Huyan, Y.; Wang, J.; Chen, X.; Zhang, H.; Zhang, Q. Fe3O4@SiO2@CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase. J. Alloy Compd., 2018, 735, 1986-1996.