Review Article

具有氨基硫脲基元和相关杂环化合物的金属离子配合物的抗微生物和结构特性

卷 26, 期 4, 2019

页: [664 - 693] 页: 30

弟呕挨: 10.2174/0929867325666180228164656

价格: $65

摘要

由各种细菌真菌和病毒病原体获得的抗生素抗性引起严重性增加的治疗问题。在非常难以治疗的感染中,生物膜相关病例是最危险的病例之一。生物膜的复杂结构和生物膜细胞的独特生理学有助于其对环境条件,抗微生物剂和宿主免疫应答机制的极高抗性。因此,生物膜形成,特别是多药耐药性病原体,是一种严重的医学问题,在慢性和复发性感染的发展中起关键作用。这些因素限制了使用传统化学疗法,并有助于开发治疗传染病的新方法。因此,早期关于几种金属离子配合物(含有氨基硫脲或缩氨基硫脲)作为配体的抗微生物活性的报道,促进了全世界寻找这类新的,更有效的化合物,以用作常用药物的替代品。通常,取决于其他杂原子的存在,这些配体可以以二 - ,三 - 或四齿形式(例如,N,S, - ,N,N,S-,N,N,N,S-)起作用。 ,N,N,S,S-或N,S,O-型),其对所得复合物施加不同的配位几何形状。在本综述的第一部分中,我们描述了基于缩氨基硫脲基序的合成方式和配体结构,而第二部分介绍了它们与选定金属离子的复合物的抗菌活性。

关键词: 氨基硫脲衍生物,缩氨基硫脲,抗菌性,抗生素抗性,金属离子络合物结构,抗菌,抗真菌,抗病毒。

[1]
Wright, A.J.; Wilkowske, C.J. The penicillins. Mayo Clin. Proc., 1991, 66(10), 1047-1063.
[2]
Barza, M.; Travers, K. Excess infections due to antimicrobial resistance: the “Attributable Fraction”. Clin. Infect. Dis., 2002, 34(Suppl. 3), S126-S130.
[3]
Angulo, F.J.; Nunnery, J.A.; Bair, H.D. Antimicrobial resistance in zoonotic enteric pathogens. Rev. - Off. Int. Epizoot., 2004, 23(2), 485-496.
[4]
WHO. Fifty-eight World Health Assembly, E-Publishing,Inc. Ge-neva, May 16-25 2005.
[5]
Zhou, G.; Shi, Q-S.; Huang, X-M.; Xie, X-B. The three bacterial lines of defense against antimicrobial agents. Int. J. Mol. Sci., 2015, 16(9), 21711-21733.
[6]
Chang, S.; Sievert, D-M.; Hageman, J.C.; Boulton, M.L.; Tenover, F.C.; Downes, F.P.; Shah, S.; Rudrik, J.T.; Pupp, G.R.; Brown, W.J.; Cardo, D.; Fridkin, S.K. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med., 2003, 348(14), 1342-1347.
[7]
Tacconelli, E.; De Angelis, G.; Cataldo, M.A.; Pozzi, E.; Cauda, R. Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J. Antimicrob. Chemother., 2008, 61(1), 26-38.
[8]
Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther., 2013, 11(3), 297-308.
[9]
Ahsan, M.J.; Ansari, M.Y.; Yasmin, S.; Jadav, S.S.; Kumar, P.; Garg, S.K.; Aseri, A.; Khalilullah, H. Tuberculosis: current treatment, diagnostics, and newer antitubercular agents in clinical trials. Infect. Disord. Drug Targets, 2015, 15(1), 32-41.
[10]
Fernandes, G.F.D.S.; Man Chin, C.; Dos Santos, J.L. Advances in drug discovery of new antitubercular multidrug-resistant compounds. Pharmaceuticals (Basel), 2017, 10(2), 51.
[11]
Hampe, I.A.I.; Friedman, J.; Edgerton, M.; Morschhäuser, J. An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses. PLoS Pathog., 2017, 13(9), e1006655.
[12]
Sharma, C.; Chowdhary, A. Molecular bases of antifungal resistance in filamentous fungi. Int. J. Antimicrob. Agents, 2017, 50(5), 607-616.
[13]
Esteban, J.; García-Coca, M. Mycobacterium Biofilms. Front. Microbiol., 2018, 8, 2651.
[14]
Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35(4), 322-332.
[15]
Haaber, J.; Cohn, M.T.; Frees, D.; Andersen, T.J.; Ingmer, H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One, 2012, 7(7), e41075.
[16]
Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, 4(3), 223-229.
[17]
Dalton, T.; Dowd, S.E.; Wolcott, R.D.; Sun, Y.; Watters, C.; Griswold, J.A.; Rumbaugh, K.P. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One, 2011, 6(11), e27317.
[18]
McCormick, D.W.; Stevens, M.R.E.; Boles, B.R.; Rickard, A.H. Does it take two to tango? The importance of coaggregation in multi-species biofilms. Culture (Que.), 2011, 32(2), 1-5.
[19]
Elias, S.; Banin, E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev., 2012, 36(5), 990-1004.
[20]
Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Agents that inhibit bacterial biofilm formation. Future Med. Chem., 2015, 7(5), 647-671.
[21]
Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 2017. [Epub ahead of print].
[http://dx.doi.org/10.1080/21505594.2017.1313372]
[22]
Haeili, M.; Moore, C.; Davis, C.J.; Cochran, J.B.; Shah, S.; Shrestha, T.B.; Zhang, Y.; Bossmann, S.H.; Benjamin, W.H.; Kutsch, O.; Wolschendorf, F. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2014, 58(7), 3727-3736.
[23]
Budzisz, E.; Małecka, M.; Lorenz, I-P.; Mayer, P.; Kwiecień, R.A.; Paneth, P.; Krajewska, U.; Rózalski, M. Synthesis, cytotoxic effect, and structure-activity relationship of Pd(II) complexes with coumarin derivatives. Inorg. Chem., 2006, 45(24), 9688-9695.
[24]
Budzisz, E.; Keppler, B.K.; Giester, G.; Woźniczka, M.; Kufelnicki, A.; Nawrot, B. Synthesis, crystal structure and cytotoxicity of novel palladium (II) complex with coumarin derived ligand. Eur. J. Inorg. Chem., 2004, 22, 4412-4419.
[25]
Grazul, M.; Budzisz, E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord. Chem. Rev., 2009, 253, 2588-2598.
[26]
Sobiesiak, M.; Muzioł, T.; Rozalski, M.; Krajewska, U.; Budzisz, E. Co(II), Ni(II) and Cu(II) complexes with phenylthiazole and thiosemicarbozone-derived ligands: synthesis, structure and cytotoxic effects. New J. Chem., 2014, 38, 5349-5361.
[27]
Grazul, M.; Besic-Gyenge, E.; Maake, C.; Ciolkowski, M.; Czyz, M.; Sigel, R.K.O.; Budzisz, E. Synthesis, physico-chemical properties and biological analysis of newly obtained copper(II) complexes with pyrazole derivatives. J. Inorg. Biochem., 2014, 135, 68-76.
[28]
Parmar, S.; Kumar, Y. Synthesis, spectroscopic, and antimicrobial studies of the bivalent nickel, and copper complexes of thiosemicarbazide. Chem. Pharm. Bull. (Tokyo), 2009, 57(6), 603-606.
[29]
Raman, N.; Selvan, A.; Manisankar, P. Spectral, magnetic, biocidal screening, DNA binding and photocleavage studies of mononuclear Cu(II) and Zn(II) metal complexes of tricoordinate heterocyclic Schiff base ligands of pyrazolone and semicarbazide/thiosemicarbazide based derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 76(2), 161-173.
[30]
Angelusiu, M.V.; Almajan, G.L.; Rosu, T.; Negoiu, M.; Almajan, E.R.; Roy, J. Copper(II) and uranyl(II) complexes with acylthiosemicarbazide: synthesis, characterization, antibacterial activity and effects on the growth of promyelocytic leukemia cells HL-60. Eur. J. Med. Chem., 2009, 44(8), 3323-3329.
[31]
Gulea, A.; Poirier, D.; Roy, J.; Stavila, V.; Bulimestru, I.; Tapcov, V.; Birca, M.; Popovschi, L. In vitro antileukemia, antibacterial and antifungal activities of some 3d metal complexes: chemical synthesis and structure - activity relationships. J. Enzyme Inhib. Med. Chem., 2008, 23(6), 806-818.
[32]
Chandra, S.; Gupta, L.K. Sangeetika, Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 62(1-3), 453-460.
[33]
Sathisha, M.P.; Budagumpi, S.; Kulkarni, N.V.; Kurdekar, G.S.; Revankar, V.K.; Pai, K.S.R. Synthesis, structure, electrochemistry and spectral characterization of (D-glucopyranose)-4-phenylthiosemicarbazide metal complexes and their antitumor activity against Ehrlich ascites carcinoma in Swiss albino mice. Eur. J. Med. Chem., 2010, 45(1), 106-113.
[34]
Vrdoljak, V.; Dilović, I.; Rubcić, M.; Kraljević Pavelić, S.; Kralj, M.; Matković-Calogović, D.; Piantanida, I.; Novak, P.; Rožman, A.; Cindrić, M. Synthesis and characterisation of thiosemicarbazonato molybdenum(VI) complexes and their in vitro antitumor activity. Eur. J. Med. Chem., 2010, 45(1), 38-48.
[35]
Bhat, A.R.; Athar, F.; Van Zyl, R.L.; Chen, C-T.; Azam, A. Synthesis and biological evaluation of novel 4-substituted 1-[4-(10,15,20-triphenylporphyrin-5-yl)phenyl]methylidenethiosemicarbazides as new class of potential antiprotozoal agents. Chem. Biodivers., 2008, 5, 764-776.
[36]
Vieites, M.; Otero, L.; Santos, D.; Toloza, J.; Figueroa, R.; Norambuena, E.; Olea-Azar, C.; Aguirre, G.; Cerecetto, H.; González, M.; Morello, A.; Maya, J.D.; Garat, B.; Gambino, D. Platinum(II) metal complexes as potential anti-Trypanosoma cruzi agents. J. Inorg. Biochem., 2008, 102(5-6), 1033-1043.
[37]
Blower, P.J.; Dilworth, J.R.; Maurer, R.I.; Mullen, G.D.; Reynolds, C.A.; Zheng, Y. Towards new transition metal-based hypoxic selective agents for therapy and imaging. J. Inorg. Biochem., 2001, 85(1), 15-22.
[38]
Dilworth, J.R.; Hueting, R. Metal complexes of thiosemicarbazones for imaging and therapy. Inorg. Chim. Acta, 2012, 389, 3-15.
[39]
Bartholomä, M.D. Recent developments in the design of bifunctional chelators for metal-based radiopharmaceuticals used in positronemission tomography. Inorg. Chim. Acta, 2012, 389, 36-51.
[40]
Paterson, B.M.; Donnelly, P.S. Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev., 2011, 40(5), 3005-3018.
[41]
Kasuga, N.C.; Sekino, K.; Koumo, C.; Shimada, N.; Ishikawa, M.; Nomiya, K. Synthesis, structural characterization and antimicrobial activities of 4- and 6-coordinate nickel(II) complexes with three thiosemicarbazones and semicarbazone ligands. J. Inorg. Biochem., 2001, 84(1-2), 55-65.
[42]
Chandra, S.; Gupta, L.K. Spectroscopic and biological studies on newly synthesized nickel(II) complexes of semicarbazones and thiosemicarbazones. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 62(4-5), 1089-1094.
[43]
Kovala-Demertzi, D.; Demertzis, M.A.; Miller, J.R.; Papadopoulou, C.; Dodorou, C.; Filousis, G. Platinum(II) complexes with 2-acetyl pyridine thiosemicarbazone. Synthesis, crystal structure, spectral properties, antimicrobial and antitumour activity. J. Inorg. Biochem., 2001, 86(2-3), 555-563.
[44]
Lobana, T.S.; Khanna, S.; Sharma, R.; Hundal, G.; Sultana, R.; Chaudhary, M.; Butcher, R.J.; Castineiras, A. Versatility of thiosemicarbazones in the construction of monomers, dimers and hydrogen-bonded networks of silver(I) complexes. Cryst. Growth Des., 2008, 8(4), 1203-1212.
[45]
Kalinowski, D.S.; Richardson, D.R. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev., 2005, 57(4), 547-583.
[46]
Kohli, P.; Srivastava, S.D.; Srivastava, S.K. Synthesis and biological Activity of mercaptobenzoxazole based thiazolidinone and their arylidenes. J. Chin. Chem. Soc. (Taipei), 2007, 54, 1003-1010.
[47]
Ševčík, R.; Příhoda, J. On the reactions of chlorodithiophosphoric acid pyridiniumbetaine with polyfunctional nucleophiles. Part IV: Reactions with thiosemicarbazide monoaryl derivatives. Polyhedron, 2015, 85, 161-164.
[48]
Prashant, Y.R.; Nirangan, Ch.A.; Shripal, M.Ch.; Krishna, M.S. Nanotechnology: needs and applications. Int. J. Pharm. Sci. Rev. Res., 2013, 20(1), 210-217.
[49]
Gurnule, W.; Khobragade, J.; Ahamed, M. Synthesis, characterization and thermal degradation studies of copolymer resin derived from 8-hydroxyquinoline 5-sulphonic acid and thiosemicarbozide. Res. J. Pharm. Biol. Chem. Sci., 2014, 5(6), 627-636.
[50]
Sharshira, E.M.; Hamada, N.M.M. Synthesis, characterization and antimicrobial activities of some thiazole derivatives. Am. J. Org. Chem., 2012, 2(3), 69-73.
[51]
Chandak, H.S.; Lad, N.P.; Dange, D.S. Greener and facile aqueous synthesis of pyrazoles using Amberlyst-70 as a recyclable catalyst. Green Chem. Lett. Rev., 2012, 5(2), 135-138.
[52]
Kalantari, M. in molten (ET3NH)HSO4. One eintopfsynthese thiazolidinone in Mölten (ET3NH)HSO4. Heterocyc. Lett., 2013, 3(3), 325-329.
[53]
Hajbi, Y.; Suzenet, F.; Khouili, M.; Lazar, S.; Guillaumet, G. Polysubstituted 2, 3-dihydrofuro[2,3-b]pyridines and 3,4-dihydro-2H-pyrano[2,3-b]pyridines via microwave-activated inverse electron demand Diels–Alder reactions. Tetrahedron, 2007, 63, 8286-8297.
[54]
Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr., 2016, B72, 171-179.
[55]
Nguyen, H.M.; Graber, C.J. Limitations of antibiotic options for invasive infections caused by methicillin-resistant Staphylococcus aureus: is combination therapy the answer? J. Antimicrob. Chemother., 2010, 65(1), 24-36.
[56]
Khodaverdian, V.; Pesho, M.; Truitt, B.; Bollinger, L.; Patel, P.; Nithianantham, S.; Yu, G.; Delaney, E.; Jankowsky, E.; Shoham, M. Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2013, 57(8), 3645-3652.
[57]
Heras, B.; Scanlon, M.J.; Martin, J.L. Targeting virulence not viability in the search for future antibacterials. Br. J. Clin. Pharmacol., 2015, 79(2), 208-215.
[58]
Arora, S.; Agarwal, S.; Singhal, S. Anticancer activities of thiosemicarbazides/thiosemicarbazones: a review. Int. J. Pharm. Pharm. Sci., 2014, 6(9), 34-41.
[59]
Kaplancikli, Z.A.; Altintop, M.D.; Sever, B.; Cantürk, Z.; Özdemir, A. Synthesis and in vitro evaluation of new thiosemicarbazone derivatives as potential antimicrobial agents. J. Chem., 2016, 1-7.
[60]
Kalhor, M.; Shabani, M.; Nikokar, I.; Reyhaneh Banisaeed, S. Synthesis, characterization and antibacterial activity of some novel thiosemicarbazides, 1,2,4 triazol-3-thiols and their S-substituted derivatives. Iran. J. Pharm. Res., 2015, 14(1), 67-75.
[61]
Rane, R.A.; Naphade, S.S.; Bangalore, P.K.; Palkar, M.B.; Shaikh, M.S.; Karpoormath, R. Synthesis of novel 4-nitropyrrole-based semicarbazide and thiosemicarbazide hybrids with antimicrobial and anti-tubercular activity. Bioorg. Med. Chem. Lett., 2014, 24(14), 3079-3083.
[62]
Parul, N.; Subhangkar, N.; Arun, M. Antimicrobial activity of different thiosemicarbazone compounds against microbial pathogens. Int. Res. J. Pharm., 2012, 3(5), 350-363.
[63]
Sheikhy, M.; Jalilian, A.R.; Novinrooz, A.; Motamedi-Sedeh, F. Synthesis and in vitro antibacterial evaluation of some thiosemicarbazides and thiosemicarbazones. J. Biomed. Sci. Eng., 2012, 5, 39-42.
[64]
Sardari, S.; Feizi, S.; Rezayan, A.H.; Azerang, P.; Shahcheragh, S.M.; Ghavami, G.; Habibi, A. Synthesis and biological evaluation of thiosemicarbazide derivatives endowed with high activity toward Mycobacterium bovis. Iran. J. Pharm. Res., 2017, 16(3), 1128-1140.
[65]
Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol., 2013, 11(6), 371-384.
[66]
Bastos, T. O.; Soares, B.M.; Cisalpino, P.S.; Mendes, I.C.; dos Santos, R.G.; Beraldo, H. Coordination to gallium(III) strongly enhances the potency of 2-pyridineformamide thiosemicarbazones against Cryptococcus opportunistic fungi. Microbiol. Res., 2010, 165(7), 573-577.
[67]
Garza-Cervantes, J.A.; Chávez-Reyes, A.; Elena, C. Castillo, E.; García-Rivas, G.; Ortega-Rivera, O.A.; Salinas E.; Ortiz-Martínez, M.; Gómez-Flores, S.L.; Peña-Martínez, J.A.; Pepi-Molina, A.; Treviño-González, M.T.; Zarate, X.; Cantú-Cárdenas, M.E.; Escarcega-Gonzalez, C.E.; Morones-Ramírez, J.R. Synergistic antimicrobial effects of silver/transition-metal combinatorial treatments. Sci. Rep., 2017.
[http://dx.doi.org/10.1038/s41598-017-01017-7]
[68]
Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid. Based Complement. Alternat. Med., 2015, 2015, 246012.
[69]
Palza, H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci., 2015, 16(1), 2099-2116.
[70]
Chen, C.W.; Hsu, C.Y.; Lai, S.M.; Syu, W.J.; Wang, T.Y.; Lai, P.S. Metal nanobullets for multidrug resistant bacteria and biofilms. Adv. Drug Deliv. Rev., 2014, 78, 88-104.
[71]
Pelosi, G. Thiosemicarbazone metal complexes: from structure to activity. Open Crystallogr. J., 2010, 3, 16-28.
[72]
Rafique, S.; Idrees, M.; Nasim, A.; Akbar, H.; Athar, A. Transition metal complexes as potential therapeutic agents. Biotechnol. Mol. Biol. Rev., 2010, 5(2), 38-45.
[73]
Shim, J.; Jyothi, N.R.; Farook, N.A.M. Biological applications of thiosemicarbazones and their metal complexes. Asian J. Chem., 2013, 25(10), 5838-5840.
[74]
Hossain, S.; Zakaria, C.M. Kudrat-E-Zahan. Structural and biological activity studies on metal complexes containing thiosemicarbzone and isatin based Schiff base: A Review. Asian J. Res. Chem, 2017, 10, 1-12.
[75]
Kashar, T.I.; Abdel-Motaal, M.; Emran, K.; Sukar, N.A. Preparation and characterization of thiosemicarbazones corrosion inhibition effect and the antimicrobial and anticancer effect on their metal complexes. Eur. Sci. J., 2017, 13, 249-279.
[76]
Hossain, S.; Kanti Roy, P.; Zakaria, C.M. Kudrat-EZahan. Selected Schiff base coordination complexes and their microbial application: A review. Intern J Chem Studies, 2018, 6, 19-31.
[77]
Patel, A.L.; Chaudhary, M.J. Synthesis, characterization and antimicrobial studies on bivalent copper, nickel and cobalt complexes of thiosemicarbazones. Int. J. Chemtech Res., 2012, 4(3), 918-924.
[78]
Okoronkwo, A.E.; Owolabi, B.J.; Lumure, O.J.; Olagboye, S.A. S.A. Synthesis, characterization and antimicrobial activities of mercaptobenzimidazole, thiosemicarbazide and thiocyanate mixed ligands cobalt(II) complexes. FUTA J. Res.Sci. 2013, 156-162.
[79]
Haeili, M.; Moore, C.; Davis, C.J.; Cochran, J.B.; Shah, S.; Shrestha, T.B.; Zhang, Y.; Bossmann, S.H.; Benjamin, W.H.; Kutsch, O.; Wolschendorf, F. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2014, 58(7), 3727-3736.
[80]
Djoko, K.Y.; Goytia, M.M.; Donnelly, P.S.; Schembri, M.A.; Shafer, W.M.; McEwan, A.G. Copper(II)-bis(thiose-micarbazonato) complexes as antibacterial agents: insights into their mode of action and potential as therapeutics. Antimicrob. Agents Chemother., 2015, 59(10), 6444-6453.
[81]
Pahontu, E.; Julea, F.; Rosu, T.; Purcarea, V.; Chumakov, Y.; Petrenco, P.; Gulea, A. Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones. J. Cell. Mol. Med., 2015, 19(4), 865-878.
[82]
Djoko, K.Y.; Paterson, B.M.; Donnelly, P.S.; McEwan, A.G. Antimicrobial effects of copper(II) bis(thiosemicarbazonato) complexes provide new insight into their biochemical mode of action. Metallomics, 2014, 6(4), 854-863.
[83]
Chandra, S.; Parmar, S.; Kumar, Y. Synthesis, spectroscopic and antimicrobial studies on biva-lent zinc and merkury complexes of 2-formylpyridine thiosemicarbazone.Bioorg. Chem. Appl., 2009. ID 851316, 1-6.
[84]
Santhakumari, R.; Ramamurthi, K.; Balakrishnan, T.; Stoeckli-Evans, H.; Hema, R. Synthesis, optical, thermal and anti-bacterial activities of semiorganic material-thiosemicarbazide cadmium(II) picrate. Mater. Lett., 2012, 67, 70-73.
[85]
Rai, B.K.; Kumari, R. Synthesis, structural, spectroscopic and antibacterial studies of Schiff base ligands and their metal complexes containing nitrogen and sulfur donor atom. Orient. J. Chem., 2013, 29(3), 1163-1167.
[86]
Pahonțu, E.; Paraschivescu, C.; Ilieș, D-C.; Poirier, D.; Oprean, C.; Păunescu, V.; Gulea, A.; Roșu, T.; Bratu, O. Synthesis and characterization of novel Cu(II), Pd(II) and Pt(II) complexes with 8-ethyl-2-hydroxytri-cyclo(7.3.1.02,7)tridecan-13-one-thiosemicarbazone: antimicrobial and antiproliferative activity. Molecules, 2016, 21(5), 1-18.
[87]
Burgos, C-A.E.; Tamayo, L.; Torrellas-Hidalgo, R. Synthesis, characterization and antimicrobial activity of a Pd(II) complex with a 1,3-diphenylpyrazole-4-carboxaldehyde thiosemicarbazone ligand. Rev. U. D. C-A Act&Div. Cient., 2014, 17(2), 477-486.
[88]
Verma, K.K.; Gupta, P.S.; Solanki, K.; Bhojak, N. Microwave assisted synthesis, characterization and antimicrobial activities of few cobalt(II)-thiosemicarbazones complexes. World J. Pharm. Pharm. Sci., 2015, 4(11), 1673-1683.
[89]
Khalil, S.M.E.; Shebl, M.; Al-Gohani, F.S. Zinc(II) thiosemicarbazone complex as a lingand towards some transition metal ions: synthesis, spectroscopic and antimicrobial studies. Acta Chim. Slov., 2010, 57(3), 716-725.
[90]
Alomar, K.; Landreau, A.; Kempf, M.; Khan, M.A.; Allain, M.; Bouet, G. Synthesis, crystal structure, characterization of zinc(II), cadmium(II) complexes with 3-thiophene aldehyde thiosemicarbazone (3TTSCH). Biological activities of 3TTSCH and its complexes. J. Inorg. Biochem., 2010, 104(4), 397-404.
[91]
Yildirim, H.; Guler, E.; Yavuz, M.; Ozturk, N.; Kose Yaman, P.; Subasi, E.; Sahin, E.; Timur, S. Ruthenium (II) complexes of thiosemicarbazone: synthesis, biosensor applications and evaluation as antimicrobial agents. Mater. Sci. Eng. C, 2014, 44, 1-8.
[92]
Viñuelas-Zahínos, E.; Luna-Giles, F.; Torres-García, P.; Fernández-Calderón, M.C. Co(III), Ni(II), Zn(II) and Cd(II) complexes with 2-acetyl-2-thiazoline thiosemicarbazone: Synthesis, characterization, X-ray structures and antibacterial activity. Eur. J. Med. Chem., 2011, 46(1), 150-159.
[93]
Al-Amiery, A.A.; Al-Majedy, Y.K.; Abdulreazak, H.; Abood, H. Synthesis, characterization, theoretical crystal structure, and antibacterial activities of some transition metal complexes of the thiosemicarbazone (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide. Bioinorg.Chem. Appl., 2011. ID 483101, 1-6
[94]
Tyagi, M.; Chandra, S. Synthesis, characterization and biocidal properties of platinum metal complexes derived from 2,6-diacetylpyridine(bisthiosemicarbazone). Open J. Inorg. Chem., 2012, 2, 41-48.
[95]
Shebl, M.; Ibrahim, M.A.; Khalil, S.M.E.; Stefan, S.L.; Habib, H. Binary and ternary copper(II) complexes of a tridentate ONS ligand derived from 2-aminochromone-3 carboxaldehyde and thiosemicarbazide: synthesis, spectral studies and antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 399-408.
[96]
Bashari, V.; Rinke, D.; Beckford, F. Synthesis, characterization, and antimicrobial activity of organometallic ruthenium(II) complexes. J. Undergrad. Chem. Res., 2006, 2, 99-104.
[97]
Kumar, S.; Kumar, N. Synthesis and biological activity of acetyloacetone thiosemicarbazone and their metallic complexes. Int. Curr. Pharm. J., 2013, 2(4), 88-91.
[98]
Srivastava, K.P.; Singh, S.K.; Mishra, B.P. Green synthetic approach and antimicrobial activity of bidentate Schiff base ligands and their Ni(II) complexes under microwave irradiation. J. Chem. Pharm. Res., 2015, 7(1), 197-203.
[99]
Chetana, P.R.; Somashekar, M.N.; Srinatha, B.S.; Policegoudra, R.S.; Aradhya, S.M.; Rao, R. Synthesis, crystal structure, antioxidant, antimicrobial, and mutagenic activities and DNA interaction studies of Ni(II) Schiff base 4-Methoxy-3-benzyloxybenzaldehyde thiosemicarbazide complexes. ISRN Inorg. Chem., 2013, ID250791, 1-11.
[100]
Venkatesh, K.; Rayam, P.; Sekhar, K.B.Ch.; Mukkanti, K. Synthesis, characterization and biological activity of some new thiosemicarbazide derivatives and their transition metal complexes. Int. J. Appl. Biol. Pharm. Technol., 2016, 7, 258-266.
[101]
Aly, M.M.; Mohamed, Y.A.; El-Bayouki, K.A.M.; Basyouni, W.M.; Abbas, S.Y. Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities - part-1. Eur. J. Med. Chem., 2010, 45(8), 3365-3373.
[102]
Abou Melha, K.S. In-vitro antibacterial, antifungal activity of some transition metal complexes of thiosemicarbazone Schiff base (HL) derived from N4-(7′-chloroquinolin-4′-ylamino) thiosemicarbazide. J. Enzyme Inhib. Med. Chem., 2008, 23(4), 493-503.
[103]
Youself, T.A.; El-Reash, G.M.A.; El-Gammal, O.A.; Sharaa, B.M. Characterization, quantum, antibacterial, antifungal and antioxidant studies on Hg(II) and Cd(II) complexes of allyl and ethyl thiosemicarbazides derived from 2-aminothiazole-4-yl-acetohydrazide. Egypt. J. Basic Appl. Sci., 2016, 3(1), 44-60.
[104]
Kumar, G.; Kumar, D.; Devi, S.; Johari, R.; Singh, C.P. Synthesis, spectral characterization and antimicrobial evaluation of Schiff base Cu (II), Ni (II) and Co (II) complexes. Eur. J. Med. Chem., 2010, 45(7), 3056-3062.
[105]
Aljahdali, M.S. Nickel(II) complexes of novel thiosemicarbazone compounds: Synthesis, characterization, molecular modeling and in vitro antimicrobial activity. Eur. J. Chem., 2013, 4(4), 434-443.
[106]
Beckford, F.; Dourth, D.; Shaloski, M., Jr; Didion, J.; Thessing, J.; Woods, J.; Crowell, V.; Gerasimchuk, N.; Gonzalez-Sarrías, A.; Seeram, N.P. Half-sandwich ruthenium–arene complexes with thiosemicarbazones: synthesis and biological evaluation of [(η6-p-cymene)Ru(piperonal thiosemicarbazones)Cl]Cl complexes. J. Inorg. Biochem., 2011, 105(8), 1019-1029.
[107]
Beckford, F.A.; Thessing, J.; Shaloski, M., Jr; Mbarushimana, P.C.; Brock, A.; Didion, J.; Woods, J.; Gonzalez-Sarrías, A.; Seeram, N.P. Synthesis and characterization of mixed-ligand diimine-piperonal thiosemicarbazone complexes of ruthenium(II): Biophysical investigations and biological evaluation as anticancer and antibacterial agents. J. Mol. Struct., 2011, 992(1-3), 39-47.
[108]
Patil, S.A.; Unki, S.N.; Kulkarni, A.D.; Naik, V.H.; Badami, P.S. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5), 1128-1136.
[109]
Kalaivani, P.; Prabhakaran, R.; Dallemer, F.; Poornima, P.; Vaishnavi, E.; Ramachandran, E.; Padma, V.V.; Renganathan, R.; Natarajan, K. DNA, protein binding, cytotoxicity, cellular uptake and antibacterial activities of new palladium(II) complexes of thiosemicarbazone ligands: effects of substitution on biological activity. Metallomics, 2012, 4(1), 101-113.
[110]
Patil, S.A.; Naik, V.H.; Kulkarni, A.D.; Kamble, U.; Bagihalli, G.B.; Badami, P.S. DNA cleavage, in vitro antimicrobial and electrochemical studies of Co(II), Ni(II) and Cu(II) complexes with m-substituted thiosemicarbazide Schiff bases. J. Coord. Chem., 2010, 63(4), 688-699.
[111]
Yuvaraj, T.C.M.; Naik, P.P.; Krishnamurthy, G.; Venkatesh, T.V.; Manjuraj, T. Synthesis, Characterization, Thermal Degradation Studies of Transition Metal Complexes of 5-Methoxy-5,6-Bis(3-Nitrophenyl)-4,5-Dihydro-1,2,4-Triazine-3(2H)-Thione and Their Biological Activities. Int J Adv Res Chem Sci., 2016, 3, 57-67.
[112]
Hossain, S.; Sarker, S.; Shaheed, A.S.M.E.; Hossain, M.; Alim-Al-Bari, A.; Karim, R.; Zakaria, C.M. Kudrat-E-Zahan. Thermal and Spectral Characterization of Cr(III), Co(II) and Cd(II) Metal Complexes Containing Bis-Imine Novel Schiff Base Ligand Towards Potential Biological Application. Chem Biomol., 2017, 2, 41-50.
[113]
Jayanthi, K.; Meena, R.P.; Chithra, K.; Kannan, S.; Shanthi, W.; Saravanan, R.; Suresh, M.; Satheesh, D. Synthesis And Microbial Evaluation o Copper(II) Complexes of Schiff Base Ligand Derived From 3-Methoxysalicylaldehyde With Semicarbazide and Thiosemicarbazide. J Pharm Chem Bio Sci., 2017, 5, 205-215.
[114]
El-Metwally, N.M.; Al-Hazmi, G.A.A. Spectroscopic evaluation for VO(II), Ni(II), Pd(II) and Cu(II) complexes derived from thiosemicarbazide: a special emphasis on EPR study and DNA cleavage. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 107, 289-295.
[115]
Hamre, D.; Bernstein, J.; Donovick, R. Activity of p-aminobenzaldehyde, 3-thiosemicarbazone on vaccinia virus in the chick embryo and in the mouse. Proc. Soc. Exp. Biol. Med., 1950, 73(2), 275-278.
[116]
Thompson, R.L.; Davis, J.; Russell, P.B.; Hitchings, G.H. Effect of aliphatic oxime and isatin thisemicarbazones on vaccinia infection in the mouse and in the rabbit. Proc. Soc. Exp. Biol. Med., 1953, 84(2), 496-499.
[117]
Kune, G.A. To-Day’s Drugs: Methisazone. BMJ, 1964, 2(5409), 621.
[118]
Finkielsztein, L.M.; Castro, E.F.; Fabián, L.E.; Moltrasio, G.Y.; Campos, R.H.; Cavallaro, L.V.; Moglioni, A.G. New 1-indanone thiosemicarbazone derivatives active against BVDV. Eur. J. Med. Chem., 2008, 43(8), 1767-1773.
[119]
Sebastian, L.; Desai, A.; Shampur, M.N.; Perumal, Y.; Sriram, D.; Vasanthapuram, R. N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo. Virol. J., 2008, 5, 64-76.
[120]
Kang, I.J.; Wang, L.W.; Hsu, T.A.; Yueh, A.; Lee, C.C.; Lee, Y.C.; Lee, C.Y.; Chao, Y.S.; Shih, S.R.; Chern, J.H. Isatin-β-thiosemicarbazones as potent herpes simplex virus inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(7), 1948-1952.
[121]
Mishra, P.; Kumar, A.; Mamidi, P.; Kumar, S.; Basantray, I.; Saswat, T.; Das, I.; Nayak, T.K.; Chattopadhyay, S.; Subudhi, B.B.; Chattopadhyay, S. Inhibition of Chikungunya virus replication by 1-[12-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene]amino] thiourea (MBZM-N-IBT). Sci. Rep., 2016, 6, 20122.
[122]
Kesel, A.J. Broad-spectrum antiviral activity including human immunodeficiency and hepatitis C viruses mediated by a novel retinoid thiosemicarbazone derivative. Eur. J. Med. Chem., 2011, 46(5), 1656-1664.
[123]
Glisoni, R.J.; Cuestas, M.L.; Mathet, V.L.; Oubiña, J.R.; Moglioni, A.G.; Sosnik, A. Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Sci., 2012, 47(3), 596-603.
[124]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[125]
Hajare, R.; Kulkarni, S.; Thakar, M.; Paranjape, R. Isatin anti-HIV agent: a review. World J. Pharm. Pharm. Sci., 2016, 5(7), 569-575.
[126]
Sebastian, L.; Desai, A.; Yogeeswari, P.; Sriram, D.; Madhusudana, S.N.; Ravi, V. Combination of N-methylisatin-β-thiosemicarbazone derivative (SCH16) with ribavirin and mycophenolic acid potentiates the antiviral activity of SCH16 against Japanese encephalitis virus in vitro. Lett. Appl. Microbiol., 2012, 55(3), 234-239.
[127]
Patel, H.D.; Divatia, S.M.; De Clereq, E. Synthesis of some novel thiosemicarbazone derivatives having anti-cancer, anti-HIV as well as anti-bacterial activity. Indian J. Chem., 2013, 52B, 535-545.
[128]
Cihan-Üstündağ, G.; Gürsoy, E.; Naesens, L.; Ulusoy-Güzeldemirci, N.; Çapan, G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg. Med. Chem., 2016, 24(2), 240-246.
[129]
Mishra, V.; Pandeya, S.N.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. Anti-HIV activity of thiosemicarbazone and semicarbazone derivatives of (+/-)-3-menthone. Arch. Pharm. (Weinheim), 2002, 335(5), 183-186.
[130]
Padmanabhan, P.; Khaleefathullah, S.; Kaveri, K.; Palani, G.; Ramanathan, G.; Thennarasu, S.; Tirichurapalli Sivagnanam, U. Antiviral activity of Thiosemicarbazones derived from α-amino acids against Dengue virus. J. Med. Virol., 2017, 89(3), 546-552.
[131]
Pacca, C.C.; Marques, R.E.; Espindola, J.W.P.; Filho, G.B.O.O.; Leite, A.C.L.; Teixeira, M.M.; Nogueira, M.L. Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus. Biomed. Pharmacother., 2017, 87, 381-387.
[132]
Georgiou, N.A.; van der Bruggen, T.; Oudshoorn, M.; Nottet, H.S.L.M.; Marx, J.J.M.; van Asbeck, B.S. Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J. Infect. Dis., 2000, 181(2), 484-490.
[133]
Georgiou, N.A.; van der Bruggen, T.; Oudshoorn, M.; Hider, R.C.; Marx, J.J.M.; van Asbeck, B.S. Human immunodeficiency virus type 1 replication inhibition by the bidentate iron chelators CP502 and CP511 is caused by proliferation inhibition and the onset of apoptosis. Eur. J. Clin. Invest., 2002, 32(Suppl. 1), 91-96.
[134]
Traoré, H.N.; Meyer, D. The effect of iron overload on in vitro HIV-1 infection. J. Clin. Virol., 2004, 31(Suppl. 1), S92-S98.
[135]
Beraldo, H.; Gambino, D. The wide pharmacological versatility of semicarbazones, thiosemicarba-zones and their metal complexes. Mini Rev. Med. Chem., 2004, 4(1), 31-39.
[136]
Zeglis, B.M.; Divilov, V.; Lewis, J.S. Role of metalation in the topoisomerase IIα inhibition and antiproliferation activity of a series of α-heterocyclic-N4-substituted thiosemicarbazones and their Cu(II) complexes. J. Med. Chem., 2011, 54(7), 2391-2398.
[137]
Garoufis, A.; Hadjikakou, S.K.; Hadjiliadis, N. Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coord. Chem. Rev., 2009, 253, 1384-1397.
[138]
Kumar, D.; Kumar Singh, V. Application of metal complexes of Schiff base with special reference to thiosemicarbazone: a review. J. Drug Discov. Ther., 2014, 2(13), 24-32.
[139]
Horton, D.; Varela, O. Cu, Pt, and Pd complexes of the 3-deoxy-1,2-bis(thiosemicarbazone) derived from D-glucose. Carbohydr. Res., 2000, 328(3), 425-429.
[140]
Varadinova, T.; Kovala-Demertzi, D.; Rupelieva, M.; Demertzis, M.; Genova, P. Antiviral activity of platinum (II) and palladium (II) complexes of pyridine-2-carbaldehyde thiosemicarbazone. Acta Virol., 2001, 45(2), 87-94.
[141]
Kovala-Demertzi, D.; Varadinova, T.; Genova, P.; Souza, P.; Demertzis, M.A. Platinum(II) and palladium(II) complexes of pyridine-2-carbaldehyde thiosemicarbazone as alternative antiherpes simplex virus agents. Bioinorg. Chem. Appl., 2007, ID56165, 56165.
[142]
Matesanz, A.I.; Pérez, J.M.; Navarro, P.; Moreno, J.M.; Colacio, E.; Souza, P. Synthesis and characterization of novel palladium(II) complexes of bis(thiosemicarbazone). Structure, cytotoxic activity and DNA binding of Pd(II)-benzyl bis(thiosemicarbazonate). J. Inorg. Biochem., 1999, 76(1), 29-37.
[143]
Genova, P.; Varadinova, T.; Matesanz, A.I.; Marinova, D.; Souza, P. Toxic effects of bis(thiosemicarbazone) compounds and its palladium(II) complexes on herpes simplex virus growth. Toxicol. Appl. Pharmacol., 2004, 197(2), 107-112.
[144]
Pelosi, G.; Bisceglie, F.; Bignami, F.; Ronzi, P.; Schiavone, P.; Re, M.C.; Casoli, C.; Pilotti, E. Antiretroviral activity of thiosemicarbazone metal complexes. J. Med. Chem., 2010, 53(24), 8765-8769.
[145]
Fonteh, P.N.; Keter, F.K.; Meyer, D. New bis(thiosemicarbazonate) gold(III) complexes inhibit HIV replication at cytostatic concentrations: potential for incorporation into virostatic cocktails. J. Inorg. Biochem., 2011, 105(9), 1173-1180.
[146]
Fonteh, P.; Meyer, D. In vitro reactivation of latent HIV-1 by cytostatic bis(thiosemicarbazonate) gold(III) complexes. BMC Infect. Dis., 2014, 14, 680-689.
[147]
Booth, B.A.; Sartorelli, A.C. Metabolic effects of copper in intact cells: comparative activity of cupric chloride and the cupric chelate of kethoxal bis(thiosemicarbazone). Mol. Pharmacol., 1967, 3(3), 290-302.
[148]
aEasterbrook, K.B. Interference with the maturation of vaccinia virus by isatin β-thiosemicarbazone. Virology,1962, 17(2), 245-251.bBach, M.K.; Magee, W.E. Biochemical effects of isatin β-thiosemicarbazone on development of vaccinia virus. Proc. Soc. Exp. Biol. Med., 1962, 110(3), 565-567.
[149]
Xiang, Y.; Simpson, D.A.; Spiegel, J.; Zhou, A.; Silverman, R.H.; Condit, R.C. The vaccinia virus A18R DNA helicase is a postreplicative negative transcription elongation factor. J. Virol., 1998, 72(9), 7012-7023.
[150]
(a)Katz, E.; Margalith, E.; Winer, B.; Goldblum, N. Synthesis of vaccinia virus polypeptides in the presence of isatin-beta-thiosemicarbazone. Antimicrob. Agents Chemother., 1973, 4(1), 44-48.
(b)Katz, E.; Margalith, E.; Winer, B. The effect of isatin β thiosemicarbazone (IBT)-related compounds on IBT-resistant and on IBT-dependent mutants of vaccinia virus. J. Gen. Virol., 1974, 25(2), 239-244.
(c)Katz, E.; Margalith, E.; Winer, B. An isatin β-thiosemicarbazone (IBT)-dependent mutant of vaccinia virus: the nature of the IBT-dependent step. J. Gen. Virol., 1973, 21(3), 477-484.
(d)Katz, E.; Winer, B.; Margalith, E.; Goldblum, N. Isolation and characterization of an IBT-dependent mutant of vaccinia virus. J. Gen. Virol., 1973, 19(1), 161-164.
(e)Katz, E.; Margalith, E.; Winer, B. Formation of vaccinia virus DNA-protein complex in the presence of isatin β thiosemicarbazone (IBT). J. Gen. Virol., 1978, 40(3), 695-699.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy