Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanotechnology Derived Nanotools in Biomedical Perspectives: An Update

Author(s): Akshay Patil, Vijay Mishra*, Sourav Thakur, Bushra Riyaz, Amanjot Kaur, Rubiya Khursheed, Kiran Patil and Bhushankumar Sathe

Volume 15, Issue 2, 2019

Page: [137 - 146] Pages: 10

DOI: 10.2174/1573413714666180426112851

Price: $65

Abstract

Background: In recent years, nanotechnology is gaining more attention of analytical and biomedical researchers. Nanotechnology derived nanotools deal with the nanoscale length size (i.e., 10-9 m). The particles having size below 100 nm displayed improved properties for attaining increased efficacy, better patient compliance, improved biodistribution and site-specific drug delivery.

Method: Google, PubMed, Web of Science portals have been searched for potentially relevant literature to get latest developments and updated information related to different aspects of nanotechnology derived nanocarriers including biomedical applications.

Results: Available literature demonstrated that nanotechnology-based nanocarriers like liposomes, dendrimers, polymeric micelles, carbon dots, quantum dots, carbon nanotubes, magnetic nanoparticles, silica nanoparticles, silver nanoparticles and gold nanoparticles have enormous potential applications in the pharmaceutical field. The current review focuses on the drug delivery, bioimaging, tissue engineering and therapeutic applications of different nanotools. Besides these, scope and opportunities, as well as the global market scenario of nanotechnology derived nanotools, have also been discussed.

Conclusion: The practice of nanotechnology in the arena of medicine will transform the strategies of detection and treatment of a wide range of diseases in the upcoming years.

Keywords: Nanotechnology, drug delivery, nanomedicine, bioimaging, nanotool, nanoparticle, dendrimer.

Graphical Abstract

[1]
Bayford, R.; Rademacher, T.; Roitt, I.; Wang, S.X. Emerging applications of nanotechnology for diagnosis and therapy of disease: A review. Physiol. Meas., 2017, 38, R183-R203.
[2]
Begum, M.; Sirisha, C.; Reddy, G.P. Nanoparticulate drug delivery system-An overview. Int. J. Pharm. Sci. Clin. Res., 2017, 1, 15-25.
[3]
Mishra, V.; Gurnany, E.; Mansoori, M.H. Quantum dots in targeted delivery of bioactives and imaging. InNanotechnology-based approaches for targeting and delivery of drugs and genes; Mishra, V.; Kesharwani, P.; Mohd Amin, M.C.I.; Iyer, A., Eds.; Academic Press: UK, 2017, Vol. 1, p. 427.
[4]
McWilliams, A. Nanotechnology: A realistic market assessment. BCC Research. 2010. Available at:, https://www.bccresearch.com/market-research/nanotechnology/ nanotechnology-realistic-market-assessment-nan031d.html (Assessed on: February 8, 2018).
[5]
Zhou, Q.; Zhang, L.; Wu, H. Nanomaterials for cancer therapies. Nanotechnol. Rev., 2017, 6, 476-496.
[6]
Uddin, I.; Venkatachalam, S.; Mukhopadhyay, A.; Usmani, M. Nanomaterials in the pharmaceuticals: Occurrence, behaviour and applications. Curr. Pharm. Des., 2016, 22, 1472-1484.
[7]
Seigneuric, R.; Markey, L.; Nuyten, D.; Dubernet, C.; Evelo, C.; Finot, E.; Garrido, C. From nanotechnology to nanomedicine: Applications to cancer research. Curr. Mol. Med., 2010, 10, 640-652.
[8]
Vollrath, M.; Engert, J.; Winter, G. Long-term release and stability of pharmaceutical proteins delivered from solid lipid implants. Eur. J. Pharm. Biopharm., 2017, 117, 244-255.
[9]
Kairdolf, B.; Qian, X.; Nie, S. Bioconjugated nanoparticles for biosensing, in vivo imaging, and medical diagnostics. Anal. Chem., 2017, 89, 1015-1031.
[10]
Wang, B.; Akiba, U.; Anzai, J. Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review. Molecules, 2017, 22, E1048.
[11]
Wang, W.; Fan, X.; Xu, S.; Davis, J.; Luo, X. Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosens. Bioelectron., 2015, 71, 51-56.
[12]
Akter, R.; Jeong, B.; Choi, J.; Rahman, M. Ultrasensitive nano immunosensor by coupling non-covalent functionalized graphene oxide platform and numerous ferritin labels on carbon nanotubes. Biosens. Bioelectron., 2016, 80, 123-130.
[13]
Sathyan, A.; Prashanth, S. Nano Robots for treatment of damaged blood vessels and heart holes. Asian J. Appl. Sci. Technol., 2017, 1, 50-52.
[14]
Tregubov, A.; Sokolov, I.; Babenyshev, A.; Nikitin, P.; Cherkasov, V.; Nikitin, M. Magnetic hybrid magnetite/metal organic framework nanoparticles: Facile preparation, post-synthetic bio functionalization and tracking in vivo with magnetic methods. J. Magn. Magn. Mater., 2018, 449, 590-596.
[15]
Gao, W.; Sattayasamitsathit, S.; Manesh, K.; Weihs, D.; Wang, J. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc., 2010, 132, 14403-14405.
[16]
Zarebkohan, A.; Najafi, F.; Moghimi, H.; Hemmati, M.; Deevband, M.; Kazemi, B. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. Eur. J. Pharm. Sci., 2015, 78, 19-30.
[17]
Pinnapireddy, S.; Duse, L.; Strehlow, B.; Schafer, J.; Bakowsky, U. Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids Surf. B Biointerfaces, 2017, 158, 93-101.
[18]
Haghiralsadat, F.; Amoabediny, G.; Sheikhha, M.; Forouzanfar, T.; Helder, M.; Zandieh-doulabi, B. A novel approach on drug delivery: investigation of a new nano-formulation of liposomal doxorubicin and biological evaluation of entrapped doxorubicin on various osteosarcoma cell lines. Cell J., 2017, 19, 55.
[19]
Mishra, V.; Kesharwani, P. Dendrimer technologies for brain tumor. Drug Discov. Today, 2016, 21, 766-778.
[20]
Palmerston, L.; Pan, J.; Torchilin, V. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22, E1401.
[21]
Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine, 2010, 6, 714-729.
[22]
Sun, C.; Liang, Y.; Hao, N.; Xu, L.; Cheng, F.; Su, T.; Jun, C.; Wenxia, G.; Yuji, P.; He, B. A ROS-responsive polymeric micelle with a pi-conjugated thioketal moiety for enhanced drug loading and efficient drug delivery. Org. Biomol. Chem., 2017, 15, 9176-9185.
[23]
Lv, Y.; Yang, B.; Li, Y.; He, F.; Zhuo, R. Folate-conjugated amphiphilic block copolymer micelle for targeted and redox-responsive delivery of doxorubicin. J. Biomater. Sci. Polym. Ed., 2017, 29(1), 92-106.
[24]
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.; Gearheart, L.; Raker, K.; Scrivens, W. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126, 12736-12737.
[25]
Sun, Y.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.; Pathak, P.; Meziani, M.; Harruff, B.; Wang, X.; Wang, H.; Luo, P.G.; Yang, H.; Kose, E.; Chen, B.; Veca, L.M.; Xie, S. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc., 2006, 128, 7756-7757.
[26]
Mishra, V.; Patil, A.; Thakur, S.; Kesharwani, P. Carbon dots: Emerging theranostic nanoarchitectures. Drug Discov. Today, 2018, 23(6), 1219-1232.
[27]
Yao, X.; Niu, X.; Ma, K.; Huang, P.; Grothe, J.; Kaskel, S.; Zhu, Y. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 2017, 13(2), 1602225.
[28]
Mehra, N.; Mishra, V.; Jain, N. A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35, 1267-1283.
[29]
Kesharwani, P.; Mishra, V.; Jain, N. Validating the anticancer potential of carbon nanotube-based therapeutics through cell line testing. Drug Discov. Today, 2015, 20, 1049-1060.
[30]
Frey, N.; Peng, S.; Cheng, K.; Sun, S. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev., 2009, 38, 2532-2542.
[31]
Khaniabadi, P.; Shahbazi-Gahrouei, D.; Jaafar, M.; Majid, A.; Khaniabadi, B.; Shahbazi-Gahrouei, S. Magnetic iron oxide nanoparticles as T2 MR imaging contrast agent for detection of breast cancer (MCF-7) cell. Avicenna J. Med. Biotechnol., 2017, 9, 181-188.
[32]
Harijan, D.; Chandra, V.; Yoon, T.; Kim, K. Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole. J. Hazard. Mater., 2017, 344, 576-584.
[33]
Ma, L.; Li, Q.; Li, J.; Xu, L. Preparation of highly hydrophilic magnetic nanoparticles with anion exchange ability and their application for the extraction of nonsteroidal anti-inflammatory drugs in environmental samples. J. Sep. Sci., 2018, 41, 678-688.
[34]
Liberman, A.; Mendez, N.; Trogler, W.; Kummel, A. Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf. Sci. Rep., 2014, 69, 132-158.
[35]
Thapa, R.; Nguyen, H.; Gautam, M.; Shrestha, A.; Lee, E.; Ku, S.; Choi, H.; Yong, C.; Kim, J. Hydrophobic binding peptide-conjugated hybrid lipid-mesoporous silica nanoparticles for effective chemo-photothermal therapy of pancreatic cancer. Drug Deliv., 2017, 24, 1690-1702.
[36]
Shinde, P.; Gupta, S.; Singh, B.; Polshettiwar, V.; Prasad, B. Amphi-functional mesoporous silica nanoparticles for dye separation. J. Mater. Chem. A, 2017, 5, 14914-14921.
[37]
Durán, N.; Durán, M.; Souza, C. Silver and silver chloride nanoparticles and their anti-tick activity: A mini review. J. Braz. Chem. Soc., 2017, 28, 927-932.
[38]
Qiu, L.; Li, J.; Hong, C.; Pan, C.Y. Silver nanoparticles covered with pH-sensitive camptothecin-loaded polymer prodrugs: Switchable fluorescence “Off” or “On” and drug delivery dynamics in living cells. ACS Appl. Mater. Interfaces, 2017, 9, 40887-40897.
[39]
Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med. Microbiol. Immunol., 2017, 207(1), 39-53.
[40]
Zhang, X.; Huang, F.; Zhang, G.; Bai, D.; Massimo, F.; Huang, Y.; Gurunathan, S. Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3). Int. J. Nanomedicine, 2017, 12, 7551-7575.
[41]
Patil, S.; Datar, S.; Dharmadhikari, C. Temperature dependent electron transport properties of gold nanoparticles and composites: Scanning tunneling spectroscopy investigations. J. Nanosci. Nanotechnol., 2018, 18, 1626-1635.
[42]
Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens. Actuators B Chem., 2017, 238, 888-902.
[43]
Capek, I. Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv. Colloid Interface Sci., 2017, 249, 386-399.
[44]
Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev., 2008, 60, 1650-1662.
[45]
Jain, N.; Tare, M.; Mishra, V.; Tripathi, P. The development, characterization and in vivo anti-ovarian cancer activity of poly (propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine, 2015, 11, 207-218.
[46]
Mishra, V.; Jain, N. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int. J. Pharm., 2014, 461, 380-390.
[47]
Iannazzo, D.; Pistone, A.; Salamo, M.; Galvagno, S.; Romeo, R.; Giofre, S.; Branca, C.; Visalli, G.; DiPietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518, 185-192.
[48]
Zeng, Q.; Shao, D.; He, X.; Ren, Z.; Ji, W.; Shan, C.; Qu, S.; Li, J.; Chen, L.; Li, Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J. Mater. Chem., 2016, 4, 5119-5126.
[49]
Singh, N.; Sachdev, A.; Gopinath, P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J. Nanosci. Nanotechnol., 2018, 18, 1534-1541.
[50]
Xue, Q.; Zhang, H.; Zhu, M.; Wang, Z.; Pei, Z.; Huang, Y.; Song, X.; Zeng, H.; Zhi, C. Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. RSC Advances, 2016, 6, 79090-79094.
[51]
Guo, J.; Liu, D.; Filpponen, I.; Johansson, L.; Malho, J.; Quraishi, S.; Liebner, F.; Santos, H.A.; Rojas, O. Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocompatible probes for in vitro bio-imaging. Biomacromolecules, 2017, 18, 2045-2055.
[52]
Li, H.; Shao, F.; Zou, S.; Yang, Q.; Huang, H.; Feng, J.; Wang, A. Microwave-assisted synthesis of N, P-doped carbon dots for fluorescent cell imaging. Mikrochim. Acta, 2016, 183, 821-826.
[53]
Grootendorst, D.; Jose, J.; Fratila, R.; Visscher, M.; Velders, A.; TenHaken, B.; Van, T.; Steenbergen, W.; Manohar, S.; Ruers, T. Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging. Contrast Media Mol. Imaging, 2013, 8, 83-91.
[54]
Meloni, M.; Barton, S.; Xu, L.; Kaski, J.C.; Song, W.; He, T. Contrast agents for cardiovascular magnetic resonance imaging: An overview. J. Mater. Chem., 2017, 5, 5714-5725.
[55]
Tang, A.; Li, J.; Zhao, S.; Liu, T.; Wang, Q.; Wang, J. Biodegradable tissue engineering scaffolds based on nanocellulose/PLGA nanocomposite for NIH 3T3 cell cultivation. J. Nanosci. Nanotechnol., 2017, 17, 3888-3895.
[56]
McLaughlin, S.; Podrebarac, J.; Ruel, M.; Suuronen, E.J.; McNeill, B.; Alarcon, E.I. Nano-engineered biomaterials for tissue regeneration: What has been achieved so far? Front. Mat., 2016, 3, 27.
[57]
Shrestha, B.; Shrestha, S.; Tiwari, A.; Kim, J.; Ko, S.; Kim, H.; Park, C.; Kim, C. Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibers for bone tissue engineering. Mater. Des., 2017, 133, 69-81.
[58]
Daraee, H.; Eatemadi, A.; Abbasi, E. FekriAval, S.; Kouhi, M.; Akbarzadeh, A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44, 410-422.
[59]
Sharma, V.; Yngard, R.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145, 83-96.
[60]
Robertson, T.; Sanchez, W.; Roberts, M. Are commercially available nanoparticles safe when applied to the skin? J. Biomed. Nanotechnol., 2010, 6, 452-456.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy