Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanoporous Anodic Aluminum Oxide (NAAO) for Catalytic, Biosensing and Template Synthesis Applications (A Review)

Author(s): Abdul Mutalib Md Jani*, Anisah Shafiqah Habiballah, Muhammad Zikri Budiman Abdul Halim, Farah Wahida Ahmad Zulkifli, Abdul Hadi Mahmud and Hanani Yazid

Volume 15, Issue 1, 2019

Page: [49 - 63] Pages: 15

DOI: 10.2174/1573413714666180308145336

Price: $65

Abstract

Background: Nanoporous anodic aluminium oxide (NAAO) prepared by self-ordering anodization is fascinating and versatile nanostructured material predestined for a variety of applications.

Objective: NAAO possesses remarkable properties with a highly ordered array of cylindrical pores which can be produced with tunable pore diameters and inter-pore spacing. For the past few decades, different approaches have been introduced to improve the surface properties of NAAO, however, though the various approached established, surface modification of NAAO is still a significant challenge. In this review, we highlight the current state of research on NAAO addresses the formation, properties and numbers of applications are further demonstrated for the application of catalytic, biosensing and nanostructure templates synthesis.

Method: We systematically introduce the concept of material fabrication of the NAAO based on inexpensive electrochemical anodization with the self-ordering process of nanopores and the outcome of the process are entirely ordered and size-controlled nanopores with distinctive pore geometries. Also, we described the recent advances approaches such as chemical vapor deposition (CVD), spin coating, electrodeposition, electroless deposition, impregnation, etc. for structural engineering of the NAAO with targeting applications.

Results: The combination of unique properties with tunable pore diameter and surface functionality made these NAAO materials very attractive for a wide range of application such as chemo & biosensors, catalytic and used as a template in the fabrication of various nanostructured materials such as nanorods, nanotubes and nanowires.

Conclusion: The present review addresses the formation, properties, surface functionalities and several applications of NAAO.

Keywords: Porous materials, nanoporous anodic aluminium oxide membranes, electrochemical anodization, catalytic, biosensing, template synthesis.

Graphical Abstract

[1]
Davis, M.E. Ordered porous materials for emerging applications. Nature, 2002, 417, 813-821.
[2]
Lee, W.; Park, S.J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev., 2014, 114, 7487-7556.
[3]
Wang, K.; Liu, G.; Hoivik, N.; Johannessen, E.; Jakobsen, H. Electrochemical engineering of hollow nanoarchitectures: Pulse/step anodization (Si, Al, Ti) and their applications. Chem. Soc. Rev., 2014, 43, 1476-1500.
[4]
Ingham, C.J.; ter Maat, J.; de Vos, W.M. Where bio meets nano: The many uses for nanoporous aluminum oxide in biotechnology. Biotechnol. Adv., 2012, 30, 1089-1099.
[5]
Md Jani, A.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci., 2013, 58, 636-704.
[6]
Ono, S.; Masuko, N. Evaluation of pore diameter of anodic porous films formed on aluminum. Surf. Coat. Technol., 2003, 169-170, 139-142.
[7]
Diggle, J.W.; Downie, T.C.; Goulding, C.W. Anodic oxide films on aluminum. Chem. Rev., 1969, 69, 365-405.
[8]
Furneaux, R.; Rigby, W.; Davidson, A. The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature, 1989, 337, 147-149.
[9]
Stępniowski, W.J.; Forbot, D.; Norek, M.; Michalska-Domaṅska, M.; Krὀl, A. The impact of viscosity of the electrolyte on the formation of nanoporous anodic aluminum oxide. Electrochim. Acta, 2014, 133, 57-64.
[10]
Masuda, H.; Hasegwa, F.; Ono, S. Self‐ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc., 1997, 144, L127-L130.
[11]
Li, A.P.; Birner, A.; Nielsch, K.; Gösele, U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., 1998, 84, 6023-6026.
[12]
Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gösele, U. Self-ordering regimes of porous alumina: The 10 porosity rule. Nano Lett., 2002, 2, 677-680.
[13]
Thompson, G.E. Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films, 1997, 297, 192-201.
[14]
Hideki, M.; Kouichi, Y.; Atsushi, O. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys., 1998, 37, L1340.
[15]
Nazarkina, Y.; Gavrilov, S.; Terryn, H.; Petrova, M.; Ustarroz, J. Investigation of the ordering of porous anodic alumina formed by anodization of aluminum in selenic acid. J. Electrochem. Soc., 2015, 162, E166-E172.
[16]
Lee, W.; Nielsch, K.; Gösele, U. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization. Nanotechnology, 2007, 18, 475713.
[17]
Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268, 1466-1468.
[18]
Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater., 2006, 5, 741-747.
[19]
Kao, T.T.; Chang, Y.C. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids. Appl. Surf. Sci., 2014, 288, 654-659.
[20]
Wen, L.; Xu, R.; Mi, Y.; Lei, Y. Multiple nanostructures based on anodized aluminium oxide templates. Nat. Nanotechnol., 2017, 12, 244-250.
[21]
Zhang, M.; Deng, Q.; Shi, L.; Cao, A.; Pang, H.; Hu, S. Fabrication of high aspect ratio (>100:1) nanopillar array based on thiol-ene. Microelectron. Eng., 2016, 149, 52-56.
[22]
Sawada, K.; Sakai, S.; Taya, M. Electrochemical recycling of gold nanofibrons membrane as an enzyme immobilizing carrier. Chem. Eng. J., 2015, 280, 558-563.
[23]
Park, J.; Lee, Y.; Chang, I.; Cho, G.Y.; Ji, S.; Lee, W.; Cha, S.W. Atomic layer deposition of yttria-stabilized zirconia thin films for enhanced reactivity and stability of solid oxide fuel cells. Energy, 2016, 116, 170-176.
[24]
Md Jani, A.M.; Yazid, H.; Habiballah, A.S.; Mahmud, A.H.; Losic, D. Soft and Hard Manipulation of Nanoporous Anodic Aluminium Oxide (AAO).In: Nanoporous Alumina- Fabrication, Structure, Properties And Applications; Dusan, Losic.; Abel , Santos., Eds.; Springer Int. Publishing AG, 2015, Vol. 219, pp. 155-177.
[25]
Zhang, J.; Jin, L.; Li, S. Xie1, J.; Yang, F.; Duan, J.; Shen, T.H.; Wang, H. Fabrication of two types of ordered InP nanowire arrays on a single anodic aluminum oxide template and its application in solar cells. J. Mater. Sci. Technol., 2015, 31, 634-638.
[26]
Tzaneva, B.; Naydenov, A.; Todorova, S.Z.; Videkov, V.; Milusheva, V.; Stefanov, P. Cobalt electrodeposition in nanoporous anodic aluminium oxide for application as catalyst for methane combustion. Electrochim. Acta, 2016, 191, 192-199.
[27]
Wang, H.J.; Wang, L-N.; Cao, Y. Film-form ZnO/AAO photo-catalysts: Facile synthesis and surface feature-dependent photo-catalytic activity. J. Environ. Chem. Eng., 2015, 3, 2263-2272.
[28]
Karuppiah, J.; Linga Reddy, E.; Mok, Y.S. Anodized aluminium oxide supported NiO-CeO2 catalyst for dry reforming of propane. Catalysts, 2016, 6, 154.
[29]
Hong, R.; Feng, J.; He, Y.; Li, D. Controllable preparation and catalytic performance of Pd/anodic alumina oxide@ Al catalyst for hydrogenation of ethylanthraquinone. Chem. Eng. Sci., 2015, 135, 274-284.
[30]
Wang, Y.; Cheng, Q.; Yuan, T.; Zhou, Y.; Zhang, H.; Zou, Z.; Fang, J.; Yang, H. Controllable fabrication of ordered Pt nanorod array as catalytic electrode for passive direct methanol fuel cells. Chin. J. Catal., 2016, 37, 1089-1095.
[31]
Leontiev, A.P.; Brylev, O.A.; Napolskii, K.S. Arrays of rhodium nanowires based on anodic alumina: Preparation and electrocatalytic activity for nitrate reduction. Electrochim. Acta, 2015, 155, 466-473.
[32]
Rui, Z.; Chen, C.; Lu, Y.; Ji, H. Anodic alumina supported Pt catalyst for total oxidation of trace toluene. Chin. J. Chem. Eng., 2014, 22, 882-887.
[33]
Yang, P.; Zhang, J.; Liu, L.; An, M. Electroless deposition of nickel nanowire and nanotube arrays as supports for Pt-Pd catalyst for ethanol electrooxidation. Chin. J. Chem. Phys., 2015, 28, 206-208.
[34]
Reddy, E.L.; Lee, H.C.; Kim, D.H. Steam reforming of methanol over structured catalysts prepared by electroless deposition of Cu and Zn on anodically oxidized alumina. Int. J. Hydrog Energy, 2015, 40, 2509-2517.
[35]
Zhang, Y.; Zhang, X.; Zhang, X.; Yue, G.; Peng, D. Preparation and catalytic performance of the Co3O4/AAO composite. Mater. Lett., 2014, 115, 222-225.
[36]
Santos, A.; Kumeria, T.; Losic, D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trends Anal. Chem., 2013, 44, 25-38.
[37]
Kumeria, T.; Santos, A.; Losic, D. Nanoporous anodic alumina platforms: Engineered surface chemistry and structure for optical sensing applications. Sensors, 2014, 14, 11878-11918.
[38]
Tung, Y.T.; Wu, M.F.; Wang, G.J.; Hsieh, S.L. Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the CLEC5A receptor. Nanomedicine, 2014, 10, 1335-1341.
[39]
Che, X.; He, Y.; Yin, H.; Que, L. A molecular beacon biosensor based on the nanostructured aluminium oxide surface. Biosens. Bioelectron., 2015, 72, 255-260.
[40]
Kim, Y.; Jung, B.; Lee, H.; Kim, H.; Lee, K.; Park, H. Chemical capacitive humidity sensor design based on anodic aluminium oxide. Sens. Actuators B., 2009, 141, 441-446.
[41]
Tsao, Y.C.; Fisker, C.; Pedersen, T.G. Optical absorption of amorphous silicon on anodized aluminium substrates for solar cell applications. Opt. Commun., 2014, 315, 17-25.
[42]
Chen, X.; Ma, Z. Multiplexed electrochemical immunoassay of biomarkers using chitosan nanocomposites. Biosens. Bioelectron., 2013, 55C, 343-349.
[43]
Wu, S.; Zhou, H.; Hao, M.; Wei, X.; Li, S.; Yu, H. Fast response hydrogen sensors based on anodic aluminium oxide with pore-widening treatment. Appl. Surf. Sci., 2016, 380, 47-51.
[44]
Poinern, G.E.J.; Ali, N.; Fawcett, D. Progress in nano-engineered anodic aluminum oxide membrane development. Materials., 2011, 4, 487-526.
[45]
Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T.J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids. Nanoscale, 2015, 7, 5998-6006.
[46]
Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical biosensors based on ZnO nanostructures: Advantages and perspectives. A review. Sens. Actuators B Chem., 2016, 229, 664-677.
[47]
Claucherty, S.; Sakaue, H. An optical-chemical sensor using rhodamine B on anodized-aluminium for surface temperature measurement from 150 to 500 K. Sens. Actuators B Chem., 2017, 240, 956-961.
[48]
Kim, J.H.; Chang, Y.W.; Bok, E.; Kim, J.J.; Lee, H.; Cho, S.N.; Shin, J.S.; Yoo, K.H. Detection of IFN-γ for latent tuberculosis diagnosis using an anodized aluminium oxide-based capacitive sensor. Biosens. Bioelectron., 2014, 51, 366-370.
[49]
Yagur-Kroll, S.; Schreuder, E.; Ingham, C.J.; Heideman, R.; Rosen, R.; Belkin, S. A miniature porous aluminium oxide-based flow-cell for online water quality monitoring using bacterial sensor cells. Biosens. Bioelectron., 2015, 64, 625-632.
[50]
Balde, M.; Vena, A.; Sorli, B. Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors. Sens. Actuators B Chem., 2015, 220, 829-839.
[51]
Chen, S.W.; Khor, O.K.; Liao, M.W.; Chung, C.K. Sensitivity evolution and enhancement mechanism of porous anodic aluminum oxide humidity sensor using magnetic field. Sens. Actuators B Chem., 2014, 199, 384-388.
[52]
Sadik, O.A.; Aluoch, A.O.; Zhou, A. Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron., 2009, 24, 2749-2765.
[53]
Abbaspour, A.; Norouz-Sarvestani, F.; Noori, A.; Soltani, N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens. Bioelectron., 2015, 68, 149-155.
[54]
Piliarik, M.; Vaisocherová, H.; Homola, J. Surface plasmon resonance biosensing. Methods Mol. Biol., 2009, 503, 65-88.
[55]
Kim, D.K.; Kerman, K.; Hieup, H.M. Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures. Anal. Biochem., 2008, 379, 1-7.
[56]
Yoem, S.H.; Kim, O.G.; Kang, B.H. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference. Opt. Express, 2011, 19, 22882-22891.
[57]
Yuan, Y.; Panwar, N.; Yap, S.H.K.; Wua, Q.; Zeng, S.; Xu, J.; Tjin, S.C.; Song, J.; Qua, J.; Yong, K. SERS-based ultrasensitive sensing platform: An insight into design and practical applications. Coord. Chem. Rev., 2017, 337, 1-33.
[58]
Lovera, P.; Creedon, N.; Alatawi, H.; Mitchell, M.; Burke, M.; Quinn, A.J.; O’Riordan, A. Low-cost silver capped polystyrene nanotubes arrays as super-hydrophobic substrates for SERS applications. Nanotechnology, 2014, 25, 175502.
[59]
Salek-Maghsoudia, A.; Vakhshiteh, F.; Torabia, R.; Hassania, S.; Ganjalie, M.R.; Norouzie, P.; Hosseinig, M.; Abdollahi, M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens. Bioelectron., 2018, 99, 122-135.
[60]
de la Escosura-Muñiz, A.; Merkoçi, A. Label-free voltammetric immunosensor using a nanoporous membrane based platform. Electrochem. Commun., 2010, 12, 859-863.
[61]
Nguyen, B.T.T.; Peh, A.E.; Chee, C.Y.; Fink, K.; Chow, V.T.; Ng, M.M.; Toh, C.S. Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor. Bioelectrochemistry, 2012, 88, 15-21.
[62]
Wu, S.; Ye, W.; Yang, M.; Taghipoor, M.; Meissner, R.; Brugger, J.; Renaud, P. Impedance sensing of DNA immobilization and hybridization by microfabricated alumina nanopore membranes. Sens. Actuators B Chem., 2015, 216, 105-112.
[63]
Kant, K.; Yu, J.; Priest, C.; Shapter, J.G.; Losic, D. Impedance nanopore biosensor: Influence of pore dimensions on biosensing performance. Analyst., 2014, 139, 1134-1140.
[64]
Cheng, I.F.; Yang, H.L.; Chung, C.C.; Chang, H.C. A rapid electrochemical biosensor based on an AC electrokinetics enhanced immuno-reaction. Analyst., 2013, 138, 4656-4662.
[65]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39, 1747-1763.
[66]
Li, S.J.; Xia, N.; Yuan, B.Q.; Du, W.M.; Sun, Z.F.; Zhou, B.B. A novel DNA sensor using a sandwich format by electrochemical measurement of marker ion fluxes across nanoporous alumina membrane. Electrochim. Acta, 2015, 159, 234-241.
[67]
Kant, K.; Priest, C.; Shapter, J.G.; Losic, D. Characterization of impedance biosensing performance of single and nanopore arrays of anodic porous alumina fabricated by focused ion beam (FIB) milling. Electrochim. Acta, 2014, 139, 225-231.
[68]
Wu, S.; Ye, W.; Yang, M.; Taghipoor, M.; Meissner, R.; Brugger, J.; Renaud, P. Impedance sensing of DNA immobilization and hybridization by microfabricated alumina nanopore membranes. Sens. Actuators B Chem., 2015, 216, 105-112.
[69]
Daniels, J.S.; Pourmand, N. Label‐free impedance biosensors: Opportunities and challenges. Electroanalysis, 2007, 19, 1239-1257.
[70]
Liu, X.; Wei, M.; Liu, Y.; Lv, B.; Wei, W.; Zhang, Y.; Liu, S. Label-free detection of telomerase activity in urine using telomerase-responsive porous anodic alumina nanochannels. Anal. Chem., 2016, 88, 8107-8114.
[71]
Habiballah, A.S.; Md Jani, A.M.; Mahmud, A.H.; Osman, N.; Radiman, S. Facile synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) perovskite nanowires by templating from nanoporous anodic aluminium oxide membranes. Mater. Chem. Phy., 2016, 177, 371-378.
[72]
Zhao, H.; Zhao, M.; Wen, L.; Lei, Y. Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy, 2015, 13, 790-813.
[73]
Pérez-Page, M.; Yu, E.; Li, J.; Rahman, M.; Dryden, D.; Vidu, R.; Stroeve, P. Template-based syntheses for shape controlled nanostructures. Adv. Colloid Interface Sci., 2016, 234, 51-79.
[74]
Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Aberg, I.; Magnusson, M.H.; Siefer, G.; Fuss-Kailuweit, P.; Witzigmann, B.; Xu, H.Q.; Sumuelson, L.; Deppert, K.; Borgström, M.T. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science, 2013, 339, 1057-1060.
[75]
Liu, C.Y.; Gillette, E.; Chen, X.; Pearse, A.J.; Kozen, A.C.; Schroeder, M.A.; Gregorczyk, K.E.; Lee, S.B.; Rubloff, G.W. An all-in-one nanopore battery array. Nat. Nanotechnol., 2014, 9, 1031-1039.
[76]
Kim, J.; Lee, S.; Brovman, Y.M.; Kim, P.; Lee, W. Diameter-dependent thermoelectric figure of merit in single-crystalline Bi nanowires. Nanoscale, 2015, 7, 5053-5059.
[77]
Kelzenberg, M.D.; Boettcher, S.W.; Petykieicz, J.A.; Turner-Evans, D.B.; Putnam, M.C.; Warren, E.L.; Spurgeon, J.M.; Briggs, R.M.; Lewis, N.S.; Atwater, H.A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater., 2010, 9, 239-244.
[78]
Li, K.H.; Liu, X.; Wang, Q.; Zhao, S.; Mi, Z. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat. Nanotechnol., 2015, 10, 140-144.
[79]
Kubo, K.; Iida, H.; Namba, S.; Igarashi, A. Comparison of steaming stability of Cu-ZSM-5 with those of Ag-ZSM-5, P/H-ZSM-5, and H-ZSM-5 zeolites as naphtha cracking catalysts to produce light olefin at high temperatures. Appl. Catal. A Gen., 2015, 489, 272-279.
[80]
Das, S.; Mitra, S.; Khurana, S.M.P.; Debnath, N. Nanomaterials for biomedical applications. Front. Life Sci., 2014, 7, 90-98.
[81]
Martín, J.; Maiz, J.; Sacristan, J.; Mijangos, C. Tailored polymer-based nanorods and nanotubes by “template synthesis”: From preparation to applications. Polymer, 2012, 53, 1149-1166.
[82]
Martin, C.R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266, 1961-1966.
[83]
Md Moniruzzaman, S.; Yue, C.Y.; Ghosh, K.; Jena, R.K. Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources, 2016, 308, 121-140.
[84]
Sun, X.; Li, H. A review: Nanofabrication of surface-enhanced Raman spectroscopy (SERS) substrates. Curr. Nanosci., 2016, 12, 175-183.
[85]
Chuang, H.C.; Hong, G.Y.; Sanchez, J. Fabrication of high aspect ratio copper nanowires using supercritical CO2 fluids electroplating technique in AAO template. Mater. Sci. Semicond. Process., 2016, 45, 17-26.
[86]
Chahrour, K.M.; Ahmed, N.M.; Hashim, M.R.; Elfadill, N.G.; Al-Diabat, A.M.; Bououdina, M. Influence of wet etching time cycles on morphology features of thin porous anodic aluminum oxide (AAO) template for nanostructure’s synthesis. J. Phy. Chem. Solids, 2015, 87, 1-8.
[87]
Adeela, N.; Maaz, K.; Khan, U.; Karim, S.; Ahmad, M.; Iqbal, M.; Riaz, S.; Han, X.F.; Maqbool, M. Fabrication and temperature dependent magnetic properties of nickel nanowires embedded in alumina templates. Ceram. Int., 2015, 41, 12081-12086.
[88]
Wang, X.W.; Ma, S.J.; Wang, X.; Ma, C.; Yuan, Z. Facile conversion of Zn nanowires to Zn nanotubes by heating induced volatilization in nanopores of anodic aluminum oxide template. Vacuum, 2016, 132, 86-90.
[89]
Kostevšek, N.; Rožman, K.Z.; Pečko, D.; Pihlar, B.; Kobe, S. A comparative study of the electrochemical deposition kinetics of iron-palladium alloys on a flat electrode and in a porous alumina template. Electrochim. Acta, 2014, 125, 320-329.
[90]
Wu, Y.; Han, M. Electrodeposited Fe-P nanowire arrays in hard-anodic aluminum oxide templates with controllable magnetic properties by thermal annealing. J. Alloys Compd., 2016, 688, 783-789.
[91]
Fardi-Ilkhchy, A.; Nasirpuri, F.; Bran, C.; Vázquez, M. Compositionally graded Fe(1x)-Pt(x) nanowires produced by alternating current electrodeposition into alumina templates. J. Solid State Chem., 2016, 244, 35-44.
[92]
Jin, S.; Ziabari, A.; Koh, Y.R.; Saei, M.; Wang, X.; Deng, B.; Hu, Y.; Bahk, J-H.; Shakouri, A.; Cheng, G.J. Enhanced thermoelectric performance of P-type BixSb2−xTe3 nanowires with pulsed laser assisted electrochemical deposition. Extreme Mech. Lett., 2016, 9, 386-396.
[93]
Khan, U.; Adeela, N.; Li, W.; Irfan, M.; Javed, K.; Riaz, S.; Han, X.F. Fabrication, morphological, structural and magnetic properties of electrodeposited Fe3Pt nanowires and nanotubes. J. Magn. Magn. Mater., 2017, 424, 410-415.
[94]
Qin, L.; He, L.; Zhao, J.; Zhao, B.; Yin, Y.; Yang, Y. Synthesis of Ni/Au multilayer nanowire arrays for ultrasensitive non-enzymatic sensing of glucose. Sens. Actuators B., 2017, 240, 779-784.
[95]
Selvamurugan, V.; Mangamma, G.; Ravi, S.; Kamruddin, M.; Madhavan, D.; Marikan, A. Low-temperature growth and characterization of neodymiumsubstituted bismuth titanate nanowires in a highly ordered anodic aluminum oxide template by an AC electrodeposition method on the platinum substrate for ferroelectric applications. Ceram. Int., 2016, 42, 10317-10321.
[96]
Song, Y.; Lu, W.; Xu, Y.; Shi, J.; Fang, X. Growth of single-crystalline Co7Fe3 nanowires via electrochemical deposition and their magnetic properties. J. Alloys Compd., 2015, 652, 179-184.
[97]
Maleki, K.; Sanjabi, S.; Alemipour, Z. DC electrodeposition of NiGa alloy nanowires in AAO template. J. Magn. Magn. Mater., 2015, 395, 289-293.
[98]
Grote, F.; Wen, L.; Lei, Y. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. J. Power Sources, 2014, 256, 37-42.
[99]
Tarish, S.; Wang, Z.; Al-Haddad, A.; Wang, C.; Ispas, A.; Romanus, H.; Schaaf, P.; Lei, Y. Synchronous formation of ZnO/ZnS core/shell nanotube arrays with removal of template for meliorating photoelectronic performance. J. Phys. Chem. C, 2015, 119, 1575-1582.
[100]
Ji, S.; Tanveer, W.H.; Yu, W.; Kang, S.; Cho, G.Y.; Kim, S.H.; An, J.; Cha, S.W. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte. Beilstein J. Nanotechnol., 2015, 6, 1805-1810.
[101]
Pannopard, P.; Boonyuen, C.; Warakulwit, C.; Hoshikawa, Y.; Kyotani, T.; Limtrakul, J. Size-tailored synthesis of gold nanoparticles and their facile deposition on AAO-templated carbon nanotubes via electrostatic self-assembly: Application to H2O2 detection. Carbon, 2015, 94, 836-844.
[102]
Ma, L.; Wei, Z.; Zhang, F.; Wu, X. Synthesis and characterization of high-ordered CdTe nanorods. Superlatt Microstruct., 2015, 88, 536-540.
[103]
Sanger, A.; Jain, P.K.; Mishra, Y.K.; Chandra, R. Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application. Sens. Actuators B., 2017, 242, 694-699.
[104]
Kumaresavanji, M.; Sousa, C.T.; Apolinario, A.; Lopes, A.M.L.; Araujo, J.P. Influence of sol–gel parameters in the fabrication of ferromagnetic La2/3Ca1/3MnO3 nanotube arrays. Mater. Sci. Eng. B, 2015, 200, 117-123.
[105]
Dadras, S.; Aawani, E. Fabrication of YBCO nanowires with anodic aluminum oxide (AAO) template. Physica B Condens. Matter., 2015, 475, 27-31.
[106]
Qu, X.; Xie, D.; Cao, L.; Du, F. Synthesis and characterization of TiO2/ZrO2 coaxial core–shell composite nanotubes for photocatalytic applications. Ceram. Int., 2014, 40, 12647-12653.
[107]
Laatar, F.; Hassen, M.; Smida, A.; Riahi, R.; Haj Mohamed, N.B.; Ezzaouia, H. Effect of air-annealing on the morphological, microstructural and optical properties of CdSe NCs grown into porous anodic alumina template. Superlatt Microstruct., 2015, 83, 575-587.
[108]
Laatar, F.; Hassen, M.; Amri, C.; Laatar, F.; Smida, A.; Ezzaouia, H. Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties. J. Lumin., 2016, 178, 13-21.
[109]
Kim, J.; Yang, W.; Oh, Y.; Kim, J.; Moon, J. Template-directed fabrication of vertically aligned Cu2ZnSnS4 nanorod arrays for photoelectrochemical applications via a non-toxic solution process. J. Alloys Compd., 2017, 691, 457-465.
[110]
Zhang, Z.; Gu, M.; Hu, Y.; Liu, X.; Huang, S.; Liu, B.; Ni, C. Template synthesis and luminescence of ordered Lu3Al5O12:Ce nanowire arrays. Mater. Lett., 2016, 166, 158-162.
[111]
Choi, Y.C.; Kim, J.; Han, J.K.; Bu, S.D. Alumina-membrane-based growth of functional PbO2 and Pb(Zr,Ti)O3 metal-oxide nanowires by spin coating. J. Korean Phys. Soc., 2006, 49, 523-528.
[112]
Choi, Y.C.; Kim, J.; Bu, S.D. Template-directed formation of functional complex metal-oxide nanostructures by combination of sol–gel processing and spin coating. Mater. Sci. Eng. B, 2006, 133, 245-249.
[113]
Jiang, Y.; Tang, X.; Zhou, Y.; Liu, Q. Structure and composition-dependent optical properties of (PbxSr1−x)TiO3 (x=0.4, 0.6) nanotube arrays. Prog. Nat. Sci. Mater. Int., 2011, 21, 198-204.
[114]
Ahn, Y.; Son, J.Y. Fabrication and ferroelectric characterization of Mn-doped K0.5Na0.5NbO3 nanodots using an anodic aluminum oxide template. Mater. Lett., 2016, 185, 119-122.
[115]
Li, Z.; Xu, Z.; Ma, Z.; Yu, Z.; Qu, X.; Wang, S.; Peng, J. Pb(Zr0.52Ti0.48)O3 nanotubes synthesis and infrared absorption properties. Opt. Mater., 2016, 51, 171-174.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy