Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Conjugates of Classical DNA/RNA Binder with Nucleobase: Chemical, Biochemical and Biomedical Applications

Author(s): Dijana Saftić, Željka Ban , Josipa Matić, Lidija-Marija Tumirv and Ivo Piantanida*

Volume 26, Issue 30, 2019

Page: [5609 - 5624] Pages: 16

DOI: 10.2174/0929867325666180508090640

Price: $65

Abstract

Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.

Keywords: DNA, RNA recognition, aryl-nucleobase conjugate, fluorescence, circular dichroism, bioimaging, cytotoxicity.

[1]
Demeunynck, M.; Bailly, C.; Wilson, W.D. DNA and RNA Binders; Wiley-VCH: Weinheim, Germany, 2002.
[http://dx.doi.org/10.1002/3527601783]
[2]
Silverman, R.B. The Organic Chemistry of Drug Design and Drug Action; Elsevier Academic Press: New York, 2004.
[3]
Tumir, L-M.; Radić Stojković, M.; Piantanida, I. Come-back of phenanthridine and phenanthridinium derivatives in the 21st century. Beilstein J. Org. Chem., 2014, 10, 2930-2954.
[http://dx.doi.org/10.3762/bjoc.10.312] [PMID: 25550761]
[4]
Piantanida, I.; Palm, B.S.; Cudic, P.; Zinic, M.; Schneider, H.J. Interactions of acyclic and cyclic bis-phenanthridinium derivatives with ss- and ds-polynucleotides. Tetrahedron, 2004, 60, 6225-6231.
[http://dx.doi.org/10.1016/j.tet.2004.05.009]
[5]
Piantanida, N.; Palm, B.S.; Cudic, P.; Zinic, M.; Schneider, H.J. Phenanthridinium cyclobisintercalands. Fluorescence sensing of AMP and selective binding to single-stranded nucleic acids. Tetrahedron Lett., 2001, 42, 6779-6783.
[http://dx.doi.org/10.1016/S0040-4039(01)01386-7]
[6]
Slama-Schwok, A.; Teulade-Fichou, M.P.; Vigneron, J.P.; Taillandier, E.; Lehn, J.M. Selective binding of a macrocyclic bisacridine to DNA hairpins. J. Am. Chem. Soc., 1995, 117, 6822-6830.
[http://dx.doi.org/10.1021/ja00131a003]
[7]
Lhomme, J.; Constant, J.F.; Demeunynck, M. Abasic DNA structure, reactivity, and recognition. Biopolymers, 1999, 52(2), 65-83.
[http://dx.doi.org/10.1002/1097-0282(1999)52:2<65:AID-BIP1>3.0.CO;2-U] [PMID: 10898853]
[8]
Boiteux, S.; Guillet, M. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst.), 2004, 3(1), 1-12.
[http://dx.doi.org/10.1016/j.dnarep.2003.10.002] [PMID: 14697754]
[9]
Constant, J-F.; Demeunynck, M. DNA and RNA Binders: From Small Molecules to Drugs; Wiley-VCH: Weinheim, 2003, pp. 247-277.
[10]
Martelli, A.; Berthet, N.; Constant, J-F.; Demeunynck, M.; Lhomme, J. The abasic site as a target for generation of locally multiply damaged sites. Bioorg. Med. Chem. Lett., 2000, 10(8), 763-766.
[http://dx.doi.org/10.1016/S0960-894X(00)00081-0] [PMID: 10782681]
[11]
Martelli, A.; Constant, J-F.; Demeunynck, M.; Lhomme, J.; Dumy, P. Design of site specific DNA damaging agents for generation of multiply damaged sites. Tetrahedron, 2002, 58(21), 4291-4298.
[http://dx.doi.org/10.1016/S0040-4020(02)00345-9]
[12]
Belmont, P.; Boudali, A.; Constant, J-F.; Demeunynck, M.; Fkyerat, A.; Michon, P.; Lhomme, J. Efficient and versatile chemical tools for cleavage of abasic sites in DNA. New J. Chem., 1997, 21(1), 47-54.
[13]
Belmont, P.; Jourdan, M.; Demeunynck, M.; Constant, J-F.; Garcia, J.; Lhomme, J.; Carez, D.; Croisy, A. Abasic site recognition in DNA as a new strategy to potentiate the action of anticancer alkylating drugs? J. Med. Chem., 1999, 42(25), 5153-5159.
[http://dx.doi.org/10.1021/jm9901428] [PMID: 10602700]
[14]
Alarcon, K.; Demeunynck, M.; Lhomme, J.; Carrez, D.; Croisy, A. Diaminopurine-acridine heterodimers for specific recognition of abasic site containing DNA. Influence on the biological activity of the position of the linker on the purine ring. Bioorg. Med. Chem. Lett., 2001, 11(14), 1855-1858.
[http://dx.doi.org/10.1016/S0960-894X(01)00310-9] [PMID: 11459646]
[15]
Alarcon, K.; Demeunynck, M.; Lhomme, J.; Carrez, D.; Croisy, A. Potentiation of BCNU cytotoxicity by molecules targeting abasic lesions in DNA. Bioorg. Med. Chem., 2001, 9(7), 1901-1910.
[http://dx.doi.org/10.1016/S0968-0896(01)00097-9] [PMID: 11425593]
[16]
Belmont, P.; Demeunynck, M.; Constant, J-F.; Lhomme, J. Synthesis and study of a new adenine-acridine tandem, inhibitor of exonuclease III. Bioorg. Med. Chem. Lett., 2000, 10(3), 293-295.
[http://dx.doi.org/10.1016/S0960-894X(99)00681-2] [PMID: 10698457]
[17]
Benner, K.; Granzhan, A.; Ihmels, H.; Viola, G. Targeting abasic sites in DNA by aminoalkyl-substituted carboxamidoacridizinium derivatives and acridizinium–adenine conjugates. Eur. J. Org. Chem., 2007, 2007(28), 4721-4730.
[http://dx.doi.org/10.1002/ejoc.200700207]
[18]
Takenaka, S.; Mamabe, M.; Yokoyama, M.; Nishi, M.; Tanaka, J.; Kondo, H. Specific binding to poly A of a naphthalene diimide carrying thymine groups. Chem. Commun. (Camb.), 1996, 3, 379-380.
[http://dx.doi.org/10.1039/cc9960000379]
[19]
Rhoden Smith, A.; Iverson, B.L. Threading polyintercalators with extremely slow dissociation rates and extended DNA binding sites. J. Am. Chem. Soc., 2013, 135(34), 12783-12789.
[http://dx.doi.org/10.1021/ja4057344] [PMID: 23919778]
[20]
Abe, Y.; Nakagawa, O.; Yamaguchi, R.; Sasaki, S. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site. Bioorg. Med. Chem., 2012, 20(11), 3470-3479.
[http://dx.doi.org/10.1016/j.bmc.2012.04.009] [PMID: 22560836]
[21]
Abe, Y.S.; Sasaki, S. DNA cleavage at the AP site via β-elimination mediated by the AP site-binding ligands. Bioorg. Med. Chem., 2016, 24(4), 910-914.
[http://dx.doi.org/10.1016/j.bmc.2016.01.016] [PMID: 26777298]
[22]
Izumi, T.; Hazra, T.K.; Boldogh, I.; Tomkinson, A.E.; Park, M.S.; Ikeda, S.; Mitra, S. Requirement for human AP endonuclease 1 for repair of 3′-blocking damage at DNA single-strand breaks induced by reactive oxygen species. Carcinogenesis, 2000, 21(7), 1329-1334.
[http://dx.doi.org/10.1093/carcin/21.7.1329] [PMID: 10874010]
[23]
Botto, R.E.; Coxon, B. Nitrogen-15 nuclear magnetic resonance spectroscopy of neomycin B and related aminoglycosides. J. Am. Chem. Soc., 1983, 105(4), 1021-1028.
[http://dx.doi.org/10.1021/ja00342a062]
[24]
Karimi, R.; Ehrenberg, M. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur. J. Biochem., 1994, 226(2), 355-360.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb20059.x] [PMID: 8001552]
[25]
Fourmy, D.; Recht, M.I.; Puglisi, J.D. Binding of neomycin- class aminoglycoside antibiotics to the A-site of 16 S rRNA11Edited by I. Tinoco. In: J. Mol. Biol; , 1998, 277, pp. (2)347-362.
[http://dx.doi.org/10.1006/jmbi.1997.1552] [PMID: 9514735]
[26]
Fourmy, D.; Yoshizawa, S.; Puglisi, J.D. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA11Edited by I. Tinoco. In: J. Mol. Biol; , 1998, 277, pp. (2)333-345.
[http://dx.doi.org/10.1006/jmbi.1997.1551] [PMID: 9514734]
[27]
Yoshizawa, S.; Fourmy, D.; Puglisi, J.D. Structural origins of gentamicin antibiotic action. EMBO J., 1998, 17(22), 6437-6448.
[http://dx.doi.org/10.1093/emboj/17.22.6437] [PMID: 9822590]
[28]
Cai, L.; Li, Q.; Ren, B.; Yang, Z-J.; Zhang, L-R.; Zhang, L-H. Synthesis of aminodisaccharide–nucleoside conjugates for RNA binding. Tetrahedron, 2007, 63(34), 8135-8144.
[http://dx.doi.org/10.1016/j.tet.2007.06.002]
[29]
Yajima, S.; Shionoya, H.; Akagi, T.; Hamasaki, K. Neamine derivatives having a nucleobase with a lysine or an arginine as a linker, their synthesis and evaluation as potential inhibitors for HIV TAR-Tat. Bioorg. Med. Chem., 2006, 14(8), 2799-2809.
[http://dx.doi.org/10.1016/j.bmc.2005.11.056] [PMID: 16413787]
[30]
Xu, Y.; Jin, H.; Yang, Z.; Zhang, L.; Zhang, L. Synthesis and biological evaluation of novel neamine–nucleoside conjugates potentially targeting to RNAs. Tetrahedron, 2009, 65(27), 5228-5239.
[http://dx.doi.org/10.1016/j.tet.2009.04.084]
[31]
Dell, A.; Williams, D.H.; Morris, H.R.; Smith, G.A.; Feeney, J.; Roberts, G.C.K. Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc., 1975, 97(9), 2497-2502.
[http://dx.doi.org/10.1021/ja00842a029] [PMID: 1133418]
[32]
Takusagawa, F. The role of the cyclic depsipeptide rings in antibiotics. J. Antibiot. (Tokyo), 1985, 38(11), 1596-1604.
[http://dx.doi.org/10.7164/antibiotics.38.1596] [PMID: 2416727]
[33]
Wang, A.H.; Ughetto, G.; Quigley, G.J.; Hakoshima, T.; van der Marel, G.A.; van Boom, J.H.; Rich, A. The molecular structure of a DNA-triostin A complex. Science, 1984, 225(4667), 1115-1121.
[http://dx.doi.org/10.1126/science.6474168] [PMID: 6474168]
[34]
Lorenz, K.B.; Diederichsen, U. Solution-phase synthesis of nucleobase-substituted analogues of triostin A. J. Org. Chem., 2004, 69(11), 3917-3927.
[http://dx.doi.org/10.1021/jo0496805] [PMID: 15153026]
[35]
Dietrich, B.; Diederichsen, U. Synthesis of cyclopeptidic analogues of triostin a with quinoxalines or nucleobases as chromophores. Eur. J. Org. Chem., 2005, 2005(1), 147-153.
[http://dx.doi.org/10.1002/ejoc.200400548]
[36]
Kumar Ray, A.; Diederichsen, U. Syntheses of Triostin A antibiotic and nucleobase-functionalized analogs as new DNA binders. Eur. J. Org. Chem., 2009, 2009(28), 4801-4809.
[http://dx.doi.org/10.1002/ejoc.200900530]
[37]
Sachs, E-F.; Nadler, A.; Diederichsen, U. Triostin A derived hybrid for simultaneous DNA binding and metal coordination. Amino Acids, 2011, 41(2), 449-456.
[http://dx.doi.org/10.1007/s00726-010-0764-3] [PMID: 20967559]
[38]
Kotyrba, U.M.; Pröpper, K.; Sachs, E-F.; Myanovska, A.; Joppe, T.; Lissy, F.; Sheldrick, G.M.; Koszinowski, K.; Diederichsen, U.; Triostin, A. Triostin a derived cyclopeptide as architectural template for the alignment of four recognition units. ChemistryOpen, 2014, 3(4), 152-160.
[http://dx.doi.org/10.1002/open.201400001] [PMID: 25478311]
[39]
Mahata, T.; Kanungo, A.; Ganguly, S.; Modugula, E.K.; Choudhury, S.; Pal, S.K.; Basu, G.; Dutta, S. The benzyl moiety in a quinoxaline-based scaffold acts as a DNA intercalation switch. Angew. Chem. Int. Ed. Engl., 2016, 55(27), 7733-7736.
[http://dx.doi.org/10.1002/anie.201511881] [PMID: 27060288]
[40]
Van Poecke, S.; Negri, A.; Gago, F.; Van Daele, I.; Solaroli, N.; Karlsson, A.; Balzarini, J.; Van Calenbergh, S. 3′-[4-Aryl-(1,2,3-triazol-1-yl)]-3′-deoxythymidine analogues as potent and selective inhibitors of human mitochondrial thymidine kinase. J. Med. Chem., 2010, 53(7), 2902-2912.
[http://dx.doi.org/10.1021/jm901532h] [PMID: 20218622]
[41]
Wei, Q.; Zhang, D.; Yao, A.; Mai, L.; Zhang, Z.; Zhou, Q. Design, synthesis, and in vitro and in vivo biological studies of a 3′-deoxythymidine conjugate that potentially kills cancer cells selectively. PLoS One, 2012, 7(12)e52199
[http://dx.doi.org/10.1371/journal.pone.0052199] [PMID: 23300611]
[42]
Ratmeyer, L.S.; Vinayak, R.; Zon, G.; Wilson, W.D. An ethidium analogue that binds with high specificity to a base-bulged duplex from the TAR RNA region of the HIV-I genome. J. Med. Chem., 1992, 35(5), 966-968.
[http://dx.doi.org/10.1021/jm00083a024] [PMID: 1548686]
[43]
Wilson, W.D.; Ratmeyer, L.; Cegla, M.T.; Spychala, J.; Boykin, D.; Demeunynck, M.; Lhomme, J.; Krishnan, G.; Kennedy, D.; Vinayak, R.; Zon, G. Bulged-Base nucleic acids as potential targets for antiviral drug action. New J. Chem., 1994, 18(3), 419-423.
[44]
Harper, J.W.; Logsdon, N.J. Refolded HIV-1 tat protein protects both bulge and loop nucleotides in TAR RNA from ribonucleolytic cleavage. Biochemistry, 1991, 30(32), 8060-8066.
[http://dx.doi.org/10.1021/bi00246a026] [PMID: 1868081]
[45]
Gaynor, R.; Soultanakis, E.; Kuwabara, M.; Garcia, J.; Sigman, D.S. Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region. Proc. Natl. Acad. Sci. USA, 1989, 86(13), 4858-4862.
[http://dx.doi.org/10.1073/pnas.86.13.4858] [PMID: 2544877]
[46]
(a)Tumir, L-M.; Piantanida, I.; Novak, P.; Žinić, M. Interactions of novel phenanthridinium–nucleobase conjugates with complementary and non-complementary nucleotides in aqueous media. J. Phys. Org. Chem., 2002, 15(8), 599-607.
[http://dx.doi.org/10.1002/poc.486]
(b)Tumir, L-M.; Piantanida, I.; Cindrić, I.J.; Hrenar, T.; Meić, Z.; Žinić, M. New permanently charged phenanthridinium–nucleobase conjugates. Interactions with nucleotides and polynucleotides and recognition of ds-polyAH+. J. Phys. Org. Chem., 2003, 16(12), 891-899.
[http://dx.doi.org/10.1002/poc.680]
(c)Tumir, L.M.; Piantanida, I.; Zinić, M.; Juranović Cindrić, I.; Meić, Z.; Kralj, M.; Tomić, S. Synthesis of phenanthridinium-bis-nucleobase conjugates, interactions with poly U, nucleotides and in vitro antitumour activity of mono- and bis-nucleobase conjugates. Eur. J. Med. Chem., 2006, 41(10), 1153-1166.
[http://dx.doi.org/10.1016/j.ejmech.2006.05.005] [PMID: 16793178]
(d)Tumir, L-M.; Grabar, M.; Tomić, S.; Piantanida, I. The interactions of bis-phenanthridinium–nucleobase conjugates with nucleotides: adenine-conjugate recognizes UMP in aqueous medium. Tetrahedron, 2010, 66(13), 2501-2513.
[http://dx.doi.org/10.1016/j.tet.2010.01.063]
[47]
(a)Tannock, I.F.; Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res., 1989, 49(16), 4373-4384.
[PMID: 2545340]
(b)Wong, P.; Lee, C.; Tannock, I.F. Reduction of intracellular pH as a strategy to enhance the pH-dependent cytotoxic effects of melphalan for human breast cancer cells. Clin. Cancer Res., 2005, 11(9), 3553-3557.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2472] [PMID: 15867259]
[48]
Raghunand, N.; Gillies, R.J. pH and drug resistance in tumors. Drug Resist. Updat., 2000, 3(1), 39-47.
[http://dx.doi.org/10.1054/drup.2000.0119] [PMID: 11498364]
[49]
Juranovic, I.; Meic, Z.; Piantanida, I.; Tumir, L-M.; Zinic, M. Interactions of phenanthridinium-nucleobase conjugates with polynucleotides in aqueous media. Recognition of poly U. Chem. Commun. (Camb.), 2002, 13, 1432-1433.
[http://dx.doi.org/10.1039/b202615e]
[50]
Tumir, L.M.; Piantanida, I.; Juranović, I.; Meić, Z.; Tomić, S.; Zinić, M. Recognition of homo-polynucleotides containing adenine by a phenanthridinium bis-uracil conjugate in aqueous media. Chem. Commun. (Camb.), 2005, 20(20), 2561-2563.
[http://dx.doi.org/10.1039/b500617a] [PMID: 15900326]
[51]
Okamoto, A.; Tainaka, K.; Nishiza, K.; Saito, I. Monitoring DNA structures by dual fluorescence of pyrene derivatives. J. Am. Chem. Soc., 2005, 127(38), 13128-13129.
[http://dx.doi.org/10.1021/ja053609e] [PMID: 16173724]
[52]
Jabłoński, A.; Fritz, Y.; Wagenknecht, H-A.; Czerwieniec, R.; Bernaś, T.; Trzybiński, D.; Woźniak, K.; Kowalski, K. Pyrene-nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies. Beilstein J. Org. Chem., 2017, 13, 2521-2534.
[http://dx.doi.org/10.3762/bjoc.13.249] [PMID: 29259662]
[53]
Grabar Branilović, M.; Tomić, S.; Tumir, L-M.; Piantanida, I. The bis-phenanthridinium system flexibility and position of covalently bound uracil finely tunes the interaction with polynucleotides. Mol. Biosyst., 2013, 9(8), 2051-2062.
[http://dx.doi.org/10.1039/c3mb25578f] [PMID: 23681361]
[54]
Tumir, L-M.; Šupljika, F.; Piantanida, I. Bis-phenanthridinium–adenine conjugates as fluorescent and CD reporters for fine structural differences in ds-DNA/RNA and ss-RNA structures. Supramol. Chem., 2016, 28(3-4), 267-274.
[http://dx.doi.org/10.1080/10610278.2015.1099655]
[55]
Dukši, M.; Baretić, D.; Piantanida, I. Synthesis of the peptide-based phenanthridine-nucleobase conjugates and study of their interactions with ds-DNA. Acta Chim. Slov., 2012, 59(3), 464-472.
[PMID: 24061298]
[56]
Dukši, M.; Baretić, D.; Čaplar, V.; Piantanida, I. Novel bis-phenanthridine derivatives with easily tunable linkers, study of their interactions with DNA and screening of antiproliferative activity. Eur. J. Med. Chem., 2010, 45(6), 2671-2676.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.017] [PMID: 20202724]
[57]
Saftić, D.; Radić Stojković, M.; Žinić, B.; Glavaš-Obrovac, L.; Jukić, M.; Piantanida, I.; Tumir, L-M. Impact of linker between triazolyluracil and phenanthridine on recognition of DNA and RNA. Recognition of uracil-containing RNA. New J. Chem., 2017, 41, 13240-13252.
[http://dx.doi.org/10.1039/C7NJ02699D]
[58]
Bouamaied, I.; Stulz, E. Synthesis and spectroscopic properties of porphyrin-substituted uridine and deoxyuridine. Synlett, 2004, (9), 1579-1583.
[http://dx.doi.org/10.1055/s-2004-829541]
[59]
Hisatome, M.; Maruyama, N.; Ikeda, K.; Furutera, T.; Ishikawa, T.; Yamakawa, K. Synthesis and some spectroscopic properties of porphyrin derivatives connected with nucleobases (adenine, thymine, guanine and cytosine)by alkanamide chains. Chem. Pharm. Bull. (Tokyo), 1996, 44(10), 1801-1811.
[http://dx.doi.org/10.1248/cpb.44.1801]
[60]
Wandrekar, V.; Trumble, W.R.; Czuchajowski, L. Interactions of porphyrinyl-nucleosides with DNA using the example of porphyrinyl-thymidine. J. Heterocycl. Chem., 1996, 33(6), 1775-1783.
[http://dx.doi.org/10.1002/jhet.5570330638]
[61]
Shi, D-F.; Wheelhouse, R.T.; Sun, D.; Hurley, L.H. Quadruplex-interactive agents as telomerase inhibitors: synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase. J. Med. Chem., 2001, 44(26), 4509-4523.
[http://dx.doi.org/10.1021/jm010246u] [PMID: 11741471]
[62]
Munson, B.R.; Fiel, R.J. DNA intercalation and photosensitization by cationic meso substituted porphyrins. Nucleic Acids Res., 1992, 20(6), 1315-1319.
[http://dx.doi.org/10.1093/nar/20.6.1315] [PMID: 1561088]
[63]
Malinovski, V.; Tumir, L.; Piantanida, I.; Zinic, M.; Schneider, H-J. New porphyrin-nucleobase hybrid compounds and their interaction with nucleosides and nucleic acids. Eur. J. Org. Chem., 2002, 2002(22), 3785-3795.
[http://dx.doi.org/10.1002/1099-0690(200211)2002:22<3785:AID-EJOC3785>3.0.CO;2-4]
[64]
Poddutoori, P.; Poddutoori, P.K.; Maiya, B.G. Nucleobase (A, T, G and C) appended tri-cationic watersoluble porphyrins: synthesis, characterization, binding and photocleavage studies with DNA. J. Porphyr. Phthalocyanines, 2006, 10(1), 1-12.
[http://dx.doi.org/10.1142/S1088424606000028]
[65]
Stojković, M.R.; Piantanida, I.; Kralj, M.; Marjanović, M.; Zinić, M.; Pawlica, D.; Eilmes, J. The dicationic derivatives of DBTAA: Interactions with DNA/RNA and antiproliferative effects on human cell lines. Bioorg. Med. Chem., 2007, 15(4), 1795-1801.
[http://dx.doi.org/10.1016/j.bmc.2006.11.034] [PMID: 17161951]
[66]
Radić Stojković, M.; Škugor, M.; Tomić, S.; Grabar, M.; Smrečki, V.; Dudek, Ł.; Grolik, J.; Eilmes, J.; Piantanida, I. Dibenzotetraaza[14]annulene-adenine conjugate recognizes complementary poly dT among ss-DNA/ss-RNA sequences. Org. Biomol. Chem., 2013, 11(24), 4077-4085.
[http://dx.doi.org/10.1039/c3ob40519b] [PMID: 23673772]
[67]
Stojković, M.R.; Škugor, M.; Dudek, L.; Grolik, J.; Eilmes, J.; Piantanida, I. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)-adenine derivatives. Beilstein J. Org. Chem., 2014, 10, 2175-2185.
[http://dx.doi.org/10.3762/bjoc.10.225] [PMID: 25246976]
[68]
Poulsen, S.M.; Karlsson, M.; Johansson, L.B.; Vester, B. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. Mol. Microbiol., 2001, 41(5), 1091-1099.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02595.x] [PMID: 11555289]
[69]
Davidovich, C.; Bashan, A.; Auerbach-Nevo, T.; Yaggie, R.D.; Gontarek, R.R.; Yonath, A. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc. Natl. Acad. Sci. USA, 2007, 104(11), 4291-4296.
[http://dx.doi.org/10.1073/pnas.0700041104] [PMID: 17360517]
[70]
Lolk, L.; Pøhlsgaard, J.; Jepsen, A.S.; Hansen, L.H.; Nielsen, H.; Steffansen, S.I.; Sparving, L.; Nielsen, A.B.; Vester, B.; Nielsen, P. A click chemistry approach to pleuromutilin conjugates with nucleosides or acyclic nucleoside derivatives and their binding to the bacterial ribosome. J. Med. Chem., 2008, 51(16), 4957-4967.
[http://dx.doi.org/10.1021/jm800261u] [PMID: 18680270]
[71]
Dreier, I.; Kumar, S.; Søndergaard, H.; Rasmussen, M.L.; Hansen, L.H.; List, N.H.; Kongsted, J.; Vester, B.; Nielsen, P. A click chemistry approach to pleuromutilin derivatives, part 2: conjugates with acyclic nucleosides and their ribosomal binding and antibacterial activity. J. Med. Chem., 2012, 55(5), 2067-2077.
[http://dx.doi.org/10.1021/jm201266b] [PMID: 22280300]
[72]
Roviello, G.N.; Roviello, V.; Autiero, I.; Saviano, M. Solid phase synthesis of TyrT, a thymine-tyrosine conjugate with poly(A) RNA-binding ability. RSC Advances, 2016, 6(33), 27607-27613.
[http://dx.doi.org/10.1039/C6RA00294C] [PMID: 29057072]
[73]
Shionoya, M.; Kimura, E.; Shiro, M. A new ternary zinc(II) complex with [12]aneN4 (=1,4,7,10-tetraazacyclododecane) and AZT (=3′-azido-3′-deoxythymidine). Highly selective recognition of thymidine and its related nucleosides by a zinc(II) macrocyclic tetraamine complex with novel complementary associations. J. Am. Chem. Soc., 1993, 115(15), 6730-6737.
[http://dx.doi.org/10.1021/ja00068a033]
[74]
Shionoya, M.; Ikeda, T.; Kimura, E.; Shiro, M. Novel “Multipoint” Molecular Recognition of Nucleobases by a New Zinc(II) Complex of Acridine-Pendant Cyclen (Cyclen = 1,4,7,10-Tetraazacyclododecane). J. Am. Chem. Soc., 1994, 116(9), 3848-3859.
[http://dx.doi.org/10.1021/ja00088a021]
[75]
Tucker, J.H.R.; Shionoya, M.; Koike, T.; Kimura, E.A. Zinc(II)–Cyclen Complex Attached to an Anthraquinone Moiety that Acts as a Redox-Active Nucleobase Receptor in Aqueous Solution. Bull. Chem. Soc. Jpn., 1995, 68(9), 2465-2469.
[http://dx.doi.org/10.1246/bcsj.68.2465]
[76]
Xia, C.Q.; Tan, X.Y.; Chen, S.Y.; Yue, Y.; Yu, X.Q. The conjugate of adenine-cyclen Zn(II) complex: its synthesis and selective recognition abilities for uracil and uridine. ARKIVOC, 2005, 2006(2), 68-76.
[http://dx.doi.org/10.3998/ark.5550190.0007.207]
[77]
Xia, C-Q.; Jiang, N.; Zhang, J.; Chen, S-Y.; Lin, H-H.; Tan, X-Y.; Yue, Y.; Yu, X-Q. The conjugates of uracil-cyclen Zn(II) complexes: synthesis, characterization, and their interaction with plasmid DNA. Bioorg. Med. Chem., 2006, 14(16), 5756-5764.
[http://dx.doi.org/10.1016/j.bmc.2006.04.048] [PMID: 16750375]
[78]
Wang, X-Y.; Zhang, J.; Li, K.; Jiang, N.; Chen, S-Y.; Lin, H-H.; Huang, Y.; Ma, L-J.; Yu, X-Q. Synthesis and DNA cleavage activities of mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes which linked with uracil. Bioorg. Med. Chem., 2006, 14(19), 6745-6751.
[http://dx.doi.org/10.1016/j.bmc.2006.05.049] [PMID: 16798003]
[79]
Wilkinson, G.; Rosenblum, M.; Whiting, M.C.; Woodward, R.B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc., 1952, 74(8), 2125-2126.
[http://dx.doi.org/10.1021/ja01128a527]
[80]
Woodward, R.B.; Rosenblum, M.; Whiting, M.C. A new aromatic system. J. Am. Chem. Soc., 1952, 74(13), 3458-3459.
[http://dx.doi.org/10.1021/ja01133a543]
[81]
Fisher, E.O.; Pfab, W. Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Z. Naturforsch. B, 1952, 76, 377-379.
[http://dx.doi.org/10.1515/znb-1952-0701]
[82]
Dunitz, J.D.; Orgel, L.E. Bis-cyclopentadienyl iron: a molecular sandwich. Nature, 1953, 171(4342), 121-122.
[http://dx.doi.org/10.1038/171121a0]
[83]
Muraoka, H.; Ogawa, S. Synthesis and electrochemical properties of ferrocene dimers and trimers bridged by an oligothiophene spacer. Pure Appl. Chem., 2012, 85, 777-784.
[http://dx.doi.org/10.1351/PAC-CON-12-06-14]
[84]
Patwa, A.N.; Gonnade, R.G.; Kumar, V.A.; Bhadbhade, M.M.; Ganesh, K.N. Ferrocene-bis(thymine/uracil) conjugates: base pairing directed, spacer dependent self-assembly and supramolecular packing. J. Org. Chem., 2010, 75(24), 8705-8708.
[http://dx.doi.org/10.1021/jo101813z] [PMID: 21090600]
[85]
Price, C.; Aslanoglu, M.; Isaac, C. J.; Elsegood, M. R. J.; Clegg, W.; Horrocks, B. R.; Houlton, A. Metallocene-nucleobase conjugates. Synthesis, structure and nucleic acid binding J. Chem. Soc. Dalton, 1996, (21), 4115-4120.
[86]
Kowalski, K. Ferrocenyl-nucleobase complexes: Synthesis, chemistry and applications. Coord. Chem. Rev., 2016, 317, 132-156.
[http://dx.doi.org/10.1016/j.ccr.2016.02.008]
[87]
Trakossas, S.; Coutouli-Argyropoulou, E.; Hadjipavlou-Litina, D.J. Synthesis of modified triazole nucleosides possessing one or two base moieties via a click chemistry approach. Tetrahedron Lett., 2011, 52(14), 1673-1676.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.145]
[88]
Iurlo, M.; Mengozzi, L.; Rapino, S.; Marcaccio, M.; Perone, R.C.; Masiero, S.; Cozzi, P.; Paolucci, F. New approaches toward ferrocene–guanine conjugates: synthesis and electrochemical behavior. Organometallics, 2014, 33(18), 4986-4993.
[http://dx.doi.org/10.1021/om5002809]
[89]
Simenel, A.A.; Morozova, E.A.; Snegur, L.V.; Zykova, S.I.; Kachala, V.V.; Ostrovskaya, L.A.; Bluchterova, N.V.; Fomina, M.M. Simple route to ferrocenylalkyl nucleobases. Antitumor activity in vivo. Appl. Organomet. Chem., 2009, 23(6), 219-224.
[http://dx.doi.org/10.1002/aoc.1500]
[90]
Kowalski, K.; Szczupak, Ł.; Saloman, S.; Steverding, D.; Jabłoński, A.; Vrček, V.; Hildebrandt, A.; Lang, H.; Rybarczyk-Pirek, A. Cymantrene, cyrhetrene and ferrocene nucleobase conjugates: synthesis, structure, computational study, electrochemistry and antitrypanosomal activity. ChemPlusChem, 2017, 82(2), 303-314.
[http://dx.doi.org/10.1002/cplu.201600462]
[91]
Wickens, M.; Belasco, J.G.; Jacobson, A. Changes in the length of poly(A) tails and their effects on mRNA translation and turnover. Post-transcriptional Control of Gene Expression; Resnekov, O.; von Gabain, A. Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg; , 1996, pp. 45-55.
[http://dx.doi.org/10.1007/978-3-642-60929-9_4]
[92]
Guhaniyogi, J.; Brewer, G. Regulation of mRNA stability in mammalian cells. Gene, 2001, 265(1-2), 11-23.
[http://dx.doi.org/10.1016/S0378-1119(01)00350-X] [PMID: 11255003]
[93]
Song, G.; Ren, J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem. Commun, 2010, 46pp. (39). , 7283-7294.
[http://dx.doi.org/10.1039/c0cc01312a]
[94]
Artificial Nucleases; Zenkova, M. A. (Ed.), Springer: Berlin; Heidelberg; New York; Hong Kong; London; Milan; Paris; Tokyo,. , 2004.
[95]
Wong, P.; Lee, C.; Tannock, I.F. Reduction of intracellular pH as a strategy to enhance the pH-dependent cytotoxic effects of melphalan for human breast cancer cells. Clin. Cancer Res., 2005, 11(9), 3553-3557.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2472] [PMID: 15867259]
[96]
Manallack, D.T.; Prankerd, R.J.; Yuriev, E.; Oprea, T.I.; Chalmers, D.K. The significance of acid/base properties in drug discovery. Chem. Soc. Rev., 2013, 42(2), 485-496.
[http://dx.doi.org/10.1039/C2CS35348B] [PMID: 23099561]
[97]
Wang, Y.; Pigeon, P.; Top, S.; McGlinchey, M.J.; Jaouen, G. Organometallic antitumor compounds: ferrocifens as precursors to quinone methides. Angew. Chem. Int. Ed., 2015, 54(35), 10230-10233.
[http://dx.doi.org/10.1002/anie.201503048] [PMID: 26179051]
[98]
Hillard, E.; Vessières, A.; Thouin, L.; Jaouen, G.; Amatore, C. Ferrocene-mediated proton-coupled electron transfer in a series of ferrocifen-type breast-cancer drug candidates. Angew. Chem. Int. Ed., 2006, 45(2), 285-290.
[http://dx.doi.org/10.1002/anie.200502925] [PMID: 16312004]
[99]
Skiba, J.; Kowalski, K.; Prochnicka, A.; Ott, I.; Solecka, J.; Rajnisz, A.; Therrien, B. Metallocene-uracil conjugates: Synthesis and biological evaluation of novel mono-, di- and tri-nuclear systems. J. Organomet. Chem., 2015, 782, 52-61.
[http://dx.doi.org/10.1016/j.jorganchem.2014.11.017]
[100]
Skiba, J.; Karpowicz, R.; Szabó, I.; Therrien, B.; Kowalski, K. Synthesis and anticancer activity studies of ferrocenyl-thymine-3,6-dihydro-2H-thiopyranes – A new class of metallocene-nucleobase derivatives. J. Organomet. Chem., 2015, 794, 216-222.
[http://dx.doi.org/10.1016/j.jorganchem.2015.07.012]
[101]
Singh, A.; Biot, C.; Viljoen, A.; Dupont, C.; Kremer, L.; Kumar, K.; Kumar, V. 1H-1,2,3-triazole-tethered uracil-ferrocene and uracil-ferrocenylchalcone conjugates: Synthesis and antitubercular evaluation. Chem. Biol. Drug Des., 2017, 89(6), 856-861.
[http://dx.doi.org/10.1111/cbdd.12908] [PMID: 27860285]
[102]
Kowalski, K.; Skiba, J.; Oehninger, L.; Ott, I.; Solecka, J.; Rajnisz, A.; Therrien, B. Metallocene-modified uracils: synthesis, structure, and biological activity. Organometallics, 2013, 32(20), 5766-5773.
[http://dx.doi.org/10.1021/om400294s]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy